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ABSTRACT

In this paper, a solution to empirical dependency measure
is proposed. The main idea is to use the notion of pre-
dictability as a basis for dependency definitton. Consid-
ering any nonlinear regression function between two ran-
dom variables, the power of regression residuals or noise
variance defines the desired dependency measure. The
residuals variance can be directly computed by estimators
without finding the best fit curve. The paper shows the
conditions on which two random variables are indepen-
dent according to the estimated residuals variance. The
existence of residual variance, or noise variance estima-
tors make it possible to define such practical measure for
dependency. The dependency measure finds wide areas of
applications in signal processing and machine learning. In
this paper, solutions for Independent Component Analysis
and input selection using the proposed dependency mea-
sure are discussed.

1. INTRODUCTION

A number of algorithms in signal processing, adaptive fil-
tering and machine learning can be recasted as optimiz-
ing the dependence measure between states or redefined
mput-output pairs. For example, in feature extraction, the
goal is to select features which are independent to each
other with respect to a given data set. As another example,
in multiple step ahead prediction, one might be interested
in the dependence between few steps-ahead and previous
values. These evidences ShDWS the essence of an empirical
measure of dependence.

The dependence measures are studied thoroughly in
the paper of Renyi [12], where the dependence measures
are listed by correlation, correlation ratio, maximal corre-
latior and mean square contingency. Ambng them, maxi-
mal correlation is studied in details in [ 12]. Further works,
including the works of {4] and [1], develop the maximal
correlationimeasurg {6 become tractable By using the re-
producing kernei Hilbert space. Mutual Information and

Kullback-Leiber divergence are widely used as dependence

measure as well [2, 9].
In contrast, in this paper, we propose an approach to

dependence estimation grounded on the notion of predictabil-

ity. Here, the basic idea is to write one of the random vari-
ables (r.v.} in terms of nonlinear regression of the other

one which results in:

y = f(x) +¢, (1)

f denotes a nonlinear regression function, x and ¥ are the
interesting r.v.s. The amount of dependency between the
r.v.s derives variance of ¢, t.e. the residuals, {0 a quan-
tity taking place between two extremes: independence or
strict dependence. Two r.v. X and y are called strictly de-
pendent if y = f(x) for some bounded function f. There-
fore, the dependency estimation can be reduced to resid-
ual/noise variance estimation.

In the following, first, the possibility of noise vari-
ance or residual variance estimation based on the notion
of smoothness of regression function is described in sec-

tion 2. Section 3 draws the contribution of the noise vari-

ance 1n the problem of dependency estimation. To show
the efficiency of the proposed approach to dependency es-
timation, section 4 shows applications in input variable
selection and independent component analysis.

In this paper, the goal is not to provide a new tech-
nique which might be more efficient in terms of accuracy,
computational complexity or robustness compare to other
methods like Mutual Intormation or Kernel Mutual Infor-
mation [1]. Rather, the goal 1s to show the existence of
another possibility for dependence estimation which is not
covered in Renyi works and stems from the notion of non-
linear regression analysis.

2. NOISE VARIANCE ESTIMATION

Consider given data set £ = {x;, y.z}f';l where x; € RM
for some fixed M and y; € R. We assume that y can be
estimated by some function f (f € Ly). Thus, we have

y = f(x)+e. (2)

Furthermore, we assume that & is independent to x and

E {€} = 0. ¢ arises from those parts of §j which cannotbe ~

determined from x. The problem is to find Var{c}. Sim-
ply, one can fit a model to the given data set and take the
empirical variance of the residuals. Here, instead of fitting
a model we employ those estimators which can directly
compute the residual variance based on a priori. All the
proposed estimate can be summarized in terms of smooth-
ness concept, see for example [3, 10, 8,7, 31.
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Here, we describe the general idea behind these esti-
mators briefly. Suppose f is continuous or smooth, and
because of technical reason, € € L2. For continuous func-
tions we have, for all ¢ > 0 there is a 0 > 0 such that
| f(z) — f(zo)]| < 6 for ||x — zol} < €. In practical situ-
ation, the nearest neighbor defines the € and 6. Therefore,
if the maximum distance in mesh of data points goes to
zero, we can say that || f(z;) — f(z[;,17)|| < & or the norm
is almost sure zero (again, for a given data set where we
do not have a compact space). [t, 1| denotes the nearest
neighbor of z;. Very simply, for ordered design, the resid-
uals are £; = (y; — Ys+1) and taking expectation over 3&2
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where J = % f; ¥/ (:1:)2 dz. In summary, one solution to
the empirical residual or noise variance estimation can be

written as
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Thus, by assuming that a smooth least plausible approx-
tmation of a point 1s its nearest neighbour, we construct
an estimate of the hoise variable and accordingly, we can
estimate the noise variance. '

It is possible to extend the above method by taking
each three consecutive points. The local residual can be

constructed by distance between the response at the mid-

dle point and corresponding value at that point of the re-
gression line connecting two outer point. The noise vari-
ance can be estimated by computing the empirical vari-
ance over the evaluated local residuals. In other words,
the local residuals can be casted as
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A similar approach shown in expression (3) gives

E{e?} = (af +5] +1) o’ + O(%) . (5)

in [3, 7], an extension to higher degrees is described with
the general name polynomial estimator. In order to ex-
tend the above estimator to R™ . the differences should be
taken in all M directions, for more details, see [3].

More sophisticated approaches have been proposed for
noise variance estimation that use kernels to provide con-

sistent estimate, for example the method proposed by Hall
[8], Tong approach [13], Delta test by Pi and Peterson

[11], and etc. Among them, Muller [14] proposed a v N
consistent estimate based on U-statistic which is defined

by : My
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K is a kernel function and A is the kernel width. The
weights in expression {6) are chosen in such a way that
the estimator becomes +/N consistent !, for more details,
see [14]. The main difficulty in employing the Muller ap-
proach is choosing the kernel width. To check the sensi-
tivity of Muller approach to the kemel width, a toy data
set is made on y = sinc(bnz) + €, where z € [0, 1] and
¢ denotes the noise with different distribution (Normal, {-
student and x?). The true variance of £ and the proper
value of kernel width which results in an estimate with

error less than ~ 0.00001 are given in table 1.

g={A) Width | o2(B) | Width | ¢%(C) | Width
8.3747e-04 | 0.0033 | 0.0106 | 0.0033 | 0.1119 | 0.0051
0.0034 - | 0.0033 | 0.0423 | 0.0033 | 0.4476 | 0.0051
0.0077 0.0033 | 0.0952 | 0.0033 | 1.0070 | 0.0051
0.0130 0.0065 | 0.1693 | 0.0033 | 1.7903 | 0.0047
0.0203 0.0065 | 0.2645 | 0.0033 | 27973 | 0.0047
0.0308 0.0065 | 0.3809 i 0.0033 | 4.0281 | 0.0047
0.0410. | 0.0065 | 0.5184 § 0.0033 | 5.4827 | 0.0047
0.0543 0.0065 | 0.6771 { 0.0033 | 7.1611 | 0.0047
0.0678 0.0065 | 0.8569 | 0.0033 | 9.0633 | 0.0047
0.0855 0.0065 | 1.0580 | 0.0033 | 11.1892 | 0.0047

Table 1. This table shows the sensitivity of Muller ap-
proach to the kernel width in a Toy Example: vy =
sinc(5mx)4-€. (A) column denote the result with gaussian
noise, (B) for ¢-student noise and (C) for y2-distribution -
NOISE

The same experiments with other methods for noise
variance estimation shows that Muller approach is reliable
and less sensitive to the kernel width. So, for experimental
parts, we applied the Muller approach.

3. DEPENDENCE MEASURE BASED ON
PREDICTABILITY

Let’s reconsider or redefine the problem of dependence
estimation as the question of "how likely the random vari-
able ¥ can be nonlinearly predicted or approximated from
the random variable x”. Intuitively, when the residual
variance 1s high compare to the variance of the variable
taken as the response, then they are likely independent.

Referring to brief discussion in section 1, we assume
that it is possible to estimate r.v. y for a given value of r.v,
X, S0 we have

yi = f(x;) + €(3).
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Here, £(.) is an unknown function, which in principle, rep-
resents that part of signal which can not be determined and
it is referred by noise. By this notation, we mean that r.v.
y is span of basis {&(.}, f(.)}, where f € L2, Thus, we
have:

E{lly—el*} =E {lvll*} +E{|leli*} ~E {2y} (7)

For independent r.v.s x and y, E{{|ly — &}|*} approaches to
zero, which implies that E { || (.)|?} ~ 0. Also, IE {Ile]f*} —
0, implying that.e.— 0 and the r.v. ¥ is strictly dependent
to r.v. x. For values of E { |l||*} which are closer to zero,
the conclusion is that the r.v.s x and y are more dependent,
i.e. 1t is most likely that one can find a smooth nonlinear
function which can approximate ¢ based on x almost sure.

Theorem 3.1 Let Var{e} denotes the residual power or
the noise variance in regression analysis between rv. X as
design and y as response variable. Two random variables

x and y are independent if and only if Var{e} = Var(y).

Proof: Suppose Var{z} = Var(y) holds. since £ and z are
independent, we have Var { f(x)} = 0. Var{y} =Var{e}+
Var{ f(z)} + 2Cov{ f(z),e}. Therefore, f(z) =C

Now, suppose that the random variables x and y are
independent. So, we have

E{g(x)}E{y} = E{g(x)} E{f(x) +¢} =
 EQGNE{f()} +E{9(x)}E{e}
=E{g}E{f(x)} =E{g(x)f(x)}.

This hold if and only if f(x) = C.

The discussion above is true for the case where x €
RM, for fixed M and y € R. To extend the proposed .
dependence measure, we put a strong condition when y €

R€ for some fixed C:

Theorem 3.2 Two random variables x € RM and y <
R are independent if and only if

Vi=1,...,C: Var{eg}=Var{y},

- where Yar{e;} is the residual variance obtained in re-

gression analysis between x and ;.

4. APPLICATIONS

The 1dea of employing the dependence ¢stimation can be
implemented in Infomax-like framework [9], where the
dependence estimation plays the role of objective func-
tion. By minimizing or maximizing the dependency mea-
sure between two random variables, a variety of applica-
tions appears. Two realization of such a framework are
described as following.

4.1. Input Variable Selection or Feature Selection

Feature selection or input variable selection involves find-

ing input .variables or features having most dependency. ;=<

with Interesting variable, e.g. response variablé. The prob-
lem of the input variable selection can be addressed through
weighting the input variables according to_their contribu-
tion to response variable . The weights can be chosen
from the set {0, 1}, for input variable selection, or from
the interval [0, 1], for input variable weighting. Then prob-
lem can be formulated as L

o D .
min & {(Wox,y}t=

{wlml,w2$2,-_-—;wM$M}: y

weighted input varjables output variable

(8)

Within such framework, input variables with more con-
tribution to the response variable will be assigned to higher
weights. These weights also cancel out the noise in the
data set. Since the input variables with small weights in-
dicates their poor dependency with the response variables,
they can be filtered out by thresholding.

4.2. Application of Dependence Estimation in ICA

The independent component analysis problem consists of
finding the source signals or components and the mix-

ing coetficients given the mixed signals, provided that the

original components are independent to each other. Let’s

suppose the sources s = {s1(¢), 32(£), . . ., sar(t)} mixed

by some matrix A. The observation is represented by

x = {z1(t),z2(£),...,zm(t})} = As. The goal is to
find the matrix B which is equal to A~! together with the

source vectors {Sg}fil [2].

Given that the source signals are independent to each
other, one solution can be obtained by weighting the ob-
servations in such a way that the estimated components
become independent to each other. The weight matrix
is called demixing matrix. The traditional approaches to
ICA usnally apply Mutual Information to measure the in-
dependency between the estimated components [2].

By applying the noise variance as a measure of inde-
pendency, we can propose a solution to the ICA as follow-

ing

e . . . ) . . a2
Hél.n”ﬂ'z{{Sj[,Sz,--‘,Si—1,5i+1:*-*:SM}asi}_Var{si}uz
T

Vi=1,2.....M (9)

Here, §; denotes the estimated source which i1s obtained
by 8; = B;x, where B; is the i-th row vector of demix-
ing matrix 5. Among all the methods proposed for noise
variance estimation, there are some which are not differ-
entiable with tespect to their arguments, for exaniple the
proposed methods in [11, 6]. In this paper, the proposed
estimator by Muller {(in expression 6) is employed. To
make a simpler optimization, the given data set is whiten,
in a sense that the E {zz” } = I, where I is the unit matrix
and z is the whited matrix of x*. The experimental results

2let C denotes the covariance matrix E {xxT}. Then the whiten

ersion: 6f:R5 Which is ‘@enoted by z can be obtained by z = D3 E, vt
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Fig. 1. The results for ICA obtained by optimization in
(9) on the Toy example. First row shows the original com-
ponents, second row, shows the whited mixtures, and the
third row shows the estimated independent components.

are shown m figure 1. The figures in the first row show
the independent sources applied in this experiment. For
finding the optimum value, Matlab optimization toolbox
1s used. The gradient vector is not provided in the exper-
iments, but still the optimization algorithm is able to find
optimal solution.

5. DISCUSSION

300

In this paper, the idea of using the noise variance as the de-

pendency measure is proposed. There, two random vari-
ables are independent iff the residual variance of regres-
sion analysis between two random variables (one as de-
sign and the other as response) reaches the variance of
response variable. The noise variance can be computed
by taking the difference between the best fit curve and the
response variable. One can, also, directly estimate the ad-
ditional noise variance based on the smoothness assump-

~tion. Since each noise variance estimator requires priors

on the smoothness of the underlying function, the estima-
tion 1s biased on this information. Recall that the prior on
the smoothness i1s implemented as the kernel width or the
order of smoothing filter. Accordingly, the drawn way to
detect independency is somehow biased on the smooth-
ness of the possible nonlinear function between the ran-

dom variables. The study in section (2) on thg_y.uller |

estimator reveals that the bias of estimation is not so sen-
sitive to the smoothness prior. In a way, it shows that the
resolution of the estimation is much more than the resolu-
tion of the kernel width. In addition, the convergence or
other statistical properties of the residual variance estima-

where £ is the eigen matrix of C and D = diag{A1, A2,..., Ap}

tor transforms to the proposed dﬂpendenc‘}" inq_asnre.

To check the reliability of using thé noise variance as
dependency measure, it is applied in ICA problem. The
ICA problem is used as benchmark prmblam for some of

_____

.....

|~ other dependency measures, for’ example See: Iﬁ Exper—- =

imental results suppmrt the rehablllty and accuracy of the
proposed method.

In side of applications, a number of problems can be
addressed by minimizing or maximizing the dependence

measure between, in general, two group of variables. There-

fore, finding an efficient optimization techniques for the
proposed dependence measure is of great importance. Ex-
tension of this work for more general domains like trees,
string or graphs draws line for future works.
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