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Abstract— In this paper, variable selection and variable scal- Il. TIME SERIESPREDICTION

ing are used in order to select the best regressor for the problem The i . dicti bl is th dicti f
of time series prediction. Direct prediction methodology is used e time series prediction problem is the prediction o

instead of the classic recursive methodology. Least Squares future values based on the previous values and the current
Support Vector Machines (LS-SVM) and K-NN approximator  value of the time series (see Equation 1). The previous salue
E;]fe Usedd iln _T_’Ldee'fIsz\ll?i]delﬁgzloflginif?:";” tng(;fgr;ir:‘g ngéep?cfﬂ and the current value of the time series are used as inputs
the model. P At it i
competition datagset [1] and the da?gset ch?f the NN3 Forecasting for the predlctloh model. One-step ahead predlctlor_l IS. eded
Competition [2]. in general and is referred to as Short-Term Prediction. But

when multi-step ahead predictions are needed, it is called a

. INTRODUCTION Long-Term Prediction problem.

Time series forecasting is a challenge in many fields. In Unlike the Short-Term time series prediction, the Long-
finance, experts forecast stock exchange courses or stog¢m Prediction is typically faced with growing uncertadst
market indices; data processing specialists forecast ¢ie fl arising from various sources. For instance, the accunaulati
of information on their networks; producers of electricityof errors and the lack of information make the prediction
forecast the load of the following day. The common poininore difficult. In Long-Term Prediction, performing muliép
to their problems is the following: how can one analyse angtep ahead prediction, there are several alternativesild bu
use the past to predict the future? models. In the following sections, two variants of predinti

Many techniques exist for the approximation of the unstrategies are introduced and compared: the Direct and the
derlying process of a time series: linear methods such &ecursive Prediction Strategies.

ARX, ARMA, etc. [3], and nonlinear ones such as artificial
neural networks [4]. In general, these methods try to build. Recursive Prediction Strategy

a model of the process. The model is then used on the lastrg predict several steps ahead values of a time series,
values of the series to predict the future values. The comm@gkcyrsive Strategy seems to be the most intuitive and simple
difficulty to all the methods is the determination of suffitie method. It uses the predicted values as known data to predict
and necessary information for an accurate prediction.  the next ones. In more detail, the model can be constructed

A new challenge in the field of time series prediction,y first making one-step ahead prediction:
is the Long-Term Prediction: several steps ahead have to

be predicted. Long-Term Prediction has to face growing
uncertainties arising from various sources, for instamce,
cumulation of errors and the lack of information [4]. where M denotes the number inputs. The regressor of the
In this paper, a global methodology to perform direcimodel is defined as the vector of inpuys: y: 1, -, Yt rri1-
prediction is presented. It includes variable selectiod ant is possible to use also exogenous variables as inputs in
variable scaling. The variable selection criterion is ldasea the regressor, but they are not considered here in order
Nonparametric Noise Estimation (NNE) performed by Deltao simplify the notation. Nevertheless, the presented ajlob
Test. methodology can also be used with exogenous variables.
In this paper, Least Squares Support Vector Machines (LS- To predict the next value, the same model is used:
SVM) and K-NN approximator are used as nonlinear models
in order to avoid local minima problems [5]. Giaz = S1tr1s Yo Y1y s Yt 42)- 2)
Section 2 presents the prediction strategy for the Long-
Term Prediction of Time Series. In Section 3 Delta Test is In Equation 2, the predicted value 9f,; is used instead
introduced. Section 4 introduces the variable selectiath a®f the true value, which is unknown. Then, for th&steps
scaling selection. The LS-SVM model is briefly summarizeé@head predictiony; - to §,,z are predicted iteratively. So,
in Section 5 and K-NN in section 6. Experimental results arhen the regressor length/ is larger thanH, there are
shown in Section 7 using the competition datasets. M — H real data in the regressor to predict tHé" step.
o ) N But when H exceedsM, all the inputs are the predicted
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B. Direct Prediction Strategy IV. VARIABLE AND SCALING SELECTION

Another strategy for the Long-Term Prediction is the Variable scaling is a usual preprocessing step in both

Direct Strategy. For thé/-steps ahead prediction, the modefunction approximation and time series analysis. In sgalin
is weights are used to reflect the relevance of the input vasabl

to the output to be estimated. That is, scaling seeks for
redundant inputs and assigns them low weights to reduce
Geen = fn(Wes Y1, ye—n41) with 1 < h < H.  (3) the corresponding influence on the learning process. In such
a context, it is clear that variable selection is a particula
This strategy estimateg! direct models between the case of scaling: by weighting irrelevant variables by zero
regressor (which does not contain any predicted values) awg are, indeed, enforcing selection. For the sake of brevity
the H outputs. The errors in the predicted values are netnly the main concepts referring to the regression problem
accumulated in the next prediction. When all the values, frorare presented here. Nevertheless, the extension to tines ser
941 t0 9¢1 1, Need to be predicted/ different models must analysis is trivial.

be b.u”.t‘ The direct strategy increases the complexny of thA. Projecting the Input Space with Mahalanobis Matrices
prediction, but more accurate results are achieved.

The Mahalanobis distanced;(z;, z;) of two d-
dimensional observations;,z; is a proximity (or 'simi-
larity’) measure defined on the dependencies between the
embedding dimensions. Formallya,(z;, ;) extends the

Delta Test (DT) is a technique for estimating the varianc#raditional Euclidean distancé(z;, z;) = [(z; — x;)7 (z; —
of the noise, or the mean square error (MSE), that can bg)]'/? transforming the observations subspace by means of
achieved without overfitting [6]. The evaluation of the NNEa (dd) full-rank matrix M
is done using the DT estimation introduced by Stefansson in
[71. d(wi,x5) = (21 — 25)" M (2; — 2;)]"/?, (6)

Given N input-output pairs:(z;,v;) € RM x R, the
relationship between; andy; can be expressed as:

I11. NONPARAMETRICNOISE ESTIMATOR USING THE
DELTA TEST

From the previous equation, it is evident that: ipyif = I
then the original Euclidean metric is retained, and ii) if
M is a (dd) diagonal matrix then the original space is

yi = f(zi) + 7, (4) simply rescaled according to the diagonal elements. Matrix
M is also symmetric and semi-definite positive, by definition.
where f is the unknown function and is the noise. The Moreover, the Mahalanobis matrik/ can be factorized as:
Delta Test estimates the variance of the naise

The DT is useful for evaluating the nonlinear correlation M = STs, (7)

between two random variables, namely, input and output

pairs. The DT has been introduced for model selection bl.ﬁ W'thba matrix.5 that Zag “nr? arly map the obs%ert:/atmns :cnto
also for variable selection: the set of inputs that minirsizet_ e subspace spanned by the eigenvectors of the transtorma-

the DT is the one that is selected. Indeed, according to N Th? Iearngd metric in t.h.e projection subspace is still
DT, the selected set of variables is the one that represeﬁ?@ Euclidean distance, that is:
the relationship between variables and output in the most
deterministic way. d(wi,z5) = (@0 — )T M (2 — 2)]1/? (®)

DT is based on hypotheses coming from the continuity of = [(Sz; — Sz;)" (Sx; — ij)]1/27
the regression function. If two points and 2’ are close in where, by restricting to be a non-square ¢ d, with s <
the input space, the continuity of regression function ie®l 5y matrix, the transformation performs both a reduction ef th
the outputsf(x) and /() will be close enough in the output gimensijonality and the scaling of the original input sulzspa
space. Alternatively, if the corresponding output values aThe resulting subspace has an induced global metric of lower
not close in the output space, this is due to the influence ik suitable for reducing the ‘curse of dimensionality’. A

the noise. . ) ~ particular case of Mahalanobis matrix selection is theisgal
Let us denote the first nearest neighbor of the paint selection. It is presented in detail in the next section.

in the set{z1,...,zx} by zyn. Then the delta tesy is )

defined as: B. Scaling

Variable scaling can be seen as a generalization of variable
selection; in variable selection the scalars are resttitte
attain either value$ or 1, while in scaling all the values
from the rangd0, 1] are accepted. In this paper, we use Delta
Test (DT) as a critirion for selecting the scaling weights.

where yy ;) is the output ofz ;). For the proof of The scalars are optimized by iterative Forward-Backward
the convergence of the Delta Test, see [6]. Selection (FBS) (see [8], for example). FBS is usually used
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for variable selection, but it can be extended to scalintasks [10]. The key idea behind tHeNN is that similar
as well; Instead of turning scalars frofh to 1 or vice training samples have similar output values. One has to
versa, increases by/h (in the case of forward selection) look for a certain number of nearest neighbors, according to
or decreases by/h (in the case of backward selection) arethe Euclidean distance [10], and their corresponding dutpu
allowed. DT is useful in evaluation of correlation of randonmvalues to get the approximation of the desired output.
variables and therefore it can be used for scaling: The igigh We calculate the estimation of the output simply by
that give the smallest are selected. using the average of the outputs of the neighbors in the
neighborhood as

V. LS-SVM
LS-SVM is a least square modification of the Support Vec- — Z?:l YP(j) 11
tor Machine (SVM) [5]. SVM is a powerful adaptive method ¥i= k ’ (11)

mainly because of its good generalization performance andnere §; represents the output estimatioR(j) is the

robustness to high dimensional data [9]. Another attractiinqex number of thgi*" nearest neighbor of sampie and

property is that training of a SVM leads into a quadratig. is the number of neighbors used.

programming task yvhich guarantees that the optimum, once; s possible to use some weighting of the neighbors in

it has bee.n four_1d, is a global one. o the neighborhood or more sophisticated neighbor selection

_ The optimization problem of LS-SVM is simplified so thatmethods, but these aspects are not considered here.

it reduces into a linear set of equations. Thus the problem \y,e yse the same neighborhood size for every data point,

is much faster to solve and at the same time the absencegf e use a globa, which must be determined beforehand.

local minima is guaranteed. N The k-NN is a method with no parameters whatsoever:
Consider a set ofV training examplesx;, y:);=,, Where  oniy the structural aspects, the number of neighbors and the

x; € R is thei-th input andy; € R is the corresponding inpyts, need to be determined. After that, taBIN is ready
output pattern. The LS-SVM model becomes to be applied to the problem at hand.

§=wp(x)+0, ()] VIl. EXPERIMENTAL RESULTS

where : R" — R™ is a mapping from the input space In this paper, the global methodology is applied to the
onto a higher dimensional hidden spaces R™ is a weight ESTSP’07 competition dataset [1] and the dataset B of the

vector andb is a bias term. The optimization problem isNN3 Forecasting Competition [2]. To illustrate the results

formulated as the ESTSP’07, the 3th and the 4th time series of NN3 are
. LN used. The results related to the other NN3 time series will
. _ 2 2 also be submitted to the competition but are not presented
min J(w, ) = 5wl + 57;% (o) 8o P P
st yi=w P(xi) +b+e, A. ESTSP'07 Results

wheree; is the prediction error ang > 0 is a regularization ~ The dataset is shown in Figure 1.
parameter that controls the trade-off between flatnesseof th
function and accuracy of the function. The dual problem ca
be obtained using Lagrangian multipliers which leads into
linear KKT system that is easy to solve [5]. Using the dua
solution, the original model (9) can be reformatted as

Competition Data
N
S

N
R 20F
§=_ ok (xxi) +0, S I
i=1 Time
where the kerneK (x,x;) = ¥ (x)T1(x;) is a continuous Fig. 1. Competition dataset.

and symmetric mapping froR™ x R™ to R and«; are the
Lagrange multipliers. It should be emphasized that althoug In order to test the methodology, the dataset is divided into
we formally define the high dimensional hidden sp@&e  two sets, a small learning set and the global learning set. Th
and the mapping)(x), there is no need to compute anythingsmall learning set consists of 465 first values and the global
in the hidden space; the knowledge of the ker#é€lis learning set consists in the 875 values. The regressor size i
enough. A widely-used choice for is the standard Gaussia@et to 10. The small learning set is used in order to evaluate
kernel K (x1,Xs) = exp{—||x; — x2||3/60%}. the performances of the methodology.
The variable scaling is selected in order to minimize the
Delta Test estimation. Because the DT is not continuous
The k-Nearest Neighborsk{NN) approximation method with respect to the scaling factors, a forward-backward
is a very simple, but powerful method. It has been used ioptimization is used. The variable scaling coefficients are
many different applications and particularly in classifica selected between a set of discrete values: [0 0.1 0.2 ..]0.9 1

V1. k-NEARESTNEIGHBORS



This discretization provides satisfactory results andiced 1000
computational time. 8000~ 1

The variable scaling is performed for each of the 5(
prediction models from equation 3 used in direct predictio 4000 1
methodology. The estimation of the NNE (using Delta Tesi 2000 |
are shown in Figure 2.
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Fig. 5. Competition dataset.

NNE (Delta Test)

1 1 prediction models from equation 3 used in direct prediction
o5t | methodology. The estimation of the NNE (using Delta Test)
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ are shown in Figure 6.
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Fig. 2. Estimation of the NNE (using Delta Test) with respeztthie
horizon of prediction. '§4— 1
LS-SVM models are used to build the predictions. The S’ ]
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result of the 50 step-ahead prediction and is represented z2r ]
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] Fig. 6. Estimation of the NNE (using Delta Test) with respezttie
horizon of prediction.

K-NN models are used to build the predictions. The result
of the 18 step-ahead prediction is represented in figure 7.

Time Series
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Fig. 3. Comparison between the time series (solid line) angbtbdiction = sood. A
(dashed line) 5 Lo
£ 4000- T
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Then, the same methodology is used with the glob: g 2000 » 1
. . . al. =
learning set in order to predict t.h(aT co.mpetmon value_s. j’h o 2 i SR 0 0 0
result of the 50 step-ahead prediction is represented ingfigu Time
4. Fig. 7. Prediction of 18 next values of the competition ddtatke real
values are presented by the solid line and the dashed onengsethe
w prediction.
w 26 / ]
E 2al | 2) NN3 Results: 3rd Time Seriesthe 3rd dataset is
® J \ shown in Figure 8.
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Fig. 4. Prediction of 50 next values of the competition dataske real
values are presented by the solid line and the dashed onengsethe
prediction.

Competition Data
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B. NN3 Results
In this competition the goal is the prediction of the 18 next

Fig. 8. Competition dataset.

values of the time series. The same methodology is applied. The regressor size is set
1) NN3 Results: 4th Time SerieShe 4th dataset is shown to 12. The variable scaling is performed for each of the 18
in Figure 5. prediction models from equation 3 used in direct prediction

The same methodology is applied. The regressor size is saéthodology. The estimation of the NNE (using Delta Test)
to 12. The variable scaling is performed for each of the 18re shown in Figure 9.
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Fig. 9. Estimation of the NNE (using Delta Test) with respezttiie
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K-NN models are used to build the predictions. The result
of the 18 step-ahead prediction is represented in figure 10.

Time Series and Prediction
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Fig. 10. Prediction of 18 next values of the competition datta3he
real values are presented by the solid line and the dashegresents the
prediction.

VI1Il. CONCLUSION

In this paper, we have presented a totally automatic
methodology for the long-term prediction of time series.

This automatic methodology uses direct prediction strat-
egy. This increases the computational time but improves the
quality of the results.

In order to perform the variable scaling, Delta Test estima-
tion is used. The scaling that minimized the NNE is selected.
To reduce the computational time, a discrete scaling is used
and a forward-backward optimization is selected.

Further research will be done to improve the minimization
of the NNE estimation. Other experiments will be performed
in the fields of time series prediction and function approxi-
mation.
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