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Abstract— In this paper, variable selection and variable scal-
ing are used in order to select the best regressor for the problem
of time series prediction. Direct prediction methodology is used
instead of the classic recursive methodology. Least Squares
Support Vector Machines (LS-SVM) and K-NN approximator
are used in order to avoid local minimal in the training phase of
the model. The global methodology is applied to the ESTSP’07
competition dataset [1] and the dataset B of the NN3 Forecasting
Competition [2].

I. I NTRODUCTION

Time series forecasting is a challenge in many fields. In
finance, experts forecast stock exchange courses or stock
market indices; data processing specialists forecast the flow
of information on their networks; producers of electricity
forecast the load of the following day. The common point
to their problems is the following: how can one analyse and
use the past to predict the future?

Many techniques exist for the approximation of the un-
derlying process of a time series: linear methods such as
ARX, ARMA, etc. [3], and nonlinear ones such as artificial
neural networks [4]. In general, these methods try to build
a model of the process. The model is then used on the last
values of the series to predict the future values. The common
difficulty to all the methods is the determination of sufficient
and necessary information for an accurate prediction.

A new challenge in the field of time series prediction
is the Long-Term Prediction: several steps ahead have to
be predicted. Long-Term Prediction has to face growing
uncertainties arising from various sources, for instance,ac-
cumulation of errors and the lack of information [4].

In this paper, a global methodology to perform direct
prediction is presented. It includes variable selection and
variable scaling. The variable selection criterion is based on a
Nonparametric Noise Estimation (NNE) performed by Delta
Test.

In this paper, Least Squares Support Vector Machines (LS-
SVM) and K-NN approximator are used as nonlinear models
in order to avoid local minima problems [5].

Section 2 presents the prediction strategy for the Long-
Term Prediction of Time Series. In Section 3 Delta Test is
introduced. Section 4 introduces the variable selection and
scaling selection. The LS-SVM model is briefly summarized
in Section 5 and K-NN in section 6. Experimental results are
shown in Section 7 using the competition datasets.
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II. T IME SERIESPREDICTION

The time series prediction problem is the prediction of
future values based on the previous values and the current
value of the time series (see Equation 1). The previous values
and the current value of the time series are used as inputs
for the prediction model. One-step ahead prediction is needed
in general and is referred to as Short-Term Prediction. But
when multi-step ahead predictions are needed, it is called a
Long-Term Prediction problem.

Unlike the Short-Term time series prediction, the Long-
Term Prediction is typically faced with growing uncertainties
arising from various sources. For instance, the accumulation
of errors and the lack of information make the prediction
more difficult. In Long-Term Prediction, performing multiple
step ahead prediction, there are several alternatives to build
models. In the following sections, two variants of prediction
strategies are introduced and compared: the Direct and the
Recursive Prediction Strategies.

A. Recursive Prediction Strategy

To predict several steps ahead values of a time series,
Recursive Strategy seems to be the most intuitive and simple
method. It uses the predicted values as known data to predict
the next ones. In more detail, the model can be constructed
by first making one-step ahead prediction:

ŷt+1 = f1(yt, yt−1, ..., yt−M+1), (1)

whereM denotes the number inputs. The regressor of the
model is defined as the vector of inputs:yt, yt−1, ..., yt−M+1.
It is possible to use also exogenous variables as inputs in
the regressor, but they are not considered here in order
to simplify the notation. Nevertheless, the presented global
methodology can also be used with exogenous variables.

To predict the next value, the same model is used:

ŷt+2 = f1(ŷt+1, yt, yt−1, ..., yt−M+2). (2)

In Equation 2, the predicted value ofŷt+1 is used instead
of the true value, which is unknown. Then, for theH-steps
ahead prediction,̂yt+2 to ŷt+H are predicted iteratively. So,
when the regressor lengthM is larger thanH, there are
M − H real data in the regressor to predict theHth step.
But when H exceedsM , all the inputs are the predicted
values. The use of the predicted values as inputs deteriorates
the accuracy of the prediction.



B. Direct Prediction Strategy

Another strategy for the Long-Term Prediction is the
Direct Strategy. For theH-steps ahead prediction, the model
is

ŷt+h = fh(yt, yt−1, ..., yt−M+1) with 1 ≤ h ≤ H. (3)

This strategy estimatesH direct models between the
regressor (which does not contain any predicted values) and
the H outputs. The errors in the predicted values are not
accumulated in the next prediction. When all the values, from
ŷt+1 to ŷt+H , need to be predicted,H different models must
be built. The direct strategy increases the complexity of the
prediction, but more accurate results are achieved.

III. N ONPARAMETRIC NOISE ESTIMATOR USING THE

DELTA TEST

Delta Test (DT) is a technique for estimating the variance
of the noise, or the mean square error (MSE), that can be
achieved without overfitting [6]. The evaluation of the NNE
is done using the DT estimation introduced by Stefansson in
[7].

Given N input-output pairs:(xi, yi) ∈ R
M × R, the

relationship betweenxi andyi can be expressed as:

yi = f(xi) + ri, (4)

wheref is the unknown function andr is the noise. The
Delta Test estimates the variance of the noiser.

The DT is useful for evaluating the nonlinear correlation
between two random variables, namely, input and output
pairs. The DT has been introduced for model selection but
also for variable selection: the set of inputs that minimizes
the DT is the one that is selected. Indeed, according to the
DT, the selected set of variables is the one that represents
the relationship between variables and output in the most
deterministic way.

DT is based on hypotheses coming from the continuity of
the regression function. If two pointsx and x′ are close in
the input space, the continuity of regression function implies
the outputsf(x) andf(x′) will be close enough in the output
space. Alternatively, if the corresponding output values are
not close in the output space, this is due to the influence of
the noise.

Let us denote the first nearest neighbor of the pointxi

in the set{x1, . . . , xN} by xNN . Then the delta test,δ is
defined as:

δ =
1

2N

N
∑

i=1

∣

∣yNN(i) − yi

∣

∣

2
, (5)

whereyNN(i) is the output ofxNN(i). For the proof of
the convergence of the Delta Test, see [6].

IV. VARIABLE AND SCALING SELECTION

Variable scaling is a usual preprocessing step in both
function approximation and time series analysis. In scaling,
weights are used to reflect the relevance of the input variables
to the output to be estimated. That is, scaling seeks for
redundant inputs and assigns them low weights to reduce
the corresponding influence on the learning process. In such
a context, it is clear that variable selection is a particular
case of scaling: by weighting irrelevant variables by zero
we are, indeed, enforcing selection. For the sake of brevity,
only the main concepts referring to the regression problem
are presented here. Nevertheless, the extension to time series
analysis is trivial.

A. Projecting the Input Space with Mahalanobis Matrices

The Mahalanobis distancedM (xi, xj) of two d-
dimensional observationsxi, xj is a proximity (or ’simi-
larity’) measure defined on the dependencies between the
embedding dimensions. Formally,dM (xi, xj) extends the
traditional Euclidean distanced(xi, xj) = [(xi − xj)

T (xi −
xj)]

1/2 transforming the observations subspace by means of
a (dd) full-rank matrix M :

d(xi, xj) = [(xi − xj)
T M(xi − xj)]

1/2, (6)

From the previous equation, it is evident that: i) ifM = I
then the original Euclidean metric is retained, and ii) if
M is a (dd) diagonal matrix then the original space is
simply rescaled according to the diagonal elements. Matrix
M is also symmetric and semi-definite positive, by definition.
Moreover, the Mahalanobis matrixM can be factorized as:

M = ST S, (7)

with a matrixS that can linearly map the observations into
the subspace spanned by the eigenvectors of the transforma-
tion. The learned metric in the projection subspace is still
the Euclidean distance, that is:

d(xi, xj) = [(xi − xj)
T M(xi − xj)]

1/2

= [(Sxi − Sxj)
T (Sxi − Sxj)]

1/2,
(8)

where, by restrictingS to be a non-square (s∗d, with s <
d) matrix, the transformation performs both a reduction of the
dimensionality and the scaling of the original input subspace.
The resulting subspace has an induced global metric of lower
rank suitable for reducing the ’curse of dimensionality’. A
particular case of Mahalanobis matrix selection is the scaling
selection. It is presented in detail in the next section.

B. Scaling

Variable scaling can be seen as a generalization of variable
selection; in variable selection the scalars are restricted to
attain either values0 or 1, while in scaling all the values
from the range[0, 1] are accepted. In this paper, we use Delta
Test (DT) as a critirion for selecting the scaling weights.
The scalars are optimized by iterative Forward-Backward
Selection (FBS) (see [8], for example). FBS is usually used



for variable selection, but it can be extended to scaling
as well; Instead of turning scalars from0 to 1 or vice
versa, increases by1/h (in the case of forward selection)
or decreases by1/h (in the case of backward selection) are
allowed. DT is useful in evaluation of correlation of random
variables and therefore it can be used for scaling: The weights
that give the smallestδ are selected.

V. LS-SVM

LS-SVM is a least square modification of the Support Vec-
tor Machine (SVM) [5]. SVM is a powerful adaptive method
mainly because of its good generalization performance and
robustness to high dimensional data [9]. Another attractive
property is that training of a SVM leads into a quadratic
programming task which guarantees that the optimum, once
it has been found, is a global one.

The optimization problem of LS-SVM is simplified so that
it reduces into a linear set of equations. Thus the problem
is much faster to solve and at the same time the absence of
local minima is guaranteed.

Consider a set ofN training examples(xi, yi)
N
i=1, where

xi ∈ R
n is the i-th input andyi ∈ R is the corresponding

output pattern. The LS-SVM model becomes

ŷ = ωTψ(x) + b, (9)

whereψ : R
n 7−→ R

nh is a mapping from the input space
onto a higher dimensional hidden space,ω ∈ R

nh is a weight
vector andb is a bias term. The optimization problem is
formulated as

min
ω,b

J(ω, e) =
1

2
‖ω‖2 +

1

2
γ

N
∑

i=1

e2
i , (10)

s.t. yi = ωTψ(xi) + b + ei,

whereei is the prediction error andγ ≥ 0 is a regularization
parameter that controls the trade-off between flatness of the
function and accuracy of the function. The dual problem can
be obtained using Lagrangian multipliers which leads into a
linear KKT system that is easy to solve [5]. Using the dual
solution, the original model (9) can be reformatted as

ŷ =

N
∑

i=1

αiK(x,xi) + b,

where the kernelK(x,xi) = ψ(x)Tψ(xi) is a continuous
and symmetric mapping fromRn × R

n to R andαi are the
Lagrange multipliers. It should be emphasized that although
we formally define the high dimensional hidden spaceR

nh

and the mappingψ(x), there is no need to compute anything
in the hidden space; the knowledge of the kernelK is
enough. A widely-used choice for is the standard Gaussian
kernelK(x1,x2) = exp{−‖x1 − x2‖

2
2/θ2}.

VI. k-NEARESTNEIGHBORS

The k-Nearest Neighbors (k-NN) approximation method
is a very simple, but powerful method. It has been used in
many different applications and particularly in classification

tasks [10]. The key idea behind thek-NN is that similar
training samples have similar output values. One has to
look for a certain number of nearest neighbors, according to
the Euclidean distance [10], and their corresponding output
values to get the approximation of the desired output.

We calculate the estimation of the output simply by
using the average of the outputs of the neighbors in the
neighborhood as

ŷi =

∑k
j=1 yP (j)

k
, (11)

where ŷi represents the output estimation,P (j) is the
index number of thejth nearest neighbor of samplexi and
k is the number of neighbors used.

It is possible to use some weighting of the neighbors in
the neighborhood or more sophisticated neighbor selection
methods, but these aspects are not considered here.

We use the same neighborhood size for every data point,
so we use a globalk, which must be determined beforehand.
The k-NN is a method with no parameters whatsoever:
only the structural aspects, the number of neighbors and the
inputs, need to be determined. After that, thek-NN is ready
to be applied to the problem at hand.

VII. E XPERIMENTAL RESULTS

In this paper, the global methodology is applied to the
ESTSP’07 competition dataset [1] and the dataset B of the
NN3 Forecasting Competition [2]. To illustrate the results,
the ESTSP’07, the 3th and the 4th time series of NN3 are
used. The results related to the other NN3 time series will
also be submitted to the competition but are not presented
here.

A. ESTSP’07 Results

The dataset is shown in Figure 1.
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Fig. 1. Competition dataset.

In order to test the methodology, the dataset is divided into
two sets, a small learning set and the global learning set. The
small learning set consists of 465 first values and the global
learning set consists in the 875 values. The regressor size is
set to 10. The small learning set is used in order to evaluate
the performances of the methodology.

The variable scaling is selected in order to minimize the
Delta Test estimation. Because the DT is not continuous
with respect to the scaling factors, a forward-backward
optimization is used. The variable scaling coefficients are
selected between a set of discrete values: [0 0.1 0.2 ... 0.9 1].



This discretization provides satisfactory results and reduces
computational time.

The variable scaling is performed for each of the 50
prediction models from equation 3 used in direct prediction
methodology. The estimation of the NNE (using Delta Test)
are shown in Figure 2.
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Fig. 2. Estimation of the NNE (using Delta Test) with respect to the
horizon of prediction.

LS-SVM models are used to build the predictions. The
result of the 50 step-ahead prediction and is represented in
figure 3.
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Fig. 3. Comparison between the time series (solid line) and theprediction
(dashed line)

Then, the same methodology is used with the global
learning set in order to predict the competition values. The
result of the 50 step-ahead prediction is represented in figure
4.

700 750 800 850 900

20

22

24

26

Time

T
im

e 
S

er
ie

s

Fig. 4. Prediction of 50 next values of the competition dataset. The real
values are presented by the solid line and the dashed one presents the
prediction.

B. NN3 Results

In this competition the goal is the prediction of the 18 next
values of the time series.

1) NN3 Results: 4th Time Series:The 4th dataset is shown
in Figure 5.

The same methodology is applied. The regressor size is set
to 12. The variable scaling is performed for each of the 18
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Fig. 5. Competition dataset.

prediction models from equation 3 used in direct prediction
methodology. The estimation of the NNE (using Delta Test)
are shown in Figure 6.
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Fig. 6. Estimation of the NNE (using Delta Test) with respect to the
horizon of prediction.

K-NN models are used to build the predictions. The result
of the 18 step-ahead prediction is represented in figure 7.
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Fig. 7. Prediction of 18 next values of the competition dataset. The real
values are presented by the solid line and the dashed one presents the
prediction.

2) NN3 Results: 3rd Time Series:The 3rd dataset is
shown in Figure 8.
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Fig. 8. Competition dataset.

The same methodology is applied. The regressor size is set
to 12. The variable scaling is performed for each of the 18
prediction models from equation 3 used in direct prediction
methodology. The estimation of the NNE (using Delta Test)
are shown in Figure 9.
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Fig. 9. Estimation of the NNE (using Delta Test) with respect to the
horizon of prediction.

K-NN models are used to build the predictions. The result
of the 18 step-ahead prediction is represented in figure 10.
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Fig. 10. Prediction of 18 next values of the competition dataset. The
real values are presented by the solid line and the dashed onepresents the
prediction.

VIII. C ONCLUSION

In this paper, we have presented a totally automatic
methodology for the long-term prediction of time series.

This automatic methodology uses direct prediction strat-
egy. This increases the computational time but improves the
quality of the results.

In order to perform the variable scaling, Delta Test estima-
tion is used. The scaling that minimized the NNE is selected.
To reduce the computational time, a discrete scaling is used
and a forward-backward optimization is selected.

Further research will be done to improve the minimization
of the NNE estimation. Other experiments will be performed
in the fields of time series prediction and function approxi-
mation.
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