

Rewriting Optimization Statements in Answer-Set Programs

Jori Bomanson¹, Martin Gebser², Tomi Janhunen¹

1) Aalto University, Finland

2) University of Potsdam, Germany

Computational Logic Day, Espoo, December 8, 2016

Answer-Set Programs and Optimization Rewriting

Input: A ground ASP program *P* consisting of normal rules

a := not b.

b :- not a.

c := a, b.

d := e.

e := d.

Answer-Set Programs and Optimization Rewriting

Input: A ground ASP program *P* consisting of normal rules and a minimization statement:

```
a := \text{not } b.

b := \text{not } a.

c := a, b.

d := e.

e := d.

#minimize \{5 : a; 6 : b; 2 : c; 3 : d; 10 : e\}.
```

Answer-Set Programs and Optimization Rewriting

Input: A ground ASP program *P* consisting of normal rules and a minimization statement:

```
a := \text{not } b.

b := \text{not } a.

c := a, b.

d := e.

e := d.

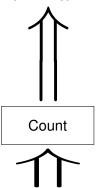
#minimize \{5 : a; 6 : b; 2 : c; 3 : d; 10 : e\}.
```

Output: P with a modified statement and added normal rules.

Goal: Keep answer sets and boost solving performance.

Optimization Rewriting vs Normalization

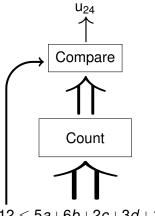
In this work:


min
$$1u_{19} + 2u_{25} + 4u_{30} + 8u_{34} + 8u_{35} + 8u_{36}$$

Count

Optimization Rewriting vs Normalization

In this work:


$$\begin{array}{l} \text{min } 1 u_{19} + 2 u_{25} + 4 u_{30} + \\ 8 u_{34} + 8 u_{35} + 8 u_{36} \end{array}$$

min 5a+6b+2c+3d+10e

Previously:

$$h := u_{24}$$
.

$$12 \le 5a + 6b + 2c + 3d + 10e$$

Unweighted Expressions

$$1u_1 + 1u_2 + 1u_3 + 1u_4 + \cdots + 1u_{17} + 1u_{18} + 1u_{19} + 1u_{20}$$

Sort

$$1a + 1b + 1c + 1d + \cdots + 1q + 1r + 1s + 1t$$

Unweighted Expressions

$$1u_1 + 1u_2 + 1u_3 + 1u_4 + \cdots + 1u_{17} + 1u_{18} + 1u_{19} + 1u_{20}$$

Sort

$$1a + 1b + 1c + 1d + \cdots + 1q + 1r + 1s + 1t$$

Example:

$$u_1 := b$$
.

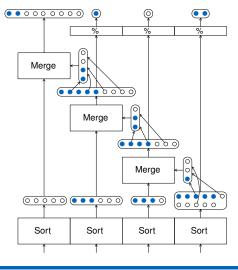
$$u_2 := a, b.$$

Unweighted Expressions

$$1u_1 + 1u_2 + 1u_3 + 1u_4 + \cdots + 1u_{17} + 1u_{18} + 1u_{19} + 1u_{20}$$

Sort Sort Sort Sort Sort

$$1a + 1b + 1c + 1d + \cdots + 1q + 1r + 1s + 1t$$


Example:

$$u_{19} := t$$
.

$$u_{20} := s, t.$$

Weighted Expressions

Eén and Sörensson, JSAT'06

▶ Pseudo-Boolean ⇒ sorting networks ⇒ SAT.

Bomanson, Gebser, and Janhunen, JELIA'14

Weight rules ⇒ normal rules

Size: $O(b(\log b)^2)$ in the number of bits.

Selective Rewriting

To reduce the cost of rewriting

$$5a + 6b + 2c + 3d + 10e$$

... we may rewrite one chunk:

$$= (10e + 6b + 5a) + 3d + 2c$$

Selective Rewriting

To reduce the cost of rewriting

$$5a + 6b + 2c + 3d + 10e$$

... we may rewrite one chunk:

$$= (10e + 6b + 5a) + 3d + 2c$$

... or one chunk of digits:

$$= 4a + 1a + 4b + 2b + 2c + 2d + 1d + 8e + 2e$$

$$= (4a+4b+8e)+1a+2b+2c+2d+1d+2e$$

Significance Based Selection

```
Global k = 2:
5 \quad 6 \quad 2 \quad 3 \quad 10
1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0
2 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1
4 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0
8 \quad 0 \quad 0 \quad 0 \quad 1
```

Significance Based Selection

```
Local k = 1:

5 6 2 3 10

1 1 0 0 1 0

2 0 1 1 1 1

4 1 1 0 0 0

8 0 0 0 0 1
```

Example

```
#minimize { 5: a; 6: b; 2: c; 3: d; 10: e}

#minimize { 1, 1: a; 2, 3: b; 1, 2: d; 2, 4: e}

4, 1: a; 4, 2: b; 2, 1: c; 2, 2: d; 8, 1: e;
```

Example

```
#minimize \{ 5 : a; 6 : b; 2 : c; 3 : d; 10 : e \}
#minimize \{1, 1: a; 2, 3: b; 1, 2: d; 2, 4: e\}
 \{4, 1: a; 4, 2: b; 2, 1: c; 2, 2: d; 8, 1: e\}
#minimize \{1, 1 : a; 2, 3 : b; 1, 2 : d; 2, 4 : e\}
4, 1 : x; 4, 2 : y; 2, 1 : u; 2, 2 : v; 8, 1 : w;
x := a. u := c. w := e.
x := b. u := d.
y := a, b. u := c, d.
```


Experiments

Numbers of instances solved by clasp --config=trendy:

Crossing Maximal Clique Timetabling # 120 85 186 57													
	Life	tion	<i>lque</i>	Timelan									
#	120	85	186	57									
_	22	50	51	28									
sort	50	72	143	36									
sort/64	105	76	153	39									

Experiments

Numbers of instances solved by ${\tt clasp}$ --config=trendy:

Crossing Maximal Clique Still-Life # 120 85 186					Timetabling Alarm Water Hailfinder Model					
	#	120	85	186	57	32	27	51	72	
	_	22	50	51	28	9	15	35	27	
	sort	50	72	143	36					
	sort/64	105	76	153	39					
	mixed-radix				37	5	19	32	19	
	global $k=7$				28	8	19	31	23	
	local $k=1$				38	9	18	45	26	
	local $k=2$				39	10	19	48	27	
	local $k=3$				38	10	23	48	27	

Conclusion

We rewrite optimization statements in ASP programs.

The rewritings are similar to translations of pseudo-Boolean constraints.

 Based on experiments, limiting output size by rewriting in chunks or rewriting only important parts selectively is beneficial.