# Temporal Planning through Reduction to Satisfiability Modulo Theories

Jussi Rintanen

Department of Computer Science Aalto University, Finland

December 8, 2016

#### Outline of the Talk

Temporal Planning = planning for concurrent actions with durations

This work summarizes progress in the last couple of years.

Fundamental improvements to solving temporal planning by SMT

- 1 improved problem modeling (Rintanen IJCAI-2015)
- discretization (Rintanen AAAI-2015)
- relaxed (summarized) steps (unpublished work)

## Basic SMT Representation of Temporal Planning

- Starting point: Shin & Davis, Al Journal 2005.
- Working encodings, but not very scalable.
- Issues:
  - encodings have a large size
  - too many steps (unnecessarily high horizon length)
- Al Planning community has instead focused on:
  - reductions to untimed planning
  - explicit state-space search
- state-of-the-art: Rankooh & Ghassem-Sani (Al Journal 2015):
  - reduction to untimed planning and further to SAT, with methods from Rintanen et al. (AIJ 2006)

## Basic SMT Representation of Temporal Planning

- Starting point: Shin & Davis, Al Journal 2005.
- Working encodings, but not very scalable.
- Issues:
  - encodings have a large size
  - too many steps (unnecessarily high horizon length)
- Al Planning community has instead focused on:
  - reductions to untimed planning
  - explicit state-space search
- state-of-the-art: Rankooh & Ghassem-Sani (Al Journal 2015):
  - reduction to untimed planning and further to SAT, with methods from Rintanen et al. (AIJ 2006)

## Basic SMT Representation of Temporal Planning SMT Variables

#### problem instance:

$$X = \{x_1, \dots, x_n\}$$
 (state variables)  
 $A = \{a_1, \dots, a_m\}$  (actions)  
 $0, \dots, N+1$  (steps)

#### SMT variables:

$$x@i$$
 for  $x \in X$ ,  $i \in \{0, \dots, N+1\}$   $a@i$  for  $a \in A$ ,  $i \in \{0, \dots, N\}$   $\tau@i$  for absolute time at step  $i$   $\Delta@i = \tau@i - \tau@(i-1)$ 

## Basic SMT Representation of Temporal Planning SMT Formulas

#### **Preconditions:**

$$a@i \to \phi@i$$
 (1)

#### Effects:

$$causes(x)@i \rightarrow x@i \tag{2}$$

$$causes(\neg x)@i \to \neg x@i \tag{3}$$

where causes(l)@i =all conditions under which literal l becomes true at i.

#### Frame Axioms:

$$(x@i \land \neg x@(i-1)) \to causes(x)@i$$
 (4)

$$(\neg x@i \land x@(i-1)) \rightarrow causes(\neg x)@i \tag{5}$$

## Basic SMT Representation of Temporal Planning causes(x)@i

causes(x)@i = disjunction of all

$$\bigvee_{j=0}^{i-1} (a@j \wedge ((\tau@i - \tau@j) = t))$$
 (6)

for actions a with effect x at t.

There must be a step at time t relative to the action a:

$$a@i \to \bigvee_{j=i+1}^{N} (\tau@j - \tau@i = t).$$
 (7)

## Basic SMT Representation of Temporal Planning causes(x)@i

causes(x)@i = disjunction of all

$$\bigvee_{j=0}^{i-1} (a@j \wedge ((\tau@i - \tau@j) = t))$$
 (6)

for actions a with effect x at t.

There must be a step at time t relative to the action a:

$$a@i \to \bigvee_{j=i+1}^{N} (\tau@j - \tau@i = t).$$
 (7)

## Action non-overlap in PDDL 2.1

In PDDL 2.1 (implicit) resources are allocated by a two-step process:

- **①** Confirm that given resource is available (precondition x = 0)
- **2** Allocate the resource (assign x := 1 at start)

This takes place inside a 0-duration critical section.

#### Advantage

Easy to encode as  $\neg a_1@i \lor \neg a_2@i$  whenever precondition of  $a_1$  conflicts with time 0 effect of  $a_2$ 

#### Disadvantage

Deallocation and reallocation of a resource cannot be at the same time, leading to  $\epsilon$  gaps in plans

```
PDDL 2.1 schedule Desired schedule move_{a,b} move_{b,c} move_{c,d} move_{a,b} move_{b,c} move_{c,d}
```

## Action non-overlap in PDDL 2.1

In PDDL 2.1 (implicit) resources are allocated by a two-step process:

- **①** Confirm that given resource is available (precondition x = 0)
- **2** Allocate the resource (assign x := 1 at start)

This takes place inside a 0-duration critical section.

#### Advantage

Easy to encode as  $\neg a_1@i \lor \neg a_2@i$  whenever precondition of  $a_1$  conflicts with time 0 effect of  $a_2$ .

#### Disadvantage

Deallocation and reallocation of a resource cannot be at the same time, leading to  $\epsilon$  gaps in plans

## Action non-overlap in PDDL 2.1

In PDDL 2.1 (implicit) resources are allocated by a two-step process:

- Confirm that given resource is available (precondition x=0)
- **2** Allocate the resource (assign x := 1 at start)

This takes place inside a 0-duration critical section.

#### Advantage

Easy to encode as  $\neg a_1@i \lor \neg a_2@i$  whenever precondition of  $a_1$  conflicts with time 0 effect of  $a_2$ .

#### Disadvantage

Deallocation and reallocation of a resource cannot be at the same time, leading to  $\epsilon$  gaps in plans

### Alternative mechanisms of action non-overlap

Rintanen IJCAI-2015

Make resources explicit in the modeling language!

#### Advantage

Trivial to have  $a_1$  at 0 and  $a_2$  at 1 when

- $oldsymbol{0}$   $a_1$  allocates resource at ]0,1[, and

#### Disadvantage (...but not really!)

Encodings are more complicated! However, there are encodings that are (Rintanen 2017, unpublished)

- close to linear-size in practice,
- require only a small number of real-valued SMT variables,
- far better scalable than earlier encodings.

## Alternative mechanisms of action non-overlap

Rintanen IJCAI-2015

Make resources explicit in the modeling language!

#### Advantage

Trivial to have  $a_1$  at 0 and  $a_2$  at 1 when

- $oldsymbol{0}$   $a_1$  allocates resource at ]0,1[, and

#### Disadvantage (...but not really!)

Encodings are more complicated! However, there are encodings that are (Rintanen 2017, unpublished)

- close to linear-size in practice,
- require only a small number of real-valued SMT variables,
- far better scalable than earlier encodings.

#### Discretization

#### Rintanen AAAI-2015

- Temporal planning generally defined with real or rational time
- Not always obvious if integer time can be used instead
- However, automated methods to recognize this exist (Rintanen AAAI-2015), covering most of the practically occurring problems
- SAT fragment of SMT sufficient (and practical) when
  - problem instance discretizable,
    - 2 all action durations short, like 1 or 2 or 3, and
  - 3 there are no real-valued state variables.
- Leads to large performance gains!

## From Implicit (PDDL) to Explicit (NDL) Resources

|                     |     | Z3 SMT |      |      |       |
|---------------------|-----|--------|------|------|-------|
|                     |     | PDDL   | NDL  | dNDL | ITSAT |
| 2008-PEGSOL         | 30  | 28     | 30   | 30   | 30    |
| 2008-SOKOBAN        | 30  | 1      | 5    | 13   | 16    |
| 2011-FLOORTILE      | 20  | 0      | 5    | 18   | 20    |
| 2011-MATCHCELLAR    | 10  | 3      | 5    | 8    | 10    |
| 2011-PARKING        | 20  | 3      | 7    | 8    | 10    |
| 2011-TURNANDOPEN    | 20  | 4      | 10   | 16   | 20    |
| 2008-CREWPLANNING   | 30  | 4      | 10   | 9    | 30    |
| 2008-ELEVATORS      | 30  | 0      | 4    | 7    | 15    |
| 2008-TRANSPORT      | 30  | 0      | 0    | 4    | error |
| 2011-TMS            | 20  | 7      | 8    | 8    | 20    |
| 2008-OPENSTACKS     | 30  | 0      | 0    | 0    | 24    |
| 2008-OPENSTACKS-ADL | 31  | 0      | 2    | 3    | error |
| 2011-STORAGE        | 19  | 0      | 0    | 0    | error |
| total               | 320 | 50     | 86   | 124  | 195   |
| weighted score      | 13  | 2.10   | 3.70 | 5.50 | 8.33  |

Comment: dNDL = NDL + discretization

**Comment**: ITSAT's problem representation ignores time & makespan ⇒ cannot be (easily) modified to improve quality of plans

## Relaxed (Summarized) Step Scheme

Reduction in the number of steps

Traditional encodings require a step for every effect:



Our relaxed (summarized) encoding needs (far) fewer steps:



## Relaxed (Summarized) Step Scheme

Increase in makespan

Shortest makespan may require more steps:





### **Experiments**

- Demonstration of scalability improvements
  - better models with explicit resources (Rintanen IJCAI-2015)
  - 2 discretization (Rintanen AAAI-2015)
  - o encodings with clocks + relaxed (summarized) steps (unpublished)
- Comparison to ITSAT (Rankooh & Ghassem-Sani Al Journal 2015): reduction to untimed planning followed by reduction to SAT with best parallel encodings (Rintanen et al. 2006)
  - ITSAT search phase ignores time information  $\Rightarrow$  no effective minimization of plan duration (makespan)
- Conclusion: impressive improvements, but runtimes still behind ITSAT

## Impact of Clock Encodings and Relaxed Step Scheme

|                       |     | ITSAT | SD  | C   | R   |
|-----------------------|-----|-------|-----|-----|-----|
| 08-CREWPLANNING       | 30  | 30    | 10  | 14  | 15  |
| 08-ELEVATORS          | 30  | 16    | 4   | 6   | 9   |
| 08-ELEVATORS-NUM      | 30  | -     | 4   | 8   | 13  |
| 08-OPENSTACKS         | 30  | 30    | 4   | 5   | 7   |
| 08-PEGSOL             | 30  | 30    | 30  | 30  | 30  |
| 08-SOKOBAN            | 30  | 17    | 17  | 17  | 16  |
| 08-TRANSPORT          | 30  | -     | 4   | 6   | 8   |
| 08-WOODWORKING        | 30  | -     | 16  | 15  | 23  |
| 08-OPENSTACKS-ADL     | 30  | -     | 3   | 5   | 8   |
| 08-OPENSTACKS-NUM-ADL | 30  | -     | 5   | 9   | 18  |
| 11-FLOORTILE          | 20  | 20    | 20  | 20  | 20  |
| 11-MATCHCELLAR        | 10  | 10    | 10  | 10  | 10  |
| 11-PARKING            | 40  | 9     | 12  | 12  | 12  |
| 11-STORAGE            | 20  | 10    | 0   | 0   | 0   |
| 11-TMS                | 20  | 20    | 20  | 20  | 20  |
| 11-TURNANDOPEN        | 20  | 20    | 18  | 18  | 18  |
| 14-FLOORTILE          | 20  | 20    | 20  | 20  | 20  |
| 14-MATCHCELLAR        | 20  | 20    | 19  | 20  | 19  |
| 14-PARKING            | 20  | 18    | 19  | 19  | 19  |
| 14-TMS                | 20  | 20    | 20  | 20  | 20  |
| 14-TURNANDOPEN        | 20  | 9     | 5   | 5   | 5   |
| 14-DRIVERLOG          | 30  | 4     | 0   | 0   | 0   |
| total                 | 560 | 303   | 260 | 279 | 310 |

### Impact of Clock Encodings and Relaxed Step Scheme





#### Conclusion

- Dramatic performance improvements in Planning by SMT:
  - 1 change in temporal model, explicit resources
  - discretization
  - 3 relaxed (summarized) steps
- quality of plans (makespan) far better than in competition
- scalability a bit behind (possibly due to SMT/SAT solver differences)