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ABSTRACT
Location-Based Social Networks (LBSNs) enable their users to share
with their friends the places they go to and whom they go with.
Additionally, they provide users with recommendations for Points
of Interest (POI) they have not visited before. �is functionality
is of great importance for users of LBSNs, as it allows them to
discover interesting places in populous cities that are not easy to
explore. For this reason, previous research has focused on providing
recommendations to LBSN users. Nevertheless, while most existing
work focuses on recommendations for individual users, techniques
to provide recommendations to groups of users are scarce.

In this paper, we consider the problem of recommending a list
of POIs to a group of users in the areas that the group frequents.
Our data consist of activity on Swarm, a social networking app by
Foursquare, and our results demonstrate that our proposed Geo-
Group-Recommender (GGR), a class of hybrid recommender systems
that combine the group geographical preferences using Kernel Den-
sity Estimation, category and location features and group check-ins
outperform a large number of other recommender systems. More-
over, we �nd evidence that user preferences di�er both in venue
category and in location between individual and group activities.
We also show that combining individual recommendations using
group aggregation strategies is not as good as building a pro�le for a
group. Our experiments show that (GGR) outperforms the baselines
in terms of precision and recall at di�erent cuto�s.
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1 INTRODUCTION
Location-Based Social Networks (LBSNs) are platforms that enable
people to share online their whereabouts (the places they visit and
whom they visit them with) – and, in turn, learn the whereabouts
of their online friends. �is is achieved via check-ins, i.e., posts that
contain the location (latitude, longitude) of a user and the exact
venue, e.g., a restaurant. Using this information users get to know
where their friends are. Additionally, check-ins create a timeline of
the places that users have visited. Utilizing check-in information,
LBSNs recommend venues as Point of Interests (POIs) that users
might like to visit.

Recommendations for new places to visit are of major importance
for users of LBSNs. For example, in metropolitan areas or while on
holidays, users o�en wish to discover new places that they would
be interested in – yet such information is o�en not readily available.
Note that the task of recommending new POIs is di�erent than
that of recommending other types of items (e.g., movies, news) in
that geography also comes into play. Recalling Tobler’s �rst law
of geography: “everything is related to everything else, but near
things are more related than distant things” [26].

In this work, we focus on a particular variant of the recommen-
dation task: one that seeks to recommend a new POI to a group of
users. To see why this task deserves particular a�ention, consider
that, when users choose a venue to visit with somebody else (e.g.,
friends or family), their venue of choice can generally be di�erent
than if they do so alone. For example, consider a person that is a big
fan of hamburgers – but hangs out with friends who prefer sushi.
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Such situations of con�icting tastes and interests pose a challenge
for the recommendation task: what POIs to recommend for a group
of users if the individual preferences di�er? Moreover, note that
we restrict ourselves in recommending new POIs (i.e., ones that the
group has not visited in the past), as such recommendations are
of most practical interest (compared to recommending POIs that
the group has already visited) and most commonly deployed on
real-world LBSNs (like Foursquare).

�e problem of group recommendations has been studied before,
but in di�erent se�ings. For instance, there is work on recommend-
ing relevant music [18], movies [21], holidays [19], news [9]. In the
se�ing of LBSNs, on the other hand, most earlier work has focused
on recommendations for individual users [4].

To address the gap in the literature, our work addresses the
following research questions.

RQ1: How do groups behave in LBSNs?
RQ2: How do preferences change when users are alone vs. when

they are in a group?
RQ3: How to recommend items in the areas that a group fre-

quents?

For all questions above, our analysis is based on a new dataset from
Swarm, a LBSN developed by Foursquare. �e data cover activity in
three major cities: Istanbul, Izmir and Mexico City. �e code used
for data collection, analysis, experimentation, and the dataset are
available for academic purposes1.

With respect to RQ3, the use case scenario is that of a group of
users who plan to meet and look for recommendations for a new
place to try: in a �rst step, they are prompted by the system to
select an area among the ones they have been to in the past; in a
second step, the system provides them with recommendations for
the selected area. �e techniques we study implement the la�er
(second) step. For all techniques, individual and group preferences
are assumed known and a single venue is recommended. Moreover,
the group is passive towards the provided recommendation – i.e.,
there is no interaction between the users and the recommender sys-
tem to shape the recommendation (e.g., via voting and a concensus
mechanism).

We experiment with a large number of techniques drawn from
the literature; and present Geo-Group-Recommender (GGR), a hybrid
recommender system that combines collaborative and content �l-
tering together with a geographical Kernel Density Estimation. Our
results show that the proposed recommender system outperforms
existing systems and other baselines.

2 BACKGROUND AND PRIORWORK
�e problem of recommending venues for individual users in LBSNs
has been widely studied. A recent survey can be found in [4]. State
of the art models like Fused Matrix Factorization Framework with
the Multi-center Gaussian Model (FMFMGM) [7] and GeoSoCa
[28] exploit geographical and social information of users. �e idea
of including the location preferences in the collaborative �ltering
learning is presented in GeoMF [15]. Research on recommending
venues to groups is still scarce but emerging and promising.

1h�ps://github.com/frederickayala/lbsn group recsys

2.1 Group recommendations
Recommender systems for groups are surveyed in [17]. �e authors
highlight that the use case of the recommender system greatly af-
fects the design. �ey characterize group recommender systems
by considering the following dimensions and we highlight in bold
those that apply to our case: (i) individual preferences are known
vs. developed over time; (ii) recommended items are experienced
by the group vs. presented as options in a list; (iii) the group
is passive (e.g., users are not voting) vs. active (e.g., the system
helps create consensus) and (iv) recommending a single item
vs. a set.

A summary of di�erent strategies to combine individual prefer-
ences to generate group recommendations can be found in [17]. A
brief summary of the methods is the following: Average Individual
Ratings (AIR) considers the average rating of each item; Average
Without Misery (AWM) assigns to items the average of their individ-
ual ratings under a certain threshold; Least Misery (LM) considers
the minimum of their individual ratings. �e authors also present
more elaborate methods like graph-based ranking [13], Spearman
footrule rank [2], Nash equilibrium [6] and purity and completeness
[25].

2.2 Groups in LSBNs
�e behavior of groups in LBSNs has been researched for di�er-
ent tasks. For instance, [16] studies companion recommendations
where the task is to �nd friends interested in joining certain POI. [1]
focus on recommending an itinerary for touristic groups visiting
a city. However, there is scarce research work specialized in POIs
recommendation for groups.

Comparing users and groups behavior in LSBN is investigated
in [5] using data from Foursquare (i.e. Swarm) and Telecommuni-
cations networks. �e authors show that the category of the venue
and location a�ects the propensity for groups to meet and dis-
cuss that this behavior could a�ect the POIs recommendation task.
Our work is complementary in the following aspects. We analyze
check-ins that explicitly mention friends that are together instead
of co-located within an hour. We study the behavior of Swarm
users from other cities than New York. To measure the category
preferences of users and groups, we use Kendall-tau as a ranking
correlation metric. Our behavior analysis includes time and dis-
tance between check-ins. We use all the POIs check-ins by using
clusting with DBSCAN instead of just the top POIs for users and
groups. Finally, the authors in [5] did not research the performance
of recommender systems for groups in LBSN.

�e authors in [23] study group behavior and recommending
POIs to groups in LBSNs. To detect the groups, they identify the
connected components based on time, location and friends network
of the Gowalla dataset. A major drawback of the dataset is that
it lacks information about the location itself (e.g., category, popu-
larity). �e Gowalla check-ins contains just the latitude, longitude
and ID for the POI. To overcome this, the authors retrieve POI
around the latitude and longitude using the Foursquare API and
then aggregate the categories. Also, check-ins are spread around
the world and the authors do not mention any geographical scope
limitation for their experiments.
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�eir model, called Collaborative Group Activity Recommender
(CGAR), represents group and location activities as topic models
that are combined using collaborative �ltering techniques. �eir
model includes latent variables for activity preference and com-
munity in�uence, that express whether an activity at a location is
more interesting for one group than to another, as well as how user
communities in�uence the preference of locations. �ey highlight
that preferences between users and groups di�er and show that
their model personalizes category preferences be�er than regular
strategies to combine individual recommendations (i.e., aggregating
by average). �eir model outperforms baselines (i.e., CTR, MF) in
Mean Recall@K(50-1000), Mean Rating Prediction Accuracy and
Mean Root Mean Squared Error.

�e main di�erences between [23] and our work are the follow-
ing. First, we use a dataset collected from Swarm that does not
require any additional technique for detecting groups. Also, our
collected dataset contains information about the POI so there is no
need to crawl for the venues information. To improve the quality
of our results, we include a cleaning step to remove bots and very
active users. We present a more comprehensive analysis that high-
lights not only the category preferences but also the location and
time preferences. Recommendations are usually presented in the
shape of a ranked lists with few POIs. �is is why we evaluate our
recommender on the TOP K recommendation se�ing where K is in
the range of [5,50] instead of [50,1000]. Another di�erence is that
we focus on recommending items near the areas where the group
check-ins are more concentrated and for three major cities (i.e.,
Istanbul, Izmir and Mexico City). We tried di�erent recommender
systems to generate a ranked list of possible POIs. Finally, we �t
a Kernel Density Estimation with Gaussian Kernel per group to
prioritize the POIs near the area of recommendation.

Table 1 highlights the di�erences of Geo-Group-Recommender
(GGR – our model) in comparison to CGAR and recent LBSN recom-
mender systems for individual users.
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Prioritize POIs
GGR (Ours) Yes Yes No Yes 5-50 Group Geo Density
CGAR [23] Yes No Yes Yes 50-1000 No
GeoMF [15] No Yes No No 5-100 User Geo Density, POI in�uence
GeoSoCa [28] Yes Yes Yes No 2-50 User Social Network
FMFMGM [7] No Yes Yes No 5-10 No

Table 1: Model Comparison

2.3 Recommender systems
A recent survey on recommender systems can be found in [24].
We are interested in methods that can be used when the user-item
consumption lacks explicit ratings (e.g. 1-5 stars). For this purpose,
we use implicit matrix factorization with two optimization methods
(i.e. Implicit Alternating Least Squares (iALS) [22] and Stochastic
Gradient Descent (SGD) for collaborative �ltering [14]. We use other
models that learn item and user similarities based on a distance
metric and Nearest Neighbour methods [14], as well as ones based
on item popularity.

2.4 Kernel Density Estimation
As mentioned in [4] and [28], Kernel Density Estimation (KDE) is
used in several LBSNs recommender systems. KDE is calculated
using the equation

f (x ) =
n∑
i=1

K (x ,xi ;h), (1)

where X is a set that contains samples x1,x2, . . . ,xn from the cor-
responding probability distribution. K is the kernel and h is the
smoothing parameter called bandwidth. In our experiments, K is
the Gaussian Kernel

K (x ,xi ;h) ∼ exp
(
−
(x − xi )

2

2h2

)
. (2)

3 DATA
We require a dataset with the LBSN activity of users both when
they are alone and when they are in a group. �e datasets used in
[3], [8], [11], [5] and [20] contain information about the activity of
individual users and their friends, but no group information – and
some lack detailed information about the venue.

To create such a dataset, we collect data related to the popular
LBSN Swarm, a platform that enables users to indicate the venue
they are checking-in. On Swarm, users are able to mention with
whom they visit a venue and share publicly their check-ins in other
social networks, like Twi�er. �is gives us the opportunity to collect
data related to both individual and group activity.2

Towards that end, we deploy a crawler that uses the Twi�er API
to search for public tweets that contain group check-ins. �en, in
snowballing fashion, we collect the latest 200 tweets of each user
that is mentioned in a group check-in and extract their public check-
ins contained therein. Figure 1 is a visualization of this recursive
process.

Our recursive crawl is constrained by a stopping condition that
speci�es the maximum depth d the crawler can reach from the orig-
inal group check-in. Depth 0 corresponds to the check-ins retrieved
in the �rst pass over tweets, depth 1 to the check-ins of the users
who are mentioned in a group check-in from depth 0, depth 2 to
the check-ins of the users who are mentioned in a group check-in
from depth 1, and so on.

We completed two crawls with no location constraint at depth 2
and 3. Subsequently, we identi�ed the city with most check-ins for
each country and performed a crawl constrained to the geograph-
ical coordinates of the city. To do that, we used the geographic
coordinates that are associated with tweets and indicate the loca-
tion of the user the moment when they generated the tweet. Since
not all tweets are tagged with such geographic coordinates (due to
the di�erent privacy choices of Twi�er users), for many cities we
were not able to retrieve a su�cient number of tweets – and thus
neither check-ins.

At the end of all crawls, we had a global dataset with approx-
imately 143 K users, 522 K venues, 780 categories, 453 K groups,
5.6 M check-ins and 1 M group check-ins. Figure 2 shows a map

2 In what follows, we’ll be using the term ‘group’ to refer to sets of at least two (2)
users – and distinguish it from the term ‘individual’, which refers to a singleton set
(one user).
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crawler.pdf

Figure 1: �e crawling process of Swarm check-ins. Addi-
tionally, the lookup endpoint of the Twitter API allow us
to constrain the search to a speci�c location by de�ning the
geographical center and a radius.

with the check-ins around the globe. �e data collection was done
between September and October 2016.

Figure 2: Map of the check-ins of all the collections together.

�e top 10 cities from the collection are presented in Table 2. �e
names of the cities were obtained by assigning to each check-in
the closest city from the Geonames database.3 For this purpose, we
used R-Trees [12].

3h�p://download.geonames.org/export/dump/

Total Total Total Group Group Group
City Check-ins Venues Categories Check-ins Venues Categories
Istanbul 483,214 25,953 402 43,096 8,072 297
Izmir 369,627 16,306 378 37,105 4,865 263
Mexico City 95,422 15,805 354 12,612 4,839 271
Kuala Lumpur 69,861 12,376 359 3,553 1,843 203
Bursa 59,931 4,465 283 5,459 1,218 164
Aydn 58,864 5,386 305 6,127 1,562 181
Izmit 45,575 2,961 255 4,189 818 128
Antalya 41,408 3,855 277 6,495 1,245 164
Mugla 40,148 3,520 276 5,121 1,129 173
Mytilene 40,027 2,662 219 3,220 796 131

Table 2: Top 10 cities in the data collection.

To improve the quality of our experiments, we remove possible
biases caused by bots and very active users. Bots and very active
users have a big geographical dispersion in their check-ins. We
�ltered the dataset by removing the last quartile of the users accord-
ing to the standard deviation of their geographical mobility. Also,
we removed approximately 2.3 M check-ins of irrelevant categories
to our research (i.e., Residence, States & Municipalities, Professional
& Other Places and Event, College & University, Travel & Transport).4

4 EXPLORATION OF GROUP BEHAVIOR
In this section, we provide an exploration of the dataset, in terms
of statistics that describe various aspects of group behavior.

4.1 Group Size and Activity Dispersion
We investigate group sizes as well as the distance and time between
their check-ins. Figure 3 shows the group size frequency. We �lter
the groups with maximum 12 participants. Figure 4 presents the
time and distance between check-ins for users and groups. We
removed the last quartile of time and distance.

2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1

Group Size

100
101
102
103
104105
106

F
re

q
u

e
n

cy

Figure 3: Group size check-in frequency (logarithmic scale).

4More information about the categorization of venues can be found in the Foursquare
documentation. h�ps://developer.foursquare.com/categorytree
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Figure 5: Kendall-tau for user and group category prefer-
ences. Le�: average by city; Right: distribution on users.

4.2 Category Preferences
Next, we analyze the preferences of individuals and groups for
venues of di�erent categories and identify di�erences between the
two. For category preferences we construct one ranked list of the
preferred categories for individuals and one groups – and compare
them using the Kendall-tau ranking correlation coe�cient.

We compare the preferences at three levels: global, per city, per
user. By comparing the most frequent categories for users and
groups globally, the global Kendall-tau is 0.82. Figure 5 presents the
Kendall-tau at the city and user level. In Figure 6 we give examples
of a city and a user by parallel coordinates.

For the categorical information we use the Foursquare category
tree to compute the similarity. �is helps us �nd similar venues
among di�erent depths of the category hierarchy. For instance, if
a venue is a “mexican restaurant” and another is “mediterranean
restaurant” there will be some similarity between the venues be-
cause both are in the “food” main category.

4.3 Location Preferences
Figure 4 suggests that individual and group check-in behavior is
di�erent in frequency and distance spread. Next we investigate if
the areas where individuals usually check-in are the same for the
group.

To measure how much users travel to meet with a group, we
�rst need to identify the areas where users and groups are. A well-
known technique that enables us to do this is DBSCAN [10]. We use
the Vincenty distance as the metric to identify the clusters. Figure 7
shows the user and group check-in clusters as well as their distance.

With the identi�ed clusters, we can de�ne a weighted average
of movement for user to the groups. �e following are the steps
required for the whole analysis. In Step 1, for each user, we compute
the centers cu of the geographical clusters of their check-ins and
the total check-ins per cluster wu . In Step 2, for each group, we
compute the centers cд of the geographical clusters of their check-
ins and the total check-ins per cluster wд . In Step 3, we compute
the weighted average distance as

d (cu , cд ) =

∑
cui

∑
cд j wuiwдjdvinc . (cui , cдj )∑

cui
∑
cд j wuiwдj

. (3)

We want to allow clusters to form where the POIs are at maxi-
mum 1.5 km (i.e., about 10 blocks) away from each other – and, if a
POI is too far away, we consider it as an independent cluster. We
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Figure 6: Category comparison using the check-ins of a sin-
gle user and her groups. �e Kendall-tau is 0.1(top). Total
check-ins count for all the users and groups in Mexico City.
�e Kendall-tau is 0.8(bottom).

used an epsilon of 1.5 km and minimum points of 1 as the parameters
for the DBSCAN clustering.

Figure 8 shows the KDE for the weighted average traveling
distance that users need to move to meet with the groups.

To use the geographical feature in the recommender systems
we projected the latitude and longitude from the World Geodetic
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Figure 7: A map of Mexico City with an example of a user
and her groups location preferences.�e diamond shape are
the centroids of the user check-in clusters. �e star shape
are the centroids of the group cluster.
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Figure 8:�e KDE of users individual location preference vs.
group location preference in fourmajor cities. Lowermeans
that the user had to travel less to meet the groups. From le�
to right and top to bottom: Istanbul, Izmir, Mexico City and
Kuala Lumpur.

System (i.e., WGS84 Model) to a sphere in the Cartesian coordinate
system.

5 RECOMMENDATION ALGORITHMS
We experiment with a large set of recommender systems from the
literature that we use as baselines. �en, for each recommender
system we create variants that di�er along three dimensions. Firstly,
they di�er in whether we include a pre-processing step that �lters
POIs near the areas where the group has already been. Secondly,
they di�er in whether we include as features the category and
location of the POI to the recommender system. �irdly, they di�er
in whether the recommender system is trained using individual
user check-ins or group check-ins. �e variants that include the
pre-processing step, category and location features and are trained

(a) A Map showing the POIs that could be recommended in Mexico City colored by
the KDE score for a particular group. �e star shapes represent the check-ins used
to �t the KDE. In our experiments, we used a �xed bandwidth of 0.2 and picked
venues at the 4th quartile as POIs candidates.

Figure 9: Example of pre-processing of geographical infor-
mation to calculate the KDE for a particular group. Please
view in color print.

on the group check-ins are collectively re�ered to as Geo-Group-
Recommender (GGR)

�e motivation for the �rst type of variant is that, based on the
inter-distance distribution of Figure 4, we know that groups do
not travel much between their check-ins. �erefore, it is natural
to narrow geographically the recommendations for the groups, we
do this by ��ing a Gaussian KDE. KDE helps us to di�erentiate
the dense areas for a group based on the geographical check-in
distribution, as shown in Figure 9 for one group. Speci�cally, we �t
a KDE for each group using the check-ins in the training dataset.
Subsequently, we compute a density score at the location of each
venue, and keep as candidates for recommendation only the venues
in the highest (densest) quartile. �ese POIs are then passed to the
recommender system for ranking. �e variants that include this
pre-processing contain the keyword KDE in their name.

�e second type of variant includes also category and/or geolo-
cation features. �ese variants are denoted with GEO and CAT in
their acronym.

Model Acronym
IALS Matrix Factorization [22] IALS
KDE ∩ IALS Matrix Factorization KDE IALS
SGD Matrix Factorization [14] SGD
KDE ∩ SGD Matrix Factorization KDE SGD
Item To Item [24] ITEM-ITEM
KDE ∩ Item To Item KDE ITEM-ITEM
Popularity Recommender [24] POP
KDE ∩ Popularity Recommender KDE POP
Content Based Recommender [24] CB
KDE ∩ Content Based Recommender KDE CB

Table 3: Models used to generate recommendations.
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Among the third type of variants we distinguish three subtypes
depending on the aggregation function of individual preferences.
Speci�cally, the recommender systems generate a rating ru,i for
each pair of user u and candidate venue i that are combined with
one of the following aggregation schemes [24]:

• average individual ratings (AIR), which considers the aver-
age rating of each item,

r̂ (G, i ) =

∑
u ∈G ru,i
|G |

, (4)

• average without misery (AWM), which assigns to items the
average of their individual ratings under a certain thresh-
old,

r̂ (G, i; s ) =
∑
u ∈G ;ru,i>s ru,i

|G |
(5)

• and average least misery (ALM), which considers the mini-
mum of their individual ratings,

r̂ (G, i ) =

∑ minu ∈G ru,i
|G |

. (6)

Table 3 includes the names of the recommender systems that
di�er along the �rst two dimensions. Recommender systems that
are trained on individual user check-ins have one of the three
acronyms (i.e. AIR, AWM, ALM) appended to their name.

Evaluation Methodology
Our experiments focus on the cities with most of the group check-
ins – i.e., Istanbul, Izmir and Mexico City. We split the check-ins
per group cluster (i.e. clusters detected by DBSCAN) to create two
datasets. �e training set contains (apprx. 70%) of check-ins at the
group cluster and the remaining comprises the testing set (apprx.
30%). Group clusters with size lower than the median were added to
the training set. We combined all the group cluster splits to create
one global training and one testing dataset. Figure 10 describes this
process.

We used Turi’s GraphLab Create5 implementation of the rec-
ommender systems listed in Table 3. We used GraphLab’s built-in
function for tuning the parameters of the models. For this purpose,
we used 5% of the training dataset as a validation set. �e experi-
ments were conducted in a single machine with 40 cores and 200
GB of RAM and ran for a day.

For performance metrics we use precision and recall at di�erent
cuto�s K (i.e. 5, 10, 20, 30, 40, 50),

Precision@K = Visited POIs in Cluster∩Recommended POIs
Recommended POIs ,

and

Recall@K = Visited POIs in Cluster∩Recommended POIs
Visited POIs in Cluster .

6 RESULTS
Building upon the discussion of Sections 4 and 5, we now provide
answers to the research questions we set in the beginning of this
work.

5h�ps://turi.com/

Figure 10: Random split per group and cluster. An example
of the group check-ins split is shown at the top and the data
split at the bottom.

6.1 RQ 1: Group Behavior
Observation 1: Groups move less than users and their check-ins are
less frequent.

Based on the analysis of time and distance between check-ins we
observed that 75% of the user check-ins occur between 2.5 days and
within a distance of 10 kms. However, 75% of the groups check-ins
happen between 8 days and within 5 kms. 50% of the groups move
just 1 km between their check-ins.
Observation 2: Groups in LBSNs are small.

Most of the check-ins are made of groups of two people. Groups
with size greater than 12 people are rare.

6.2 RQ 2: Individual vs. Group Preferences
Observation 3: Group prefer other areas than their members.

In Figure 8 we can observe that users needs to travel to parts of
the city that they are not usually going. �e KDE of the average
weighted distance saturates between 5-10 kms.
Observation 4: Groups prefer other types of venues than their mem-
bers.

In Figure 5 (right) we observe that top categories for users are
di�erent than groups. �e Kendall-tau most dense part is around
0.4.

6.3 RQ 3: POI Recommendation
Our main result is the comparison of recommender system algo-
rithms in di�erent large cities. GGR models are top performers and
the types of recommender systems perform di�erently among cities.
Figure 11 shows the results for Istanbul, where KDE IALS per-
forms best for both precision and recall. Figure 12 shows the results
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for Izmir, where in contrast, KDE SGD GEO performs best for
both precision and recall. Finally for Mexico City (Figure 13), KDE
IALS again performs best for recall@5-10 while KDE SGD CAT for
recall@20-50. Best performing methods are the same for precision
as well.

Observation 5: Training recommender systems for groups works
be�er than combining individual recommendations.

By answering RQ1 and RQ2 we show that the behavior of users
and groups is di�erent. �is is the reason why combining individual
recommendations by averaging under-performs the group models.
A be�er approach is to train a model based on groups information
only. �e results for comparing iALS for groups vs. aggregating for
individual users in Figure 14 show the superiority of group-based
over individual recommendations.

Observation 6: A Geographical KDE improves the performance of
new POIs recommendation in the area where the group check-ins.

Using the geographical KDE prioritize new POIs around the
group preferred areas. �is improves the models for all the cities,
as seen in Figs. 11–13.

Observation 7: Geography and Categorical Features are important.
In addition to geographical KDE, in our experiments the SGD,

POP and CB models with either categorical or geographical in-
formation performed be�er than the same model without these
features.

7 DISCUSSION
7.1 Implications
When groups decide where to go, they could save time if they
receive a tailored top list of venues. �e recommended list should
be in-line with the group preferences in order to be useful and
reasonable. Our �ndings suggest that this is feasible for the areas
that we know a group has been to in the past. However, there are
other possible POIs recommendations for groups. For example, we
could recommend a new area in the city with venues that they
might like. Or, we could recommend individuals to go together for
the �rst time to a place.

7.2 Future Work
Our data collection was limited to publicly available data from
Swarm and Twi�er and the check-ins were extracted from the
latest 200 tweets of the users. Our crawling strategy collected data
from cities of Istanbul, Izmir and Mexico City. Other cities like New
York where Swarm is very popular did not appear in our collection.
We could not retrieve the entire social graph for the users. Using
such information (e.g. POIs popularity, areas and categories in the
users ego network) would give rise to other ways to combine user
preferences into group recommendations. Future work could be
to understand the reasons why the models perform di�erent for
the di�erent cities. Possible reasons are di�erences in the sizes of
the cities, how easy is to move inside a city, the lack of data for
groups (i.e. cold start problem) or even natural boundaries (e.g.
rivers, mountains). Collecting more data could help to generalize
our �ndings among di�erent cultures, nations, urban or rural areas.
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Figure 11: Istanbul Recall@K(top) and Preci-
sion@K(bottom). �e legends are sorted by the best
performance models from le� to right and top to bottom.
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Figure 12: Izmir Recall@K(top) and Precision@K(bottom).
�e legends are sorted by the best performancemodels from
le� to right and top to bottom.
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Figure 13: Mexico City Recall@K(top) and Preci-
sion@K(bottom). �e legends are sorted by the best
performance models from le� to right and top to bottom.
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Figure 14: Combining individual iALS recommendations by
equations(4–6) under-perform the group model. From top
to bottom: Mexico City; Istanbul; Izmir. Le�: Recall; Right:
Precision.

8 CONCLUSIONS
Our research work presents empirical �ndings on recommending
new POIs to groups. To the best of our knowledge, this is the �rst
study that uses group information in LBSNs without using speci�c
assumptions and heuristics to detect the groups. Our experiments
on over 5.6 M user check-ins and 1 M group check-ins show that
users and groups prefer di�erent geographical areas and categories.
We show that recommending POIs near the areas were groups move
is feasible. A major �nding is that training a model using group pro-
�les performs be�er than combining individual recommendations
and that the GGR models generally are top performers.

9 ACKNOWLEDGMENTS
�e publication was supported by the PIAC 13-1-2013-0205 project
of the Research and Technology Innovation Fund, by the Momen-
tum Grant of the Hungarian Academy of Sciences and by the Mexi-
can Postgraduate Scholarship of the Mexican National Council for
Science and Technology (CONACYT) and by the European Insti-
tute of Innovation and Technology (EIT) Digital Doctoral School.
�is work has been supported by the Academy of Finland project
“Nestor” (286211) and the EC H2020 RIA project “SoBigData” (654024).
Special thanks to Turi for the GraphLab Academic License.

REFERENCES
[1] Aris Anagnostopoulos, Reem Atassi, Luca Becche�i, Adriano Fazzone, and Fab-

rizio Silvestri. 2016. Tour recommendation for groups. Data Mining and Knowl-
edge Discovery (2016), 1–32. DOI:h�p://dx.doi.org/10.1007/s10618-016-0477-7

[2] Linas Baltrunas, Tadas Makcinskas, and Francesco Ricci. 2010. Group Recom-
mendations with Rank Aggregation and Collaborative Filtering. In Proceedings
of the Fourth ACM Conference on Recommender Systems (RecSys ’10). ACM, New
York, NY, USA, 119–126. DOI:h�p://dx.doi.org/10.1145/1864708.1864733

[3] Jie Bao, Yu Zheng, and Mohamed F. Mokbel. 2012. Location-based and preference-
aware recommendation using sparse geo-social networking data.. In SIGSPA-
TIAL/GIS, Isabel F. Cruz, Craig Knoblock, Peer Krger, Egemen Tanin, and Peter
Widmayer (Eds.). ACM, 199–208. h�p://dblp.uni-trier.de/db/conf/gis/gis2012.
html

[4] Jie Bao, Yu Zheng, David Wilkie, and Mohamed Mokbel. 2015. Recommendations
in Location-based Social Networks: A Survey. Geoinformatica 19, 3 (July 2015),
525–565. DOI:h�p://dx.doi.org/10.1007/s10707-014-0220-8

[5] Chlo Brown, Neal Lathia, Cecilia Mascolo, Anastasios Noulas, and Vincent Blon-
del. 2014. Group Colocation Behavior in Technological Social Networks. PLOS
ONE 9, 8 (08 2014), 1–9. DOI:h�p://dx.doi.org/10.1371/journal.pone.0105816

[6] Lucas Augusto Montalvão Costa Carvalho and Hendrik Teixeira Macedo. 2013.
Users’ Satisfaction in Recommendation Systems for Groups: An Approach Based
on Noncooperative Games. In Proceedings of the 22Nd International Conference
on World Wide Web (WWW ’13 Companion). ACM, New York, NY, USA, 951–958.
DOI:h�p://dx.doi.org/10.1145/2487788.2488090

[7] Chen Cheng, Haiqin Yang, Irwin King, and Michael R Lyu. 2012. Fused Matrix
Factorization with Geographical and Social In�uence in Location-Based Social
Networks.. In Aaai, Vol. 12. 1.

[8] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and Mobility:
User Movement in Location-based Social Networks. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’11). ACM, New York, NY, USA, 1082–1090. DOI:h�p://dx.doi.org/10.1145/
2020408.2020579

[9] Berardina De Carolis. 2011. Adapting News and Advertisements to
Groups. Springer London, London, 227–246. DOI:h�p://dx.doi.org/10.1007/
978-0-85729-352-7 11

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proc. of 2nd International Conference on Knowledge Discovery and Data Mining
(KDD-96). 226–231.

[11] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. 2013. Exploring temporal e�ects
for location recommendation on location-based social networks.. In RecSys, Qiang
Yang, Irwin King, Qing Li, Pearl Pu, and George Karypis (Eds.). ACM, 93–100.
h�p://dblp.uni-trier.de/db/conf/recsys/recsys2013.html

[12] Antonin Gu�man. 1984. R-trees: a dynamic index structure for spatial searching.
Vol. 14. ACM.

[13] Heung-Nam Kim, Mark Bloess, and Abdulmotaleb El Saddik. 2013. Folkom-
mender: a group recommender system based on a graph-based ranking algo-
rithm. Multimedia Systems 19, 6 (2013), 509–525. DOI:h�p://dx.doi.org/10.1007/
s00530-012-0298-5

[14] Yehuda Koren, Robert Bell, Chris Volinsky, and others. 2009. Matrix factorization
techniques for recommender systems. Computer 42, 8 (2009), 30–37.

[15] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and Yong Rui.
2014. GeoMF: joint geographical modeling and matrix factorization for point-of-
interest recommendation. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 831–840.

[16] Yi Liao, Wai Lam, Shoaib Jameel, Steven Schockaert, and Xing Xie. 2016. Who
Wants to Join Me?: Companion Recommendation in Location Based Social Net-
works. In Proceedings of the 2016 ACM International Conference on the �eory
of Information Retrieval (ICTIR ’16). ACM, New York, NY, USA, 271–280. DOI:
h�p://dx.doi.org/10.1145/2970398.2970420

[17] Judith Mastho�. 2015. Group Recommender Systems: Aggregation, Satisfaction
and Group A�ributes. Springer US, Boston, MA, 743–776. DOI:h�p://dx.doi.org/
10.1007/978-1-4899-7637-6 22

[18] Joseph F. McCarthy and �eodore D. Anagnost. 1998. MusicFX: An Arbiter of
Group Preferences for Computer Supported Collaborative Workouts. In Proceed-
ings of the 1998 ACM Conference on Computer Supported Cooperative Work (CSCW
’98). ACM, New York, NY, USA, 363–372. DOI:h�p://dx.doi.org/10.1145/289444.
289511

[19] Kevin McCarthy, Lorraine McGinty, Barry Smyth, and Maria Salamó. 2006. �e
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[25] Maria Salamó, Kevin Mccarthy, and Barry Smyth. 2012. Generating Recommen-
dations for Consensus Negotiation in Group Personalization Services. Personal
Ubiquitous Comput. 16, 5 (June 2012), 597–610. DOI:h�p://dx.doi.org/10.1007/
s00779-011-0413-1

[26] Waldo R Tobler. 1970. A computer movie simulating urban growth in the Detroit
region. Economic geography 46, sup1 (1970), 234–240.

[28] Jia-Dong Zhang and Chi-Yin Chow. 2015. GeoSoCa: Exploiting Geographical,
Social and Categorical Correlations for Point-of-Interest Recommendations. In
Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, USA,
443–452. DOI:h�p://dx.doi.org/10.1145/2766462.2767711

http://dl.acm.org/citation.cfm?id=1241867.1241878
http://dl.acm.org/citation.cfm?id=1241867.1241878
http://dx.doi.org/10.1145/2676440.2676442
http://dx.doi.org/10.1007/s00779-011-0413-1
http://dx.doi.org/10.1007/s00779-011-0413-1
http://dx.doi.org/10.1145/2766462.2767711

	Abstract
	1 Introduction
	2 Background and prior work
	2.1 Group recommendations
	2.2 Groups in LSBNs
	2.3 Recommender systems
	2.4 Kernel Density Estimation

	3 Data
	4 Exploration of Group Behavior
	4.1 Group Size and Activity Dispersion
	4.2 Category Preferences
	4.3 Location Preferences

	5 Recommendation Algorithms
	6 Results
	6.1 RQ 1: Group Behavior
	6.2 RQ 2: Individual vs. Group Preferences
	6.3 RQ 3: POI Recommendation

	7 Discussion
	7.1 Implications
	7.2 Future Work

	8 Conclusions
	9 Acknowledgments
	References

