
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Abdulmelik Mohammed

Combinatorial Algorithms for the De-
sign of Nanoscale Systems

Master’s Thesis
Espoo, Jan 3, 2014

Supervisor: Professor Pekka Orponen
Advisor: Dr. Eugen Czeizler

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Abdulmelik Mohammed

Title:
Combinatorial Algorithms for the Design of Nanoscale Systems

Date: Jan 3, 2014 Pages: 72

Major: Information and Computer Science Code: T-79

Supervisor: Professor Pekka Orponen

Advisor: Dr. Eugen Czeizler

Over the past 30 years, DNA, with its exquisitely specific Watson-Crick base
pairing rules, has found a novel use as a nanoscale construction material in DNA
nanotechnology. DNA origami is a popular recent technique in DNA nanotech-
nology for the design and synthesis of DNA nanoscale shapes and patterns. DNA
origami operates by the folding of a single long strand of DNA called a scaf-
fold with the help of numerous shorter strands of DNA called staples. Recently,
DNA origami design for polyhedral beam-frameworks has been proposed where
a scaffold strand is conceptually routed over the beams of a polyhedron so that
complementary strands potentially fold the scaffold to the framework in a solu-
tion.

In this work, we modelled the problem of finding a scaffold routing path for poly-
hedral frameworks in graph-theoretic terms whereby the routing path was found
to coincide with a specific type of Eulerian trail, called an A-trail, on the poly-
hedral skeleton. We studied the complexity of deciding whether an A-trail exists
with an emphasis on rigid triangular frameworks or equivalently on plane trian-
gulations. While the decision problem was found to be NP-complete in general,
we learned that Eulerian triangulations always have A-trails if a long standing
conjecture by Barnette on the Hamiltonicity of bipartite cubic polyhedral graphs
holds.

Given the general NP-completeness result, we developed a backtracking search al-
gorithm for finding A-trails. To improve the backtrack search, we introduced an
enumeration heuristic, tuned in particular to Eulerian triangulations, to schedule
the nodes in the search tree. The algorithm, guided by the heuristic, efficiently
found A-trails for a family of Eulerian triangulations as well as a family of braced
grid graphs. Furthermore, we implemented a software package, BScOR (Beam
Scaffolded-Origami Routing), which generates an A-trail, or equivalently a scaf-
fold routing path, given a three-dimensional object description in a Polygon File
Format.

Keywords: DNA nanotechnology, DNA origami, Polyhedra, Graphs,
Combinatorial algorithms

Language: English

2

Acknowledgements

First and for most, I would like to express my deep gratitude to my supervisor
Professor Pekka Orponen, and my advisor Dr. Eugen Czeizler, for giving me
the opportunity to work on a challenging, yet engaging, project that I present
in this thesis. I also wish to thank them both for their continuous support
in all phases of the project and for their careful review of the thesis.

I further wish to extend my gratitude to Professor Björn Högberg for his
collaboration, and for defining the problem in DNA nanotechnology that is
the motivation of the work presented in this thesis. I also wish to thank
my project co-worker, Gilberto Garcia Gape, for implementing parts of the
software package that we have developed, for fruitful discussions in the theo-
retical development, and for the overall company that he has provided during
the time we worked together.

I am grateful for the assistance and support given by Tapio Leipälä, Miki
Sirola, and the whole technical staff at the Department of Information and
Computer Science. I also acknowledge the use of computational resources
provided by Aalto Science-IT project for the run time experiments carried
out in the project. I further wish to thank my officemate Srikrishna Raam
for some helpful tips in language use, and my friend Ehsan Amid, for a hint
on data-plotting of the run time results presented in this thesis.

Last but not least, I wish to express my deepest gratitude to my parents
for rearing and nurturing me over the past 25 years. I dedicate this thesis to
my beloved big brother Mubarek, and my dearest father Nesru.

Espoo, Jan 3, 2014

Abdulmelik Mohammed

3

Contents

1 Introduction 5
1.1 Problem statement . 6
1.2 Structure of the thesis . 7

2 DNA nanotechnology 9
2.1 DNA as a building material 10
2.2 DNA origami . 12
2.3 DNA polyhedral beam-frameworks 14

3 Graph theoretic preliminaries 17
3.1 Planarity . 18
3.2 Connectivity . 23
3.3 Polyhedral graphs and beam-frameworks 26

4 Scaffold routing and Eulerian trails 31
4.1 Eulerian trails and postman tours 31
4.2 A-trails . 36
4.3 Complexity considerations . 40

5 A backtracking algorithm for A-trails 44
5.1 Vertex parities . 44
5.2 A splitting schedule heuristic 48
5.3 Run time experiments . 56

6 Conclusions 62

7 Appendix 71

4

Chapter 1

Introduction

In 1959, the renowned theoretical physicist, Richard P. Feynman [26] gave
a famous talk to the American Physical Society where he remarked that
“there is plenty of room at the bottom”—enough room that one can put the
writing of a volume of the Encyclopaedia Britannica on the head of a pin.
Feynman [26] further envisioned the miniaturization of the computers of his
day. The rapid miniaturization of computing machines, codified in Moore’s
law, is now evident with the profusion of ever smaller electrical devices with
greater capability. But, how much room is still there at the bottom, and more
significantly, how much control do we have over what lies in this realm?

There is a limit to how small our computers, or in fact any machine, can
get. Any material must be composed of atoms which have sizes on the scale
of one billionth of a meter—a nanometer. Atoms, molecules and molecular
complexes are all in the realm of the nanoscale which ranges from 0.1 nm to
1000 nm [64]. Nanotechnology is an engineering and scientific discipline which
concerns itself with the rational design, fabrication and characterization of
artificial systems at the nanoscale [64].

There are two fundamental approaches in nanoscale fabrication: a top-
down approach and a bottom-up approach [11]. The top-down approach, of
which the photo-lithographic technique in the semiconductor industry is a
prime example, starts from a bulk material and carves out smaller details
until the desired product is obtained. The bottom-up approach on the other
hand, much inspired by natural systems, involves the construction of larger
aggregates by the self-assembly of smaller subunits via their autonomous
interactions. For scales less than 20 nm, top-down approaches can become
prohibitively expensive, while bottom-up approaches mimicking nature are
promising [45].

Self-assembly is a prevalent phenomenon in nature as a whole and in
biology in particular. Molecular self-assembly governs the folding of linear

5

CHAPTER 1. INTRODUCTION 6

chain protein to functional 3D structures; protein-nucleic-acid aggregates
regulate synthesis in a cell; cells divide and further organize into organisms
[12]. Of the possible biological molecules that could serve as units in self-
assembly, deoxyribonucleic acid (DNA), the carrier of the genetic code of life,
has been demonstrated as one of the most promising in the controlled design
of nanoscale structures [25]. Nanotechnology driven by the self-assembly of
DNA has been termed as DNA nanotechnology ; when the final assembled
structure is static, the field has been named as structural DNA nanotechnol-
ogy.

1.1 Problem statement

Structural DNA nanotechnology was pioneered by Nadrian Seeman in the
early 1980s when he envisioned the possibility of constructing 3D crystals to
host proteins which can then be studied under x-ray diffraction [49]. The
field has since grown and DNA based objects [16, 65], arrays [63], nano-
mechanical devices [57] and even DNA molecular computers [62] have been
constructed [50].

In structural DNA nanotechnology, a target can be assembled in different
ways. In a multi-stranded approach, the target is entirely assembled from
short single strands of DNA [47]. In an origami based approach, the majority
of the target structure’s mass is one long strand of DNA [47]. Scaffolded
DNA origami is an origami based approach introduced by Paul Rothemund
in mid 2000s where a single long viral strand called a scaffold strand is folded
with the help of numerous short synthetic strands called staple strands [46].
Scaffolded DNA origami enables the assembly of complex custom shapes as
well as the generation of complex patterns even though it forgoes some of
the careful practices of the earlier multi-stranded approach [46].

In Rothemund’s scaffolded DNA origami, the target shape is first geo-
metrically modelled in a multi-step design process [46]. To approximate the
shape, the scaffold strand is routed back and forth in a raster-fill manner in
one of the design steps. Due to the ease of the scaffold routing in 2D origami,
the scaffold route was hand-generated [45]. In general however, there will be a
need for powerful computer-aided design (CAD) programs for the construc-
tion of increasingly complex DNA nanostructures [52]. Other researchers
have since developed software tools for DNA origami designs [2, 22].

In a recent work, Högberg and co-workers have proposed a novel scaf-
fold routing scheme in a DNA origami design adapted to polyhedral beam-
frameworks [5, 36]. In their scheme, the scaffold strand is routed over the
edges of a polyhedral beam-framework so that the scaffold will fold to the tar-

CHAPTER 1. INTRODUCTION 7

get polyhedron with the guide of staple strands. Scaffold routing in Högberg’s
team design scheme was not straightforward and their scaffold routing for a
subdivided icosahedron had eight edges missing [5]. Scaffold routing plays an
integral part in their vision to create a design platform for polyhedral DNA
nanostructures [36] with vHelix [32]—a plugin for the well known CAD soft-
ware Maya.

We started a collaboration with Högberg and his team at the Karolinksa
Institutet with the role of developing an algorithm for the scaffold routing and
delivering an implementation. In our work, we modelled the scaffold routing
problem in graph theoretic terms and investigated the complexity of finding
a suitable scaffold routing path. Furthermore, we developed a combinatorial
algorithm for the proposed scaffold routing scheme, tuned in particular, to
rigid 3D polyhedral beam-frameworks. In addition, we implemented a soft-
ware package, BScOR (Beam Scaffolded-Origami Routing), which generates
a scaffold routing path, given a three-dimensional object description in a
Polygon File Format (PLY) [13]. The description of BScOR is given in the
Appendix.

1.2 Structure of the thesis

The remaining chapters are organized as follows. In Chapter 2, we give a brief
overview of DNA nanotechnology, focusing on DNA origami, and 3D poly-
hedral constructions. Further, we present the novel scaffold routing scheme
proposed by Högberg’s team for the DNA origami design of polyhedral beam-
frameworks.

In Chapter 3, we discuss some basic graph-theoretic concepts, focusing
on planarity and connectivity. We also present a relation between planarity
and connectivity on the one hand and polyhedral beam-frameworks on the
other. We further observe that scaffold routing on rigid 3D polyhedral beam-
frameworks is equivalent to scaffold routing on a special class of planar graphs
called plane triangulations.

In Chapter 4, we frame the question of scaffold routing for origami con-
structions in terms of the graph-theoretic concept of Eulerian trails. In par-
ticular, we present a special type of Eulerian trails called A-trails, which
coincide with the notion of scaffold routing. Further, the complexity of de-
ciding the existence of A-trails on polyhedral graphs and Eulerian plane
triangulations is investigated. Deciding the existence of A-trails on general
polyhedral graphs is found to be NP-complete,

Given the NP-completeness result, in Chapter 5, we describe a backtrack-
ing search algorithm for finding A-trails. To improve the performance of our

CHAPTER 1. INTRODUCTION 8

search algorithm, we then formulate a simple heuristic to aid the backtrack
search. Finally, we study the performance of the heuristic by run-time ex-
periments on three different families of graphs. In Chapter 6, we review our
results and make some concluding remarks.

Chapter 2

DNA nanotechnology

There is indeed plenty of room at the bottom; while there may not yet be
encyclopaedic writings at the nanoscale, the genetic information that is the
essence of all life on earth, is found as a DNA sequence inside the nucleus of
a cell. Such has been the impact of understanding DNA in biology and the
life sciences in general, its double helical variant, depicted in Figure 2.1, has
become one of the prominent symbols of science.

Figure 2.1: Helical structure of B-DNA. Image reprinted from [6].

DNA has multiple naturally occurring conformations; the helical geome-
try of B-DNA, the predominant conformation in eukaryotic cells [43], is shown
in Figure 2.1. Double helical DNA consists of two single strands spiralling

9

CHAPTER 2. DNA NANOTECHNOLOGY 10

around a helical axis. Each single strand is a chain of nucleotides which them-
selves are composed of a deoxyribose sugar, a phosphate group, and one of
four nitrogen bases. The strands run in opposite directions from a 5

′
end to

a 3
′

end, as indicated by small arrows in Figure 2.1, and are said to be an-
tiparallel. The double helix is held together by hydrogen bonds between com-
plementary nitrogen bases—Adenine-Thymine (A-T) and Cytosine-Guanine
(C-G)—also named as Watson-Crick base pairs (bp). Under normal condi-
tions, B-DNA has a 2 nm wide helix (in diameter) with a helical repeat (a
full turn) at 10–10.5 base pairs or approximately 3.5 nm [50]. This makes
DNA an intrinsic nanoscale object and DNA based constructions nanoscale
products.

The string of bases in the strands is not only the code of heredity, but
also a mechanism for programmable self-assembly. It is the high specificity
of the hydrogen bond interaction between the nitrogen bases that enables
the rational design of structures at the nanoscale [50]. For instance, if two
double-stranded molecules have single-stranded antiparallel complementary
overhangs (or “sticky ends”), they can hybridize to form a longer double-
stranded molecule by attaching at the sticky ends through Watson-Crick base
pairing [51]. Moreover, the structure formed at the location of association
is still B-DNA [42] which makes the formed structure predictable [51]. In
general, a target structure can be synthesized in a lab by designing sequences
which maximize Watson-Crick base pairing of the structure [51].

2.1 DNA as a building material

The association of linear duplexes through sticky ends can only form topo-
logically linear or circular products since the axis of double helical DNA is
unbranched [50]. On the other hand, branched DNA molecules have more po-
tential in creating complex shapes and features [50]. The Holliday junction,
a branched DNA molecular complex with four arms, is present in biology as
a transient intermediate in genetic recombination [50]. The Holliday junction
has a mobile junction point because of the homology of the sequence of the
original double helices; that is, the four strands of the two helices consist
of two pairs of strands with the same sequence [50]. It is also possible to
create synthetic branched DNA by the reciprocal exchange of strands of two
double helix molecules [51]. Immobile branched junctions can be synthe-
sized by appropriate sequence design techniques such as sequence symmetry
minimization [51].

By extending the four arms of an immobile Holliday junction with sticky
ends, a motif which can self assemble to a 2D periodic array can be obtained

CHAPTER 2. DNA NANOTECHNOLOGY 11

[50]. A four arm Holliday junction with sticky ends is illustrated on the left
in Figure 2.2 and a quadrilateral assembly, which can further be extended, is
shown on the right. Two-dimensional DNA arrays can potentially be used to
assemble molecular electronic devices [44]. Three-dimensional crystal cages
based on periodic arrays were first envisioned by Seeman to host biological
macromolecules for diffraction analysis [50]. While it would seem that im-
mobile junctions are the desired building blocks for nano-constructions, four
arm branched motifs with single helical arms are floppy and the junction
geometry of four arm branched motifs is uncertain [47].

Figure 2.2: Two-dimensional array by sticky end association of branched
DNA molecules. The branched junction on the left has four strands X, Y,
X' and Y' and four arms corresponding to four double helical domains. Four
copies of the motif associate by complementary sticky ends (X with X' and
Y with Y'); the array can extended by additional associations of extra copies
to the free sticky ends at the periphery. Image reprinted from [50] with kind
permission from Springer Science and Business Media.

The four arms of the immobile junction have been shown to stack and
form two helical domains, with two strands crossing over between the do-
mains, and the other two strands running continuously in the two separate
domains [28]. A motif with two crossover points called a double crossover
molecule has been modelled [28], and its antiparallel variant has been shown
to be approximately twice as rigid as linear duplex DNA [48]. Two-dimensional
crystals based on synthetic double crossover molecules have been assembled
in the lab [63], and remarkably, Winfree [62] has shown that the self-assembly
of double crossover molecules can simulate computation by serving as molec-
ular representation of so called Wang tiles.

Generally, various non-natural DNA motifs can be designed by the recip-
rocal exchange of strands, and sequences can be assigned to strands so that
the desired motif can be assembled [51]. Complex structures in two and three
dimensions can then be formed by the sticky end cohesion of the designed
motifs. Nevertheless, we now turn our attention to a design technique that

CHAPTER 2. DNA NANOTECHNOLOGY 12

has allowed the creation of arbitrary 2D shapes and patterns, and that which
has been extended to 3D polyhedral architectures by Högberg’s team.

2.2 DNA origami

Scaffolded DNA origami is a design strategy in DNA nanotechnology which
works by the folding of a long single strand called a scaffold strand with the
help of hundreds of shorter strands named staple strands [46]. In scaffolded
DNA origami, the staple strand sequences are designed as Watson-Crick
complements of two or more subsequences in the scaffold, thereby controlling
the folding of the scaffold in a solution. Once a scaffold and a set of staples
are designed and sequenced for a target shape, they are mixed in one pot with
buffer and salt [45]. Next, the mixture is rapidly heated, and then cooled
over a course of few hours, to get the desired shape in a solution [45].

The original DNA origami design proposed by Rothemund [46] is a multi-
step process; here we will give an overview of the steps which are relevant to
our work. First, the target shape is approximated by a set of paired parallel
cylinders running from top down. Each cylinder models a double helix. A
simple geometric shape approximated by six paired parallel helices is shown
in Figure 2.3(a). Moreover, periodic crossover points are formed between the
parallel helices; these crossover points are where the staples jump from one
helix to the next so that the helices are held tight. Second, the scaffold is
routed in the helices in a raster fill fashion, crossing over to further helices at
scaffold cross over points, so that the scaffold constitutes one of the strands in
each helix. The raster fill routing of a scaffold for the shape in Figure 2.3(a)
is shown in Figure 2.3(b). The scaffold crossover locations are chosen so
that the twist of the scaffold is close to the tangent between the helices; that
is, an odd number of half turns when the scaffold progresses to subsequent
helical domains and an even number of half turns when the scaffold reverses
direction. Further steps are carried out to minimize strain and improve the
binding strength of the staples.

Rothemund illustrated the working of his origami design principle by
folding a circular single strand DNA of the M13mp18 virus (with 7,249 nu-
cleotides) into squares, rectangles, stars, smiley faces and hollow triangles.
The scaffold routing approximating the targets and microscopic images of
the assembled shapes are shown in Figure 2.4. He further showed atomic
force micrograph images of DNA artwork such as the map of the western
hemisphere, by decorating a rectangle with a set of labelled staple strands.
However, all his constructions were two-dimensional.

CHAPTER 2. DNA NANOTECHNOLOGY 13

Figure 2.3: DNA origami design steps. Bold lines in b and c represent the
scaffold strand. Lighter grey short strands are the staples. Reprinted from
[47] with kind permission from Springer Science and Business Media.

Figure 2.4: DNA origami. Top: scaffold routing path for the various shapes.
Bottom: atomic force micrograph images of the folded shapes. Reprinted by
permission from Macmillan Publishers Ltd: Nature [46], copyright 2006.

CHAPTER 2. DNA NANOTECHNOLOGY 14

Since then, DNA origami has been extended to the third dimension. An-
derson et al. [3] have used DNA origami to fold the M13mp18 viral DNA to
a hollow 3D DNA box 42x36x36 nm3 in size. The box consisted of six sheets
corresponding to the six faces of the box where each sheet is folded in the
same raster fill manner as the original Rothemund constructions. Douglas et
al. [21] have used origami to construct various 3D volumes by rolling sheets
of parallel helices in a honeycomb pleat based strategy. Douglas et al. [22]
have developed caDNAno, an open source graphical software package, to aid
the design of DNA 3D volumes constrained in a honeycomb lattice. In ad-
dition, Castro et al. [15] have developed CanDo, a computational tool for
predicting 3D DNA origami shapes based on caDNAno designs.

2.3 DNA polyhedral beam-frameworks

Three-dimensional DNA nanostructures can be used for encapsulation of
drugs, proteins and other nanomaterials [40]. After encapsulation, drugs
can be released towards targeted cells; proteins can be controllably folded;
biomaterials can be sensed or crystallized [40]. For instance, Bhatia and co-
workers [10] have demonstrated a gold nanoparticle trapped in an icosahedral
DNA nano-capsule. In this regard, polyhedral beam-frame architectures have
the potential to create structures with a more efficient use of material (in
terms of strand base pairs) and with a greater strength to weight ratio [36].

The first DNA polyhedral beam-framework was constructed by Chen and
Seeman [16], and had the connectivity (or topology) of a cube. Each edge
of the cube-like framework was made of double helical DNA and each vertex
was a branch point of a junction. Unlike origami, which is a one pot reaction,
the cube was constructed over five steps involving purification, reconstitution
and ligation. Zhang and Seeman [65] have also synthesized, on solid support,
a truncated octahedron with four arm branched junction (each vertex had
an exocyclic arm). The synthesis of both the cube and octahedron had
low yields (around 1% for the cube and less than 10% for the octahedron)
[65]. Goodman et al. [29] have demonstrated a single-step synthesis of a rigid
tetrahedral framework which can potentially serve as a 3D geometric building
block. In their synthetic scheme, the tetrahedron was composed of four 55
bp single strands each of which corresponded to the four face boundaries of
the object.

He et al. [34] have assembled three different symmetric supramolecu-
lar polyhedral frameworks (tetrahedra, dodecahedra and buckyballs) from
sticky-ended three-point-star motifs in a hierarchical strategy. Joyce et al.

CHAPTER 2. DNA NANOTECHNOLOGY 15

[53] were the first to use an origami technique1 to fold an octahedral beam-
framework from a 1.7 kilo-base single stranded synthetic DNA molecule.
Douglas et al. [21] have assembled an icosahedral beam-framework from
three origami based double-triangular subunits in a hierarchical strategy.
Each of the edges of the beam-framework were six helix bundles.

Recently, Högberg and his team [5] proposed an origami design technique
for a subdivided icosahedral framework. A scaffold strand was routed through
the edges of the subdivided icosahedron so that it did not cross itself at
any vertex. Then, staple strands were used to form a vertex by acting as
complements to the scaffold running in an antiparallel direction. Vertex
formation is illustrated in Figure 2.5. The routed scaffold had eight edges
missing and the missing edges were compensated for by complementary pairs
of staples. The resulting icosahedral design is depicted in Figure 2.6.

Figure 2.5: Vertex formation according to Högberg’s origami design for a
subdivided icosahedron. Thin grey lines are edges of the subdivided icosahe-
dron. The longer bold lines are segments of the routed scaffold at the vertex;
the shorter bold lines are the staples. Arrows indicate the 5

′
to 3

′
direction.

In the work presented in this thesis, we have formalized this design scheme
in graph theoretic terms. We then investigated the conditions under which
the scaffold can be routed for arbitrary polyhedral beam-frameworks. More-
over, we have designed an algorithm which outputs a scaffold routing path
for a polyhedral beam-framework if such a path exists. We have paid par-
ticular attention to the class of rigid polyhedral beam-frameworks. We have
implemented a software package, BScOR, which outputs a scaffold routing
path for an arbitrary polyhedral framework if such a routing path can be
found. A description of BScOR is available in the Appendix.

1The origami technique by Joyce et al. precedes Rothemund’s scaffolded origami and
uses a single strand with only five helpers.

CHAPTER 2. DNA NANOTECHNOLOGY 16

Figure 2.6: Scaffold routing over the subdivided icosahedron with some miss-
ing edges. The single helical or double helical domains made by the hybridiza-
tion of the scaffold with the complementary staples act as beams of the DNA
nanostructure. Reprinted with permission from [36].

Chapter 3

Graph theoretic preliminaries

Graph theory is a powerful abstraction tool to study various types of net-
works such as road networks, telephone networks, and the World Wide Web.
While these networks in a certain sense seem natural objects to study using
graph theoretic tools, it will be evident from the discussions that follow that
graph theory can also be powerful in modelling problems that arise in DNA
nanotechnology. Let us first define the basic graph theory terms and the
notations that we shall use in this thesis.

A graph is a pair 〈V,E〉, where V is a set of vertices (also called nodes)
and E is a multiset of unordered pairs of vertices called edges. We denote
an edge e ∈ E as a pair {u, v}, where u, v ∈ V , and we say u and v are
endpoints of e. We denote by V (G) and E(G), the vertex set and edge set of
a graph G, respectively. In this work, we consider finite, undirected graphs
which may have multiedges (multiple edges with the same endpoints) but
which may not contain any loops (edge from a vertex to itself). We say two
edges are parallel if they have the same endpoints. We call a graph simple if
it does not contain multiedges.

An edge is said to be incident to a vertex if the vertex is one of the
endpoints of the edge. The degree deg(v) of a vertex v, is the number of
edges incident to v in the graph. A vertex u is adjacent to a vertex v if
{u, v} is an edge in the graph. The vertices adjacent to a vertex v are called
the neighbours of v. If the degree is k for all vertices, we say the graph is
k-regular. We call a 3-regular graph cubic.

A walk in a graph is an alternating sequence of vertices and edges
(v0, e1, v1, . . . , el, vl), l ≥ 0, where each ei = {vi−1, vi} is an edge in the graph.
For clarity, we will ignore the edges in the sequence if no ambiguity arises
(e.g. if the graph is simple). A walk is closed if it starts and ends in the
same vertex; otherwise, it is open. An open walk with distinct vertices (that
is, no vertex is repeated) is called a path. The start and end vertices of a

17

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 18

path are its end vertices while the remaining are its internal vertices. A walk
with distinct edges is called a trail and a closed walk with distinct edges is
a closed trail. Note that parallel edges are considered distinct. A cycle is
a closed trail with at least two vertices where no vertex (except the start
vertex) is repeated. The length of a walk (path, trail, closed trail, cycle) is
the number of edges in it.

A graph is connected if there is a path between any pair of its vertices;
otherwise, it is disconnected. Unless stated otherwise, we assume our graphs
are connected. In Section 3.2, we discuss connectivity in more general terms.

A graph G is called bipartite if V (G) is the union of two disjoint, possibly
empty, sets such that no edge e ∈ E(G) has both endpoints in the same
set. A complete graph is a simple graph where all the vertices are pair-
wise adjacent. We denote a complete graph on n vertices by Kn. A complete
bipartite graph is a simple bipartite graph where any two vertices are adjacent
if and only if they are in two different partite sets of its vertex set. A complete
bipartite graph with two partite sets of size m and n is denoted Km,n. For
other undefined terms, we refer the reader to the introductory book on graph
theory by Douglas West [59].

In the next two sections, we present the graph-theoretical concepts of
planarity and connectivity which are then shown to have a relation with
polyhedral frameworks.

3.1 Planarity

A graph can be drawn on a plane by injectively mapping its vertices to points
on the plane and its edges to continuous curves connecting their endpoints.
If a drawing of a graph on a plane is such that no two curves corresponding
to the edges intersect apart from their endpoints, the drawing is said to be
planar. If a graph has a planar drawing, then it is called a planar graph [60].
Figure 3.1 illustrates two possible drawings of K4, the complete graph on four
vertices. The drawing of K4 in Figure 3.1(a) is a planar drawing, while the
drawing in Figure 3.1(b) is non-planar since there is an intersection between
edges {1, 4} and {2, 3}. The image of edge {1, 4} in the Figure 3.1(a) is not
straight. Fáry’s theorem [59, p.247] states that any simple planar graph1 has
a straight line planar drawing (that is, the images of all edges are straight
lines).

In general, a planar graph may have multiple planar drawings. If one
simply considers different mappings (i.e. different geometric instantiations)

1Note that a planar graph with at least one multiedge cannot have a straight line planar
drawing.

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 19

(a) Planar drawing of
K4.

(b) Non-planar drawing
of K4.

Figure 3.1: Drawings of K4.

to distinguish planar drawings, then any planar graph will have an infinite
number of drawings (any rubber sheet transformation of a particular drawing
is defined by a different mapping). However, a planar drawing defines, for
each vertex, a cyclic order (e.g. counter-clockwise) of the edges incident to
that vertex [8].

Thus, we consider two planar drawings to be equivalent if they define
the same cyclic order for each vertex. We consider two planar drawings
to be different if one needs to rearrange the order of the edges around at
least one of the vertices of first drawing to obtain the second drawing. The
class of all equivalent planar drawings defines a combinatorial embedding
of the graph. Figure 3.2 displays two different combinatorial embeddings
(hereafter also just embedding) of an abstract planar graph with a vertex set,
V = {1, 2, 3, 4, 5} and an edge set E = {{1, 2}, {1, 3}, {3, 4}, {3, 5}, {4, 5}}.
If we want to obtain the embedding in Figure 3.2(b) from the embedding in
Figure 3.2(a), we would have to fold the bow-tie embedding in Figure 3.2(a)
at a vertical line passing through the centre at vertex 3. This rearranges
the cyclic order of the edges at vertex 3 from ({1, 3}, {2, 3}, {5, 3}, {4, 3})
to ({1, 3}, {4, 3}, {5, 3}, {2, 3}). A plane graph is the class of all equivalent
planar drawings; that is, the class of planar drawings which define the same
combinatorial embedding. We will abuse notation and use G to denote plane
graphs; in such a case, a cyclic order of the edges incident to a vertex is
assumed to be given for each vertex.

Now, suppose that we remove the curves of a plane graph from the plane:
the plane becomes divided into disjoint regions [8]. These regions are the
faces of the plane graph [8]. For instance, the bow-tie embedding in Fig-
ure 3.2(a) has 3 faces: the triangles F1, F2; and the unbounded outer face
F3. Each face of a plane graph is bounded by a closed walk (but not neces-
sarily a cycle) [59]. The face F1 is bounded by (1, 2, 3, 1), F2 by (3, 5, 4, 3)
and F3 by (1, 2, 3, 5, 4, 3, 1). On the other hand, the embedding in Figure
3.2(b) has three faces R1, R2 and R3 with bounding walks (1, 2, 3, 5, 4, 3, 1),

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 20

1

2

3
4

5

1

2

3

4

5

F1 F2

F3

R1 R2

R3

(a) Bow-tie embedding.

1

2

3
4

5

1

2

3

4

5

F1 F2

F3

R1 R2

R3

(b) Half double-bow-tie
embedding.

Figure 3.2: Two different combinatorial embeddings of a planar graph. The
two embeddings correspond to two plane graphs.

(3, 4, 5, 3), (3, 1, 2, 3), respectively. The length of a face is the length of the
walk bounding the face: F1 and F2 have length 3, while F3 has length 6.

In general, the number of faces of a plane graph is determined by the
number of vertices and edges of a graph in accordance with a classical theorem
by Euler (Theorem 3.1.1). A proof of the theorem by induction can be found
in most graph theory textbooks (e.g. [37, p.22]).

Theorem 3.1.1 (Euler). Let G = 〈V,E〉 be a plane graph and let F denote
the set of faces of G. Then, |V |+ |F | = |E|+ 2.

Since |V | and |E| are independent of the embedding, any two embeddings
of a planar graph have the same number of faces. A direct consequence of
Euler’s theorem is a bound on the number of edges of a simple planar graph
[59, p.241].

Theorem 3.1.2. Let G = 〈V,E〉 be a simple planar graph with at least three
vertices. Then, |E| ≤ 3|V | − 6.

Proof. We derive the bound by counting the number of edge-face pairs in an
arbitrary embedding of G with face set F . Each edge of G bounds at most two
faces. Thus, the number of edge-face pairs is at most 2|E|. Since G is a simple
graph, the length of any face in F is at least three. Thus, the number of edge-
face pairs is at least 3|F |; hence, 3|F | ≤ 2|E|. Substituting |F | = |E|+2−|V |
from Euler’s Formula (Theorem 3.1.1), we obtain |E| ≤ 3|V | − 6.

We note following details in Theorem 3.1.2. We can construct a planar
graph with an unbounded number of edges by drawing multiedges as dense
fibres along the curve of an edge; however, such a graph would not be simple.

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 21

Moreover, two parallel edges of a graph can form a face of length 2. Further,
the only simple graph with two vertices has one edge while the bound suggests
zero edges. Similarly, an isolated vertex has zero edges while the bound would
be negative.

Theorem 3.1.2 states that simple planar graphs are sparse, in the sense
that they do not have many edges. From the complexity point of view, it
implies that |E| = O(|V |) for a simple planar graph. Hence, algorithms such
as breadth first search which take O(|V |+ |E|) steps, will take O(|V |) steps
for simple planar graphs.

A simple plane graph where all the faces, including the outer face, are
3-cycles is called a plane triangulation [59]. If a simple plane graph has faces
of length 4 or more, we can add more edges within these faces until all faces
in the graph become 3-cycles. Once all the faces are 3-cycles, we cannot add
more edges without losing planarity unless the added edges are multiedges.
Thus, plane triangulations are maximally plane simple graphs [59, p.242].
From the proof of Theorem 3.1.2, we can deduce that a plane triangulation
has exactly 3|V | − 6 edges [59]. Further, no other type of simple planar
graphs have this many edges. Thus, we can easily test whether a simple
planar graph is a plane triangulation by counting the number of edges.

Faces of a plane graph resemble territorial regions of a geographic map. In
constructing a graph from a geographic map, we place vertices in each terri-
tory and connect two vertices if the corresponding regions share a boundary.
What kind of graph would we obtain if we made a similar construction from
a plane graph? The (geometric) dual of a plane graph G, denoted G∗, is the
plane graph obtained by:

1. Placing exactly one vertex on the interior of each face of G,

2. Connecting vertex v1 and v2 ∈ V (G∗) by one arc through the edge
shared with faces of G corresponding to v1 and v2.

Figure 3.3 depicts the dual graph of the bow-tie embedding in Figure
3.2(a): the rectangles are the vertices and the dotted curves are the edges.
Here, the dual is a plane graph with 3 vertices and 6 edges with multiple
edges between two pairs of vertices. Note that even when a plane graph is
loopless, its dual is not necessarily so—consider the case where G contains
a degree one vertex [8]. Nonetheless, the class of graphs that are relevant in
our considerations2 will have loopless duals.

By construction, if G∗ is the dual of G, then |V (G∗)| = |F (G)|, |E(G∗)| =
|E(G∗)| and |F (G∗)| = |V (G)|. Moreover, face lengths in G correspond to

2Our graphs will be at least 2-connected. In Section 3.2, we will define 2-connectedness.

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 22

1

2

3

4

5

Figure 3.3: The dual of a plane graph.

vertex degrees in G∗. It is also easy to see that the dual of the dual of
a connected plane graph is isomorphic to the original graph. Hence, face
lengths in G∗ correspond to vertex degrees in G. However, two distinct
combinatorial embeddings of a planar graph may have non-isomorphic duals
[59].

Let us now return to the notion of planarity. What type of graphs are
planar? The complete graph on five vertices, K5, has 10 edges—above the
bound imposed by Theorem 3.1.2—and thus, is not planar. Another minimal
non-planar graph (in the number of edges) derives from the puzzle of trying to
connect three utilities, water, electricity and gas, to three cottages without
an intersection between the connections [41]. This graph is the complete
bipartite graph K3,3. In fact, the relationship between these two graphs and
planarity goes deeper and is expressed by Kuratowski’s theorem (Theorem
3.1.3) [59]. To state Kuratowski’s theorem, we first need to define the notion
of a subdivision of a graph.

A subdivision of an edge e = {u, v} is an operation which adds an inter-
mediate vertex w between the endpoints of e so that {u, v} is replaced by two
edges (u,w) and (w, v). A graph H is said to be a subdivision of a graph G
if it can be iteratively constructed by the subdivision of edges. A subgraph
of a graph which is a subdivision of K5 or K3,3 is called a Kuratowski sub-
graph. We can now state the relationship between planarity and Kuratowski
subgraphs.

Theorem 3.1.3 (Kuratowski). A graph is planar if and only if it does not
contain a Kuratowski subgraph.

The necessity condition for planarity is easy to prove. Indeed, a graph
containing a Kuratowski subgraph had a planar drawing, we could restrict
the drawing of the graph to the Kuratowski subgraph, erase the subdivision
vertices, and obtain a planar drawing of K5 or K3,3. This is a contradiction
and thus the graph could not have been planar. The proof of the sufficiency

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 23

is more involved and thus omitted for conciseness. The reader can find it in
most graph theory textbooks (e.g [59, p.261]).

Kuratowski’s theorem gives a complete characterization of planar graphs.
However, it is not easy to obtain an efficient planarity testing algorithm
from Kuratowski’s theorem as a direct test for the existence of a Kuratowski
subgraph entails a minimum cost of O(|V |6) [35]. In our software package
BScOR, we used an O(|V |) planarity testing and embedding algorithm by
Boyer and Myrvold [14] as implemented in the boost graph library for C++

[61] (cf. the fifth executable in the BScOR pipeline in the Appendix).

3.2 Connectivity

Graph connectivity is another central concept of graph theory with several
applications. We briefly mentioned graph connectivity previously, and we
now present its generalization. A graph with at least k + 1 vertices is k-
connected if the removal of any k − 1 or fewer vertices does not leave the
graph disconnected. As such, a graph is connected if it is 1-connected. A
vertex whose removal disconnects a graph is called a cut-vertex. By definition,
a 2-connected graph has no cut-vertex. The graph in Figure 3.4(a) is not 2-
connected because vertex 3 is a cut-vertex; while the graph in Figure 3.4(b) is
2-connected. Similarly, a cut-pair is a vertex pair whose removal disconnects
a graph. The set {1, 3} is a cut-pair for both graphs in Figure 3.4. A 3-
connected graph does not contain a cut-pair or a cut-vertex. Both graphs
in Figure 3.4 are not 3-connected. By convention, the complete graph on n
vertices, Kn, is not n-connected [59]. Moreover, the connected graph on two
vertices is considered 1-connected but not 2-connected [59].

1

2

3

4

5

6

1

2

3 6

5

4

(a) A connected graph.

1

2

3

4

5

6

1

2

3 6

5

4

(b) A 2-connected graph.

Figure 3.4: k-connectedness of graphs.

Analogously, a graph is k-edge-connected if the removal of any k−1 edges
does not disconnect the graph. For instance, the graph in Figure 3.4(b) is
2-edge-connected, while the graph in Figure 3.4(a) is not. A bridge is then

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 24

the analogue of a cut-vertex: it is an edge whose removal disconnects a
graph. Edge {3, 6} in Figure 3.4(a) is a bridge. A disconnecting-set is a
set of edges whose removal leaves a graph disconnected. If the removal of
k edges disconnects a graph, the removal of some k endpoints of the edges
would disconnect the graph as well. Therefore, a k-connected graph is also
k-edge connected [59].

In a connected graph, there is a path between any two vertices. Suppose
a connected graph G is not 2-connected and has a cut-vertex v. When v is
removed, we have at least two components, say C1 and C2. Any path in G
from a vertex u in C1 to a vertex w in C2 must pass through v; otherwise
the path from u to w without v would connect C1 and C2. Hence, all paths
from u to w contain v and are not disjoint. Formally, a path P1 from x to
y is internally disjoint with another path P2 from x to y if all the internal
vertices of P1 are different from the internal vertices of P2. In the graph G,
there are no internally disjoint paths between u and w.

What if a graph is 2-connected? Would it guarantee that we have two
internally disjoint paths between any two vertices? Whitney’s theorem (The-
orem 3.2.1) states that it is indeed sufficient that a graph is 2-connected for
it to have two internally disjoint paths between any two of its vertices [59].

Theorem 3.2.1 (Whitney). A graph with at least three vertices is 2-connected
if and only if there exist at least two internally disjoint paths for any two ver-
tices in the graph.

In Section 3.1, we mentioned that the dual of a plane graph may have
loops. For instance, the dual of the plane graph in Figure 3.4(a) has a loop
due to the bridge edge {3, 6}. The edge only bounds one face. In contrast, all
the edges in the 2-connected plane graph in Figure 3.4(b) bound exactly two
faces and hence the dual of the graph is loopless. In fact, 2-connectedness is
sufficient for a plane graph to have a loopless dual.

Lemma 3.2.2. An edge of a 2-(edge)-connected plane graph bounds exactly
two faces. Hence, the dual of a 2-(edge)-connected plane graph is loopless.

Proof. Any edge e of a 2-edge-connected graph is contained in some cycle:
the two endpoints of the edge must have at least one more path for otherwise
e would be a bridge. Such a cycle would divide the plane in two regions—its
interior and exterior3. The region on the two sides of e correspond to distinct
faces as one of them must be in the interior while the other in the exterior.
Thus, each edge of a 2-edge-connected plane graph bounds exactly two faces.
Moreover, the dual of a 2-edge-connected plane graph is loopless. Since a

3This is known as the Jordan curve theorem.

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 25

2-connected graph is 2-edge-connected, 2-connected plane graphs also have
loopless duals.

If a plane graph is 3-(edge)-connected, we have a stronger restriction on
the duals [7, p.229].

Lemma 3.2.3. The dual plane graph G∗ of a 3-(edge)-connected plane graph
G is simple.

Proof. Since a 3-edge-connected plane graph is also 2-edge-connected, we
know G∗ is loopless by Lemma 3.2.2. We now show that if G∗ has multiedges,
then G is not 3-(edge)-connected. Suppose G∗ has multiedges. In particular,
let e∗1 and e∗2 be two parallel edges in G∗ with endpoints u∗, v∗ ∈ G∗. The
cycle C = (u∗, e∗1, v

∗, e∗2, u
∗) divides the plane into two regions—its interior

and exterior. Let e1 be the edge in G that e∗1 crosses, and let e2 be the edge
in G that e∗2 crosses. The edge e1 has an endpoint x in the interior of C and
an endpoint y in the exterior of C. The removal of e1 and e2 disconnects x
from y; this follows because only e1 and e2 cross e∗1 and e∗2. Hence, {e1, e2}
is a disconnecting-set of G and G is not 3-(edge)-connected.

In Section 3.1, we introduced the concept of plane triangulations which
are maximally plane simple graphs with all faces as 3-cycles. Since all the
faces of plane triangulations are 3-cycles, their duals are cubic (this follows
because face lengths in a plane graph correspond to vertex degrees in the
dual). On the other hand, since vertex degrees in a plane graph correspond to
face lengths in the dual, it would seem that plane triangulations are the duals
of cubic plane graphs. However, for cubic graphs which are not 3-connected,
the faces in the dual may be bounded by multiedges or loops4. Figure 3.5
shows a cubic plane graph which is not 2-connected. The dual plane graph’s
vertices are represented by rectangles, and its edges are represented by dotted
curves. On the other hand, if a cubic plane graph is 3-connected, then its
dual is simple by Lemma 3.2.3. This gives us the following theorem which
will use in Chapter 4.

Theorem 3.2.4. The dual of a cubic 3-connected plane graph is a plane
triangulation.

It is also worth noting that the dual of a 2-connected simple plane graph
is also 2-connected [20]. Likewise, the dual of a 3-connected simple plane
graph is also 3-connected [20]. Moreover, a plane triangulation with at least

4In the definition of some authors [27], plane triangulations are allowed to have multi-
edges and loops. In our case, plane triangulations are simple graphs.

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 26

Figure 3.5: A cubic plane graph whose dual is not a plane triangulation.

four vertices is 3-connected [33, p.105]. Hence, the dual of a plane triangu-
lation with at least four vertices is a cubic 3-connected simple plane graph.
Nevertheless, it will the be the result of Theorem 3.2.4 that will be relevant
to our consideration in Chapter 4. Next, we present the relationship between
polyhedral frameworks on the one hand and planarity and 3-connectedness
on the other hand.

3.3 Polyhedral graphs and beam-frameworks

As noted in Section 2.3, we are interested in building rigid polyhedral DNA
nanostructures. How do planarity and connectivity relate to such structures?
The rigidity of a three-dimensional structure heavily depends on its skeleton
(or framework)5: the points and links which constitute it [38]. In graph
theoretic terms, these are the vertices and edges of an underlying graph. In
this section, we describe the relation between polyhedral structures and their
underlying graphs.

The DNA double helix is a stiff polymer which behaves as a rigid beam
between 10 nm and 50 nm in the B-DNA conformation [40]. On the other
hand, the branch points of a DNA junction are floppy [54]. We can then
think of a DNA polyhedral beam-framework as a structure where the beams
are rigid but the joints have rotational freedom.

Formally, a framework can be defined as a simple graph geometrically
instantiated in an Euclidean space [31]. The vertices assume a point in this

5We use the term skeleton in relation to the graph structure of a polyhedron and
framework in relation to the rigidity of the polyhedral skeleton.

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 27

space and these points are connected by straight lines according to the graph
adjacency; hence, graph edges have a definite length. A straight line drawing
of a planar graph with fixed edge lengths and fixed angles at vertices can,
for instance, be considered a framework in 2-space. A framework is rigid
if any edge length preserving deformation of the framework will only give
a framework which is congruent to it. A framework A is congruent with a
framework B, if A is simply a translation and/or rotation of B. A framework
which is not rigid is flexible. The triangle in Figure 3.6(a) is rigid while the
square next to in Figure 3.6(b) is flexible. The square can be deformed to a
set of rhombi while preserving the side lengths.

(a) A rigid triangle. (b) A flexible square.

Figure 3.6: Rigidity of frameworks.

In simple terms, a polyhedron is a closed three-dimensional solid with
its surface bounded by plane faces [38]. In such a definition, edges are line
segments of plane intersections while vertices are points where at least three
lines meet. The framework of a polyhedron comprises its edges and vertices
when it is fixed in space. However, such a definition is too general and allows
for flexible frameworks. The two structures shown in Figure 3.7 are polyhedra
according to the simple definition but have flexible frameworks. Notice how
the central vertex of double pyramid in Figure 3.7(a) is a cut-vertex of the
skeletal graph; likewise, the central pair in Figure 3.7(b) is a cut-pair. The
spaces enclosed by both polyhedra in the Figure are non-convex, in the sense
that one can draw a line with endpoints in the enclosed spaces but with some
points on the line outside the enclosed spaces. Convexity will not guarantee
us rigidity but it will simplify the discussion on rigidity. We thus assume our
polyhedra are convex.

Imagine the polyhedral faces are made of elastic rubber. If we puncture a
hole in a face and open the rubber inside out until it becomes flat, we obtain a
plane graph from the polyhedron. The plane graph obtained in such a fashion
from a convex polyhedral skeleton is called a polyhedral graph. The face that
was punctured becomes the unbounded face of the plane graph. In fact,
if we blow into the punctured hole until the polyhedral surface inflates to a

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 28

(a) Two pyramids joined at their
apex.

(b) Two wedges joined at a hinge.

Figure 3.7: Flexible solids.

sphere (this is always possible for convex polyhedra [19, p.57]), the polyhedral
skeleton would then become an embedding of a graph on a sphere. In fact,
any graph embedded on a sphere can always be embedded on a plane and vice
versa [59]. Another way to obtain a polyhedral graph of a convex polyhedron
is by a perspective projection of its skeleton from a point close to one of the
faces, to a plane on the other side of the polyhedron [41]. Figure 3.8 depicts
the polyhedral graphs corresponding to the cube, the tetrahedron and the
octahedron projected from faces (3, 7, 8, 4), (1, 3, 4) and (1, 4, 5), respectively.

We have seen how to obtain a polyhedral graph from a convex polyhedron;
but, how well connected is a polyhedral graph? The relation of polyhedral
graphs with 3-connected simple planar graphs is then established by Steinitz
theorem (Theorem 3.3.1) [66, p.103] which we present here without proof.

Theorem 3.3.1 (Steinitz). The skeleton of a convex polyhedron is a 3-
connected simple planar graph. Moreover, any 3-connected simple planar
graph can be realized as a skeleton of a convex polyhedron.

Thus, polyhedral graphs are exactly the 3-connected simple planar graphs.
We can thus restate the problem of routing a scaffold for a three-dimensional
polyhedral beam-frame nanostructure as one of routing a scaffold in a 3-
connected simple planar graph. This allows us, for instance, to conveniently
use the Jordan curve theorem in our theoretical development.

Not all polyhedral frameworks are rigid—even the convex ones. The cube,
for instance, is not rigid as it easily deforms to a set of rhombic parallelepipeds
by pivoting on its base. What then guarantees the framework to be rigid? It
happens that the framework of a convex polyhedron with all faces triangular
is rigid [18]. Clearly the convexity is necessary as, for instance, triangulat-
ing the upper and lower faces of the double pyramid in Figure 3.7(a) would

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 29

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8

1

2

3 4

2

1

3 4

1

2 3

4 5

6

1

4
5

2 3

6

Figure 3.8: Some polyhedra and their corresponding planar graphs. On the
top are the solids and on the bottom are the corresponding graphs. From left
to right we have the cube, the tetrahedron and the octahedron. Projections
are not according to scale.

make all faces triangular while the structure remains flexible6. In the case
of convex polyhedra with triangular faces, the plane graph obtained by per-
spective projection is a plane triangulation. The octahedral and tetrahedral
projections of Figure 3.8 are such plane triangulations. Hence, the problem of
scaffold routing on rigid 3D polyhedral frameworks translates to the problem
of scaffold routing on plane triangulations.

The intuition behind the rigidity of triangular frameworks can be ex-
plained by the fact that plane triangulations have 3|V | − 6 edges. Each
vertex as a point in 3-space would have three coordinates. For |V | vertices,
this amounts to 3|V | coordinates or 3|V | degrees of freedom. Since edge
lengths are preserved in a deformation, each edge length reduces the degrees
of freedom by one [38]. Thus, a triangular framework with 3|V | − 6 edges
has six degrees of freedom remaining. The remaining degrees of freedom are
accounted for by the translational and rotational freedom of the framework
itself.

6Nonetheless, the triangulated double pyramid will still have one non-triangular face
in an embedding on a plane.

CHAPTER 3. GRAPH THEORETIC PRELIMINARIES 30

Recall that a planar graph may have two different combinatorial em-
beddings (e.g. the two embeddings in Figure 3.2). On the other hand, the
skeleton of a convex polyhedron defines a cyclic order of edges for each vertex.
It is easy to see this given that a convex polyhedron can always be inflated
to a sphere [19, p.57]. For instance, the counter-clockwise cyclic order of the
edges incident with vertex 3 in the 3D cube in Figure 3.8 (when inflated to
a sphere) is ({4, 3}, {1, 3}, {7, 3}). As will be evident from the discussion in
Chapter 4, embeddings are relevant in the problem of scaffold routing. How
can we obtain the order as defined in the 3D skeleton (or equivalently in an
embedding in a sphere)? One possible method is to first obtain the adjacency
relationship between the vertices in the polyhedral skeleton, and then run a
planar embedding algorithm such as the Boyer Myrvold algorithm mentioned
in Section 3.1. Would we obtain the embedding defined in the skeleton if we
used such a method? To answer this, we first need to define an isomorphism
between two combinatorial embeddings of a planar graph.

When we unfurl an embedding of a graph on a sphere and lays it inside
out on the plane, the counter-clockwise cyclic order of edges around each
vertex on the plane is a reversal of the counter-clockwise cyclic order of
the edges around the vertices on the sphere. For instance, the counter-
clockwise cyclic order around vertex 4 in the 3D octahedron in Figure 3.8
is ({1, 4}, {2, 4}, {6, 4, }, {5, 4}), which is a reversal of the counter-clockwise
cyclic order around vertex 4 in the octahedral projection in the plane. We
consider an embedding O1 of a planar graph G to be isomorphic with an
embedding O2 of G, if, for each vertex v in G, the cyclic order of edges
around v in O1 is simply a reversal of the cyclic order of edges around v in
O2. Note that if two edges are consecutive in a cyclic order around a vertex
in an embedding, they are also consecutive in the embedding isomorphic to
it.

Whitney’s unique embedding theorem states that the embedding of a 3-
connected simple planar graph is unique, up to isomorphism [27]. Thus, for
a 3-connected simple planar graph, we can directly use an embedding we get
from a planar embedding algorithm.

Chapter 4

Scaffold routing and Eulerian trails

In the origami design scheme of Högberg and his team introduced in Section
2.3, the scaffold and complementary staples form one or two helical domains
which serve as the beams in the DNA polyhedral nanostructure. In Chapter
3, we presented an equivalence between polyhedral skeletons and 3-connected
simple planar graphs (Theorem 3.3.1). In this chapter, we turn our attention
to the problem of scaffold routing: the path the scaffold strand must follow so
that all the polyhedral edges are covered, and will likely fold to the polyhedral
beam-framework when stapled with antiparallel staple strands.

To avoid missing beams, the scaffold strand should be routed at least
once per each edge of the polyhedron. On the other hand, for optimal use of
scaffold base pairs, the routing should visit every edge at most once. From
the graph-theoretic point of view, this amounts to visiting all the edges of the
polyhedral graph exactly once. Is this always possible? If so, how do we find
it? Leonhard Euler initiated graph theory when he puzzled the possibility
of visiting the seven bridges of Königsberg exactly once. In this chapter, we
state the problem of scaffold routing in terms of Eulerian trails, the same
principle that Euler had used to resolve his puzzle.

4.1 Eulerian trails and postman tours

Formally, an Eulerian trail is a closed trail which visits every edge of a
graph. For our purposes, we choose the starting vertex and the orientation
of a closed trail as desired. A graph is Eulerian, if it admits an Eulerian
trail. Our questions then become: 1) Is our graph Eulerian? 2) If it is
Eulerian, can we find an Eulerian trail of the graph efficiently? The more
central question that is of concern to us and that will be discussed later is
whether an ordinary Eulerian trail suffices in scaffold routing. We will leave

31

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 32

that for now in order to discuss the basics. We first state a fundamental
characterization of Eulerian graphs.

Proposition 4.1.1. A connected graph is Eulerian if and only if all the
degrees of the vertices are even.

Proof. (if) Suppose we are given a graph G where all the vertex degrees are
even. We first take an initial vertex v0 ∈ V arbitrarily. Next, we construct a
closed trail T , by traversing the edges of G, marking them as visited, until
we return to v0. We do not visit the marked edges again. Since there are no
odd degree vertices, there is always an exit edge incident to the vertex that
we have visited last. Thus, our traversal cannot stop until we return to v0.
The vertices that we have visited in the traversal all have an even number of
their incident edges as marked. We maintain the vertices which have been
traversed but have unmarked incident edges in a list L. We then select a
new vertex, u, from the list L and construct a new closed trail T

′
ending in

u; marking the newly visited edges and updating L as necessary. We then
modify the original trail T by splicing T

′
to T at u (that is, if (e1, u, e2) is

a subsequence in T , we replace u with T
′

to obtain the new T). We repeat
the procedure, constructing new closed trails and splicing them to T until all
edges have been marked. The trail T we obtain at the end of the process is
an Eulerian trail and thus G is Eulerian.

(only if) Consider an Eulerian trail of G, T = (v0, e1, v1, e2, . . . , e|E|, v0).
Since we do not have any self loops1, no vertex appears consecutively in the
sequence. For every instance a vertex v appears in the sequence, it appears
sandwiched between two of its incident edges. Thus, the degree of v is twice
the number of times it appears in the list.

We can thus check if a graph is Eulerian by checking that all the vertex
degrees are even. Moreover, the first part of the proof gives us an algorithm
for finding an Eulerian trail of an Eulerian graph. This algorithm was given
by Hierholzer; a detailed discussion can be found in [37, p.42]. From the
scaffold routing point of view, Proposition 4.1.1 implies that if the polyhedral
graph is Eulerian, then all the beams of the DNA polyhedral nanostructure
formed by the scaffold routing can be made of single helical domains given
an appropriate stapling.

However, not all graphs have all even degree vertices. This is also true
for polyhedral graphs and plane triangulations—consider for example the
tetrahedral graph of Figure 3.8. From the scaffold routing point of view,

1Graphs with self-loops can be considered Eulerian, given that self-loops count twice
in the degree.

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 33

we have some room to manoeuvre; for instance, the polyhedral beams can
be made of two double helices (see Figure 2.5) by the use of more strand
base pairs. How can we modify the polyhedral graph, or more generally any
graph, so that it becomes Eulerian?

Consider a simple graph G which contains an odd degree vertex v. Can we
transform G with a minimal set of operations so that v gets an even degree?
Suppose, for the sake of argument, we are allowed to add vertices and edges
to G with a restriction: the degree of any other odd degree vertex is not
changed, and a new odd degree vertex is not introduced. Is there such an
operation that fixes the parity of v? If indeed there is so, we can iteratively
fix the odd degree vertices until we get an Eulerian graph. However, such
an operation is not possible. By the famous handshaking lemma [60, p.12],
there are an even number of odd degree vertices in any graph. Fixing the
parity of one odd degree vertex would mean we get a graph with an odd
number of odd degree vertices.

On the other hand, we can simultaneously fix two odd degree vertices by
only adding edges. Let u, v be two odd degree vertices in a connected graph
G and let P be a path from u to v in G. Consider what happens if we add
multiedges along the path P . All the internal vertices of P will not change
their parity since two edges are added for each of them. Meanwhile, vertices
u and v now have one additional edge and thus they have even degrees. For
instance, vertices 2 and 6 are of odd degree in the braced grid graph in Figure
4.1(c); two edges are added along the path (6, 4, 2) to make them even as
shown in Figure 4.1(d).

We can now propose a method for fixing the parity of all odd degree
vertices of a simple graph. Since we have an even number of odd degree
vertices, we can pair up odd degree vertices and fix the pairs one by one.
However, pairing and fixing is costly in the number of extra edges added
and more edges entail more base pairs in the scaffold. First, we can ensure
that there are at most two multiedges between vertices by deleting an even
number of extra edges while maintaining the parity of the vertices. For a non-
Eulerian polyhedral nanostructure, this ensures that the beams consist of at
most two double helices. Second, we can use shortest paths when pairing the
edges. For sparse graphs, Johnson’s all pair shortest paths algorithm, with a
worst-case complexity O(|V |2 log |V |+ |V ||E|) [17, p.636], is suitable (recall
from Theorem 3.1.2 that simple planar graphs are sparse). Nonetheless, we
will still have many multiedges unless we pair the vertices efficiently. In fact,
for 2k odd degree vertices, we have (2k − 1)(2k − 3)(2k − 5) · · · 1 number of
possible pairings. To state the third optimization, we restate the problem in
a more standard terminology.

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 34

A matching in a graph G is a set of edges of G no pair of which share
an endpoint. A vertex is covered by a matching M if it is an endpoint of an
edge e ∈ M . A matching M is perfect if every vertex is covered. We can
then formulate our optimization problem in the following way.

Given a simple graph G with 2k odd degree vertices labelled {v1, v2, . . . , v2k},
we construct a weighted complete graph on 2k vertices, K2k labelled with
{1, 2, . . . , 2k}. The weight wej of edge e ∈ K2k is the length of the short-
est path between the endpoints of e in G. The weight of a matching M =
{e1, e2, . . . , el} in K2k is the sum of the weights wej . It is easy to see that
any k independent edges in K2k form a perfect matching. Our objective then
becomes finding the minimum weight perfect matching M∗ in K2k. In our
software package BScOR, we used Blossom V—an O(|V |3|E|) implementa-
tion programmed by Kolmogorov [39]—for the minimum weight matching
problem. Finally, we add multiedges along the shortest path P from vi to vj
in G for each edge e = {i, j} ∈M∗.

1 2

3
4 5

6 7

2

1

3 4

1 2

3
4 5

6 7

2

1

3 4

(a) A tetrahedron.
1 2

3
4 5

6 7

2

1

3 4

1 2

3
4 5

6 7

2

1

3 4

(b) A tetrahedron with multiedges.

1 2

3
4 5

6 7

2

1

3 4

1 2

3
4 5

6 7

2

1

3 4

(c) A braced grid graph.

1 2

3
4 5

6 7

2

1

3 4

1 2

3
4 5

6 7

2

1

3 4

(d) A braced grid graph with multiedges.

Figure 4.1: Edge addition to make graphs Eulerian. Added edges are shown
in bold lines.

The procedure presented above is a simplified version of an algorithm for
the Chinese Postman Problem described by Edmonds and Johnson [24]. In
the Chinese Postman Problem, the goal is to find a minimal weight closed
walk on a weighted graph which visits every edge at least once. Such a walk
is known as a postman tour. In our case, all the edge weights on G are

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 35

one; thus, the closed walk of minimal weight is the one which has minimal
length. Let us denote by Ĝ the graph formed from G by the edge additions
described in the preceding paragraphs; let Ê be the set of added edges. By
construction, Ĝ is Eulerian and thus admits an Eulerian trail T . If we replace
each ê = {u, v} ∈ Ê in T by their parallel edge e = {u, v} ∈ E(G), we get a
closed walk in G which visits every edge with the least repetitions (that is,
the postman tour in G). Nevertheless, in scaffold routing, the strand cannot
physically retrace along an edge. Hence, we use the multiedge representation
rather than the multiple edge visit representation when we make a non-
Eulerian graph Eulerian. Nevertheless, we will call our procedure the Chinese
postman procedure. The Chinese postman procedure is implemented as three
executables in the BScOR pipeline (cf. Figure 7.1 in the Appendix).

Suppose we transform a non-Eulerian polyhedral graph G to an Eulerian
graph Ĝ by the Chinese postman procedure. Clearly, Ĝ is still a 3-connected
planar graph. However, we will not have a unique embedding in the sense
defined in Section 3.3. This is because Ĝ is not a simple graph. For instance,
the newly added multiedge {1, 2} of the tetrahedron (drawn in bold in Figure
4.1(b)), can also be drawn on the right-hand side of the original edge. If it
were drawn on the right, the embedding obtained would be non-isomorphic
to the one shown. Since G has a unique embedding, it is only multiedges
in Ĝ that have a freedom to change their position in the order around their
incident vertex. However, as it can be seen in Figure 2.5, two parallel edges
need to be consecutive in the orders around their endpoints to form a single
beam by stapling. Nevertheless, parallel edges in Ĝ are always consecutive
in the orders around their endpoints.

Proposition 4.1.2. Let Ĝ be an Eulerian 3-connected planar graph obtained
from a non-Eulerian polyhedral graph G by the Chinese postman procedure.
Then, any two parallel edges in Ĝ are consecutive in the cyclic orders around
their endpoints in any planar embedding of Ĝ.

Proof. Suppose there are two parallel edges e1 and e2 that are not consecutive
around a vertex u in a planar embedding of Ĝ. Let v be the other endpoint
of e1 and e2. Since there can be at most two edges between u and v, there
must be two other edges e3 and e4 incident with u but with endpoints w
and x, both different from v, which alternate between e1 and e2 in the cyclic
order around u. In the embedding on the plane, edges e1 and e2 together
with u and v form a cycle C which divides the plane into two—its interior
and exterior. Vertex w is in the interior of C iff vertex x is in the exterior.
Thus, removing u and v disconnects w and x, and hence Ĝ would not be
3-connected.

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 36

We have so far discussed the necessary and sufficient conditions for a
graph to be Eulerian as well as the means to make a graph Eulerian in case
it is not. We conclude this section by making two further observations on
Eulerian graphs.

Proposition 4.1.3. An Eulerian graph with at least two vertices is 2-edge-
connected (or bridgeless).

Proof. Let C1 and C2 be two components that arise when deleting a bridge
e in a graph G. Suppose a trail T starts at v ∈ C1 in G. For T to visit the
edges in C2, it must visit e first. Once T is in C2, it cannot return to v since
there is no other edge between C1 and C2. Hence G is not Eulerian.

In fact, Fleury’s algorithm for finding Eulerian trails operates by bridge
detection [60]. By Lemma 3.2.2, we can conclude that the dual of an Eulerian
plane graph is loopless. Our second observation is more fundamental and
relates to the discussion on duality and plane triangulations in Section 3.2.
The proof of the proposition can be found in standard graph theory textbooks
(e.g. [59, p.239]).

Proposition 4.1.4. The dual of a bipartite plane graph is an Eulerian plane
graph.

From our discussion in Section 3.2, we know that plane triangulations are
the duals of cubic 3-connected plane graphs. A plane triangulation which
is Eulerian is called an Eulerian triangulation. From Proposition 4.1.4, we
deduce that the dual of a bipartite cubic 3-connected plane graph is an
Eulerian triangulation.

4.2 A-trails

In the design scheme of Högberg’s team described in Section 2.3, we men-
tioned that the scaffold should not cross itself at a vertex. In this section,
we describe the desired form of Eulerian trails for such a restriction.

Recall that a plane graph defines a cyclic order of the incident edges
to each vertex. We also mentioned that a graph that can be embedded
on a plane can also be embedded on a sphere and vice versa. In general,
graphs can also be embedded on other surfaces such as the torus [59]. The
criteria remain the same: the images of edges cannot cross. If the surface is
‘orientable’, the embedding defines a cyclic order of the edges [27]. Hence, we
can obtain a combinatorial embedding from graphs embedded also on other
surfaces.

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 37

Given a graph G with a combinatorial embedding (not necessarily on a
plane), we say an Eulerian trail T is an A-trail if for any segment (e1, v, e2)
in T , e1 and e2 are consecutive in the cyclic order of edges around v. Since a
plane graph defines a combinatorial embedding, we can speak of an A-trail for
a plane graph. For a 2-connected plane graph, two edges are consecutive in
an order around a vertex if and only if they lie on the same face boundary [4].
If a graph has a cut-vertex, this is not necessarily the case; in Figure 4.2(a),
edges {1, 3}, {3, 4} lie on the boundary of the outer face but are not next
to each other in the cyclic order around vertex 3. For a 2-connected plane
graph, an A-trail can be defined as a trail in which any two successive edges
lie on the same face boundary. As an analogy, a driver that would always
turn left or right but never cross an intersection would be following an A-
trail; a draft animal which only responds to “Gee” and “Haw” commands
likewise. Also observe the scaffold routing in Figure 2.5 and how the scaffold
routes at the vertex are compatible with A-trail transitions at the vertex.

It is important to note that a planar graph may admit an A-trail in
one embedding but not in another. Figure 4.2 illustrates this idea. The
embedding in Figure 4.2(a) has an A-trail (1, 3, 6, 7, 3, 4, 5, 3, 2, 1). On the
other hand, the embedding in Figure 4.2(b) does not have any. To see why,
assume without loss of generality, the trail starts at vertex 2 and moves to
vertex 3. The trail would then either have to turn left to vertex 1 or to the
right to vertex 5. If it turns left, it will have to stop after visiting edge {1, 2}.
If on the other hand it turns right, it will have to follow the transitions at
vertex 3 as indicated by the bold lines. The traversal 7, {7, 3}, 3, {3, 1}, 1
would then be problematic as {7, 3} and {3, 1} are not consecutive in the
order around vertex 3. Notice how vertex 3 is a cut-vertex. However, if
a simple planar graph is 3-connected, it has a unique embedding, up to
isomorphism, by Whitney’s theorem (page 30). It is easy to see that a planar
graph admits an A-trail in an embedding O1 if and only if it admits an A-
trail in an embedding O2 isomorphic to O1. As we have noted before, two
edges are consecutive in a cyclic order around a vertex if and only if they are
consecutive in a reversal of the order of the edges.

There is also a related but different type of Eulerian trail. An Eulerian
trail T on a plane graph G is called non-crossing if there are no two edge
pairs (e1, e3) and (e2, e4) incident to a vertex v, where e3 succeeds e1 and e2
succeeds e4 in T , such that e2 and e4 alternate between e1 and e3 in the cyclic
order around v (see Figure 4.3). The trail (1, 3, 7, 6, 3, 4, 5, 3, 2, 1) for the
embedding in Figure 4.2(b) is a non-crossing trail: even though edges {1, 3}
and {3, 7} are not consecutive around vertex 3, neither pair {{6, 3}, {3, 4}}
nor {{5, 3}, {3, 2}} alternate between {{1, 3}, {3, 7}} around vertex 3. If one
allows a small space in the neighbourhood of a vertex, one can draw a non-

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 38

1

2

3

4

5

1

2

3

4

5

6 7

6

7

(a) An embedding with an A-trail.

1

2

3

4

5

1

2

3

4

5

6 7

6

7

(b) An embedding without an A-trail,
but with a non-crossing trail.

Figure 4.2: An A-trail and a non-crossing trail and two plane graphs. The
transitions at vertex 3 are shown in bold lines.

crossing trail by continuous movement without any disruptions [58].
Any Eulerian plane graph admits a non-crossing trail; a short proof can be

found in Tsai and West [58]. Their proof is constructive and gives rise to an
algorithm. The algorithm works by locally readjusting crossings at a vertex.
We show here how a crossing at a degree four vertex can be adjusted. Suppose
we have an Eulerian trail T = (. . . , e1, v, e3, S, e4, v, e2, . . .) for an Eulerian
plane graph G with a crossing at a vertex v whose incident edges, in the
cyclic order, are e1, e2, e3, e4. The trail T

′
= (. . . , e1, v, e4, S

R, e3, v, e2, . . .),
where SR is S reversed, is a trail with no crossing at v. The local adjustment
is illustrated in Figure 4.3.

e1 e3

e4

e2

e1
e3

e4

e2

v v

(a) A trail with a crossing at a ver-
tex.

e1 e3

e4

e2

e1
e3

e4

e2

v v

(b) A local adjustment of the trail with no cross-
ing.

Figure 4.3: Local adjustment of a crossing trail at a vertex.

Since there is an insurance than any Eulerian plane graph has a non-
crossing trails, we might ask if we can staple a scaffold that has been routed
according to a non-crossing trail. Unfortunately, stapling is not straightfor-

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 39

ward for a scaffold routed according to a non-crossing trail. Figure 4.4(a)
shows how we can staple a scaffold routed according to an A-trail as in Figure
4.2(a). For a scaffold routed according to a non-crossing trail as shown in
Figure 4.4(b) (corresponding to the non-crossing trail in Figure 4.2(b)), one
stapled segment (indicated by the question mark in Figure 4.4(b)) remains
free as it will not form a vertex.

?

(a) Stapling a scaffold routed according
to an A-trail.

?

(b) An incomplete stapling in a non-
crossing trail.

Figure 4.4: Eulerian trails and scaffold stapling. Bold lines are scaffolds; thin
lines are staples. Arrows indicate the 5

′
to 3

′
direction.

Thus, for the purpose of scaffold routing, we have to find A-trails. The
concept of an A-trail and a non-crossing Eulerian trail coincide if the max-
imum degree of a plane graph is four. Indeed, a non-crossing trail on such
a graph would also be an A-trail. Since a 3-connected graph cannot have a
degree two vertex, any Eulerian polyhedral graph with a maximum degree
four is, in fact, 4-regular. If the target DNA beam-frame nanostructure is
Eulerian but does not contain a degree six or more vertex, we can efficiently
find an A-trail by simply finding a non-crossing trail and thus a suitable
scaffold routing path for proper stapling. If there is at least one vertex of
degree six or more as in Figure 4.2(b), there is no always applicable local
adjustment of an ordinary Eulerian trail for obtaining an A-trail. Otherwise,
we would be able to find an A-trail for the plane graph in Figure 4.2(a); but,
we have argued that the plane graph does not admit an A-trail. How then
can we efficiently find an A-trail or even decide if an Eulerian plane graph
has one? Given an Eulerian trail of a plane graph, it is easy to check whether
it is an A-trail; thus, the problem is in NP, so the question is whether it is
an NP-hard problem.

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 40

4.3 Complexity considerations

Bent and Manber [9] studied the problem of finding A-trails2 in the context of
finding an optimal torching path for a stock of metal sheets. In their paper
they showed, by reduction from SAT, that deciding whether an Eulerian
graph with a combinatorial embedding has an A-trail is NP-complete. Their
reduction yields an embedding on a plane and thus deciding whether a plane
graph has an A-trail is also NP-complete. However, their reduction does not
necessarily result in polyhedral graphs.

As discussed in Section 3.3, we are concerned with scaffold routing paths
for polyhedral graphs. We have noted that even though deciding whether an
Eulerian planar graph has an A-trail depends on the embedding, polyhedral
graphs have a unique embedding up to isomorphism. As such, the question
of existence of A-trail becomes independent of the embedding for polyhedral
graphs. Nevertheless, Anderson and Fleischner [23] have shown that deciding
whether an Eulerian polyhedral graph consisting of only 3-cycles and 4-cycles
as face boundaries admits an A-trail is also NP-complete.

Since the class of Eulerian polyhedral graphs is a superset of those only
consisting of 3-cycle and 4-cycle faces, the problem of deciding whether an
Eulerian polyhedral graph admits an A-trail is also NP-complete. In fact,
the class of graphs under our consideration are Eulerian 3-connected planar
graphs (which need not be simple) as argued in Section 4.1. The class of
Eulerian 3-connected planar graphs subsumes Eulerian polyhedral graphs;
thus we cannot efficiently decide whether an Eulerian 3-connected planar
graph admits an A-trail, unless P = NP.

Anderson and Fleischner [23] proved the NP-completeness result for Eu-
lerian polyhedral graphs by a reduction from the Hamiltonian cycle problem
on cubic polyhedral graphs. The cube and tetrahedral graphs in Figure 3.8
are examples of cubic polyhedral graphs. For a cubic polyhedral graph G,
they first form its dual G∗. By Theorem 3.2.4, the dual G∗ is a plane trian-
gulation. However, G∗ need not be Eulerian (e.g. the tetrahedral graph is
self-dual). In order to make G∗ Eulerian, they insert the graph H1 (where
u, v, w are vertices of G∗) shown in Figure 4.5 into a selected set of faces of
G∗. For each edge that gets doubled (or retraced) in a postman tour of G∗,
one of the two faces which the edge bounds is selected arbitrarily. H1 is then
inserted into each selected face. Note that since G∗ was a plane triangula-
tion, only one of the edges bounding a face can get doubled in its postman
tour. Hence, the selected faces into which the H1’s are inserted are distinct.

2The authors use the phrase ‘non-intersecting Eulerian trails’ to what we refer to as
A-trails in this thesis.

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 41

Finally, in all the faces of G∗ into which H1 was not added, the graph H0 is
inserted.

For instance, if G is the tetrahedral graph, then G∗ is also a tetrahedral
graph. Suppose the plane graph in Figure 4.1(a) is a representation of G∗:
if H1 is inserted into faces (1, 3, 2) and (3, 4, 2), then H0 would be inserted
into the face (1, 2, 4) and the unbounded face (1, 3, 4).

u v

w

u v

w

(a) The graph H1.

u v

w

u v

w

(b) The graph H0.

Figure 4.5: Graphs added in NP-completeness proof by Anderson and Fleis-
chner. For the graph H1, u and v are endpoints of the edge {u, v} that gets
retraced in the postman tour of G∗. The vertices u, v and w are on the
boundary of the face into which the graphs are inserted.

If G is bipartite, then G∗ is Eulerian by Proposition 4.1.4. Hence, graph
H1 is not added into any of the faces. All faces of G∗ will contain inserted
copies of H0. Even after the addition of H0, G

∗ is an Eulerian triangulation.
If we wanted to show that the decision problem on the existence of A-trails
restricted to Eulerian triangulations remains NP-complete, we would only
need to show that the Hamiltonian cycle problem remains NP-complete for
bipartite, cubic, polyhedral graphs (we can use the same reduction with only
H0’s inserted). The Hamiltonian problem on bipartite, cubic, polyhedral
graphs has a long and interesting history.

In 1880, Tait conjectured that all cubic polyhedral graphs are Hamil-
tonian, showing that if the conjecture is true, the four colour theorem3 on
planar graphs follows [27]. Tutte, in 1946, found a counterexample to Tait’s
conjecture with 46 vertices. Counter-examples with fewer vertices have since
been found. Tutte, modified Tait’s conjecture by replacing planarity with bi-
partiteness, claiming that every bipartite cubic 3-connected graph is Hamil-
tonian. Again, Tutte’s conjecture was proven false by Horton who first gave
a counter-example on 96 vertices. Barnette combined Tait’s and Tutte’s con-
jectures, claiming that every bipartite cubic polyhedral graph is Hamiltonian.
Barnette’s conjecture remains open to this day [30].

3The four colour theorem states any planar graph can be 4-vertex-coloured [59, p.260].

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 42

Fleischner [27] further develops a complete equivalence between A-trails
on Eulerian triangulations and Barnette’s conjecture. Hence, we have the
following conjecture by Fleischner.

Conjecture 4.3.1 (Fleischner). Every Eulerian triangulation has an A-trail.

What does Fleischner’s conjecture imply in the case scaffold routing on
rigid polyhedral beam-frameworks? If a rigid polyhedral framework has an
Eulerian skeleton (as is the case for instance with the octahedron), then its
projection is an Eulerian triangulation. If Fleischner’s conjecture is true,
then there is a scaffold routing path so that the scaffold can be stapled
appropriately. Since the conjecture remains open, we do not know if there
are any Eulerian triangulations which do not admit A-trails, nor do we know
if the problem of deciding whether such graphs admit A-trails is NP-complete.

We remark here that the difficulty of finding an Eulerian triangulation
which does not have an A-trail is not because of the triangularity of the faces,
but also because of connectivity of plane triangulations (we noted that plane
triangulations with at least four vertices are 3-connected). To illustrate this,
we consider the graph shown in Figure 4.6. The Eulerian plane graph shown
in the figure is a near-triangulation (all its faces other than the unbounded
face are 3-cycles). It is easy to check that the plane graph does not have an
A-trail. Note that the graph has multiple cut-vertices. In fact, Fleischner
[27] further conjectures that every Eulerian 4-connected planar graph has an
A-trail.

Figure 4.6: A near-triangulation without an A-trail.

CHAPTER 4. SCAFFOLD ROUTING AND EULERIAN TRAILS 43

Given the NP-completeness result in general, we cannot expect to develop
a polynomial time algorithm for finding A-trails in Eulerian 3-connected
plane graphs. In Chapter 5, we describe a backtracking search algorithm
for finding A-trails in arbitrary Eulerian plane graphs. Nevertheless, we tune
the algorithm to perform best on Eulerian triangulations.

Chapter 5

A backtracking algorithm for A-
trails

In Chapter 4, we restated the problem of scaffold routing on polyhedral beam-
frames in the graph theoretic terms of Eulerian trails. In Section 4.2, we
showed that the problem of scaffold routing for polyhedral frameworks coin-
cides with the problem of finding A-trails in the polyhedral graphs. In Section
4.1, we described the Chinese postman procedure for making a non-Eulerian
graph Eulerian. When transforming a non-Eulerian polyhedral graph by the
Chinese postman procedure, we obtain an Eulerian 3-connected planar graph
which has multiedges. In Section 4.3, we argued that the problem of finding
A-trails in an Eulerian 3-connected plane graph is NP-complete.

In this chapter, we present a backtracking algorithm for finding A-trails
in Eulerian plane graphs. First, we structure the search based on an obser-
vation on A-trail transitions at a vertex. Second, we present a result which
allows the search to backtrack without necessarily reaching leaf nodes of the
search tree. Finally, we introduce a simple enumeration heuristic for better
pruning of the search tree. We then study the performance of the enumer-
ation heuristic by some run time experiments on three graph families. The
A-trail search algorithm is the last component in the pipeline of our software
package BScOR (cf. Figure 7.1 in the Appendix).

5.1 Vertex parities

Consider again the embedding in Figure 4.2(b). We argued that the two
possible extensions of a trail starting from vertex 2 and moving along to
vertex 3 would not yield an A-trail. A naive backtracking scheme would
attempt to extend subtrails with the possible extensions (at each step turning

44

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 45

left or right) and check for a trail which visits every edge. If an Eulerian plane
graph has a minimum degree four—as is the case in an Eulerian triangulation
with at least four vertices—this entails a search space of approximate size
2|E|.

We first claim that instead of making a choice on two possible successors
for each edge, we only need to make a choice on two sets of transitions at
each vertex for a plane graph. In such a search, after a successor of an edge
has been selected at a vertex, all the other transitions at the vertex will
be set. This would reduce the search space to an approximate size of 2|V |,
which is equivalent to 2|E|/3+2 in an Eulerian triangulation. We now state
our observation in Lemma 5.1.1 (also Lemma VI.53 in [27]).

Lemma 5.1.1. Consider a vertex v in an Eulerian plane graph G with de-
gree d and incident edges in counter-clockwise cyclic order (e1, e2, . . . , ed).
Suppose an A-trail T visits e1 oriented towards v. Then, either
i) T = (. . . , w, e1, v, e2, . . . , e3, v, e4, . . . , ed−1, v, ed, . . .) or
ii) T = (. . . , w, e1, v, ed, . . . , ed−1, v, ed−2, . . . , e3, v, e2, . . .)

Proof. If d = 2, then the claim is trivially true. Thus, suppose d ≥ 4. By
definition of an A-trail, T must either choose e2 or ed. Suppose T visits e2 as
in case (i); then e2 will be oriented outwards from vertex v. We claim that
the next edge incident to v to be visited by the trail will be e3.

Suppose it is not; that is, there is an edge ej, j > 3 which is visited next,
such that T = (. . . , w, e1, v, e2, x, . . . , y, ej, v, . . . , e3, . . .). Then, (x, . . . , y) is
a walk and thus contains a path P from x to y [59, p.21]. Since ej was the
next incident edge of v to be visited by the trail, P does not contain v. Then,
C = (v, e2, P, ej, v) is a cycle . The cycle C divides the plane to its interior
and exterior. Edge e3 is in the interior of the cycle if and only if e1 is outside
of it. If T visits an edge in the same region as e3 after visiting ej, it cannot go
back to w without crossing the cycle. On the other hand, if T visits an edge
in the same region as e1, then it cannot visit e3 without crossing the cycle.
The problem is illustrated in Figure 5.1. In the figure, e3 is in the interior
of the cycle and e1 is in the exterior. Hence, if T visits any edge ej, j > 3
before e3, it cannot visit e3 and would not be an Eulerian trail. Thus, e3 is
the next visited edge. It is oriented towards v, and e4 oriented outwards will
directly follow since e2 has already been visited.

If d = 4, we would be done. If d ≥ 6, repeat the above argument taking e5
as e3 and setting j > 5. We conclude that if T visits e2 in the first step, then
it must visit the edges according to case (i). Analogous reasoning shows that
if T first chooses edge ed, it must visit the edges according to case (ii).

Lemma 5.1.1 states that an A-trail visits the edges of a vertex so that

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 46

e1

e3

ej

e2

ed

v
w

Figure 5.1: Visiting ej, j > 3 is prohibited after visiting e2.

either even index edges follow odd ones as in case (i) or odd ones follow even
index edges as in case (ii) with the orientation reversed. Here, it is assumed
that the order has been defined so that e1 is the first indexed edge. Let us say
a vertex v has an even parity with respect to an A-trail if the trail makes the
transitions in v as in case (i) (or its reverse). Similarly, we say a vertex has
an odd parity with respect to an A-trail if the trail makes the transitions at
the vertex as in case (ii) (or its reverse). The two possible parities are shown
in Figure 5.2. An alternative interpretation is that the edges are traversed
according to the counter-clockwise order as in case (i) or clockwise order as
in case (ii) [27].

e1

e3

e4

e2

ed

e1

e3

e4

e2

ed

(a) Even parity.

e1

e3

e4

e2

ed

e1

e3

e4

e2

ed

(b) Odd parity.

Figure 5.2: Vertex parities.

An A-trail thus partitions the vertices V , of an Eulerian plane graph into
two groups: those which have an even parity with respect to the trail, Ve,
and those which have an odd parity with respect to the trail, Vo. What can
we infer about the possibility of obtaining an A-trail from a certain partition
of V ? To guide us in answering this question, we introduce the notion of a
splitting at a vertex.

Let us take the case of scaffold routing as an example. Observe how
vertices are formed by stapling. If we ignored the staples, we would have

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 47

the scaffold routed up to a vertex but never actually reaching the point
corresponding to the vertex. The situation is exemplified by the setting on
in Figure 4.4(a). Imagine a new set of vertices are created at each point the
routed scaffold turns at a given vertex. The newly created vertices would
constitute the split of the given vertex.

To state notion of a splitting formally, consider a vertex v in an Eulerian
plane graph G with a degree d ≥ 4, and with incident edges in counter-
clockwise order e1, e2, . . . , ed. An even-splitting of v in G is a replacement
of v by d/2 degree two vertices v1, v2, . . . , vd/2 such that e2i−1, e2i become
incident to vi, for 1 ≤ i ≤ d/2. Similarly, an odd-splitting of v in G is a
replacement of v by d/2 degree two vertices v1, v2, . . . , vd/2 such that e2i−2,
e2i−1 become incident to vi, for 1 ≤ i ≤ d/2, with e0 ≡ ed. We consider that
the identities of edges remain unchanged after splitting, it is only that they
attain new endpoints.

When all degree four or more vertices of a graph are split, the graph
becomes 2-regular but potentially disconnected. Figure 5.3 shows the two
possible splittings of the plane graph in Figure 4.2(a) at vertex 3. We fix
the counter-clockwise order at vertex 3 as ({2, 3}, {5, 3}, {4, 3}, . . . , {1, 3}).
An even-splitting at vertex 3 gives the connected cycle shown on the left
while an odd-splitting results in the disconnected graph on the right. The
even-splitting corresponds to the A-trail (1, 3, 6, 7, 3, 4, 5, 3, 2, 1).

1

2

4

5

6 7

1

2

3

4

5

6 7

1

2

4

5

6 7

Even-splitting Odd-splitting

Figure 5.3: The two possible splittings of a vertex.

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 48

We can now characterize Eulerian plane graphs which have A-trails.

Theorem 5.1.2. Let G be an Eulerian plane graph with a vertex set V .
Then, G has an A-trail if and only if there exists a partition {Ve, Vo} of V
such that an even-splitting of vertices in Ve and an odd-splitting of vertices
in Vo keeps the graph connected.

Proof. (only if) Suppose G has an A-trail T . Let Ve be the set of vertices
with an even parity and let Vo be the set of vertices with odd parity with
respect to T . Let Ĝ be the graph obtained by an even-splitting of the vertices
in Ve and an odd-splitting of the vertices in Vo. Let T̂ be the trail with the
same sequence of edges as in T but with the vertices replaced by the split
vertices in Ĝ. Every vertex in Ĝ appears in the trail T̂ , because its two
incident edges appear in concession in T . Indeed, if a vertex v̂i in Ĝ is the
ith split vertex of an evenly split vertex v in G with the incident edges e2i−1,
e2i in the counter-clockwise cyclic order around v, then either (e2i−1, v, e2i)
or (e2i, v, e2i−1) is a segment of T since v has an even parity with respect to
T . Hence, either (e2i−1, vi, e2i) or (e2i, vi, e2i−1) is a segment of T̂ . Likewise,
if a vertex ŵi in Ĝ is the ith split vertex of an oddly split vertex w in G with
the incident edges e2i−2, e2i−1 in the counter-clockwise cyclic order around
w, then either (e2i−2, w, e2i−1) or (e2i−1, w, e2i−2) is a segment of T . Hence,
either (e2i−2, wi, e2i−1) or (e2i−1, wi, e2i−2) is a segment of T̂ . Thus, there is a
path between any two vertices in Ĝ since there is a sequence of edges in T̂
between the vertices.

(if) Suppose there is a partitioning {Ve, Vo} of G such that an even-
splitting of Ve and an odd-splitting of Vo leaves the graph connected. The
graph obtained after the splitting is 2-regular and connected, and thus a
cycle. The sequence of edges in the cycle is an A-trail in G.

By Theorem 5.1.2, we can check for the existence of an A-trail by checking
the connectivity of splittings of all possible partitions of V . We conveniently
assume that a splitting of a degree two vertex will leave it untouched. We
will next formulate the algorithm more precisely and study its complexity.

5.2 A splitting schedule heuristic

We do not need to split all the vertices at once for each possible partition.
Indeed, if we know a certain split at a vertex results in a disconnected graph,
any further splittings of other vertices will not make the graph connected.
Formally, suppose that we set-up a splitting schedule for the vertices. That
is, we enumerate the vertices in V as (b1, b2, . . . , b|V |). Now, suppose we have

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 49

split the vertices from b1 up to bi so that some subset undergo an even-
splitting and the rest undergo an odd-splitting. Further assume that the
graph remains connected up to the splitting of bi. If an even-splitting of bi+1

disconnects the graph, no sequence of splittings of bj for j > i + 1 will yield
a partition giving rise to an A-trail. Thus, we do not need to extend the
partial solution (i.e. the splittings of vertices b1 to bi under consideration)
and thus we should backtrack to make an odd-splitting of bi+1.

Recall that, if the maximum degree in an Eulerian plane graph is four,
we necessarily have an A-trail since a non-crossing trail is also an A-trail in
such a graph. Hence, there exists a splitting of the vertex set of the graph
induced by the non-crossing trail that keeps the graph connected. Now, given
an Eulerian plane graph which potentially has vertices of degree greater than
or equal to six, set-up a splitting schedule of the vertices of the graph so that
all degree four vertices are split last. If the graph remains connected up to
the splitting of all degree six or more vertices, we know that there exists an
A-trail without splitting the degree four vertices. Thus, we can ignore the
splitting of degree four vertices and only schedule vertices of degree six or
more. We can thus refine our search to branch on vertices of degree six or
more. Since our search algorithm only branches on vertices with degree six
or more, we call such vertices branch vertices. We now present the refined
backtrack search algorithm, Algorithm 1, for deciding whether an Eulerian
plane graph has an A-trail and for finding an A-trail if there exists one.

If the graph has multiedges, these edges can be subdivided by additional
vertices to obtain a simple plane graph without affecting the outcome of the
algorithm. Subdividing of multiedges at most doubles the number of edges,
and increases the number of vertices by the number of multiedges. If the in-
put graph has at most one multiedge per each pair of vertices, as it is the case
for a graph obtained from a simple graph by the Chinese postman procedure
(cf. Section 4.1), the number of vertices increases by at most the number of
edges in the ‘underlying’ simple graph. Since a simple planar graph has at
most 3|V |− 6 edges by Theorem 3.1.2, the number of additional vertices is a
constant multiple of the original number of vertices if the graph is obtained
from a simple graph by the Chinese postman procedure. More importantly,
the number of branch vertices does not increase by the subdivision of mul-
tiedges of any graph (the complexity of the algorithm primarily depends on
the number of branch vertices as discussed later). Thus, we can assume that
the input is a simple plane graph. A simple plane graph can be represented
as an adjacency list where the adjacent vertices of a given vertex are listed
according to the cyclic order of their incident edges around the given vertex.

The algorithm first enumerates the branch vertices as indicated in line
0.2 in Algorithm 1. If there are no branch vertices, the algorithm resorts to

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 50

Input : An Eulerian plane graph G = (V,E)
Output: An A-trail T on G if there exists one, no otherwise

has trail ← true;0.1

Enumerate the branch vertices in V as B ← (b1, b2, . . . , bk);0.2

if B is not empty then0.3

if splitAndCheck(G, B, 1, odd) returns false then0.4

has trail ← false;0.5

if splitAndCheck(G, B, 1, even) returns true then0.6

has trail ← true;0.7

end0.8

end0.9

end0.10

if has trail is true then0.11

T ← an Eulerian trail of G;0.12

T ← T with local adjustment on degree four vertices;0.13

T ← T where each instance of a split vertex is substituted by0.14

its branch vertex;
return T ;0.15

end0.16

return no;0.17

Algorithm 1: A-trail backtrack search.

finding an ordinary Eulerian trail in line 0.12, for instance by Hierholzer’s
algorithm [37]. If there are any crossings on degree four vertices, the crossings
are fixed vertex by vertex as described in Section 4.2 (recall Figure 4.3).

If there are some branch vertices, the algorithm starts the splitting of
these vertices with an odd-splitting of the first branch vertex (line 0.4 in
Algorithm 1). It then recursively splits succeeding branch vertices accord-
ing to the splitAndCheck Procedure. If at the end of the recursion, the
odd-splitting of b1 succeeds (i.e. the recursion returns true in line 0.4 in Al-
gorithm 1), the algorithm moves on to finding the A-trail corresponding to
the successful split (line 0.12 in Algorithm 1). If on the other hand, all pos-
sible extensions of an odd-splitting of b1 result in a failure and the recursion
returns false, the algorithm carries out an even-splitting of b1 as shown in
line 0.6. If the even-splitting also fails, then b1 would neither be in Vo nor in
Ve. Thus, the algorithm returns no in line 0.17.

The splitAndCheck procedure carries out the splittings in a depth-first
manner with a preference to odd-splittings. When the procedure detects
that the graph is disconnected, it backtracks—removing split vertices and

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 51

splitAndCheck(G, B, i, parity) begin1.1

Split B(i) according to parity;1.2

if G becomes disconnected then1.3

Patch the edges back to B(i);1.4

Remove the split vertices;1.5

return false;1.6

else1.7

if i < B.size then1.8

if splitAndCheck(G,B, i + 1, odd) returns true then1.9

return true;1.10

else1.11

if splitAndCheck(G,B, i + 1, even) returns true1.12

then
return true;1.13

else1.14

Patch the edges back to B(i);1.15

Remove the split vertices;1.16

return false;1.17

end1.18

end1.19

else1.20

return true;1.21

end1.22

end1.23

end1.24

Procedure splitAndCheck.

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 52

patching edges to get back to the original vertices (lines 1.4 to 1.6). If
both splittings of a branch vertex bi+1 result in failure (lines 1.9 and 1.12),
the procedure further backtracks (line 1.15), patching the edges to bi and
removing the split vertices of bi. Once the recursion has reached the stage
where i = B.size, the procedure then splits the last the last branch vertex in
the splitting schedule. If the graph remains connected after the last branch
vertex is split, the recursion ends with a positive result (line 1.21).

If the recursion ends with a positive result, the algorithm returns to the
main routine to find an Eulerian trail on the graph with split branch vertices
(line 0.12 in Algorithm 1). The split graph has a maximum degree of four
and hence an A-trail. Since the trail comprises original degree two and four
vertices and split vertices of the branch vertices, the algorithm substitutes
the split vertices by their corresponding branch vertices at line 0.14. The
required bookkeeping can be maintained by a map data structure between
split vertices and their corresponding branch vertices.

The correctness of the algorithm is evident from the discussion preceding
the presentation of the algorithm. If the algorithm outputs an A-trail, then
the recursion must have ended with a positive output. The recursion can
only end with a positive output if there is a sequence of splittings up to
the last branch vertex such that the graph remains connected. Let Vo be
the set of vertices which underwent an odd-splitting and let Ve be the set
of vertices which underwent an even-splitting in such a sequence. Since the
graph remains connected, the graph has an A-trail by Theorem 5.1.2. On the
other hand, if an Eulerian plane graph has an A-trail, then there is a partition
of its vertices into Vo and Ve such that an odd-splitting of the vertices in Vo

and an even-splitting of the vertices in Ve which keeps the graph connected.
When the algorithm splits vertices according to this partition, the sequence
of recursive calls corresponding to the splittings will not backtrack as the
graph remains connected. Thus, the recursion will return true and the calling
function will find the A-trail corresponding to the partition.

Let us now consider the complexity of the algorithm. Hierholzer’s algo-
rithm is known to take linear time [37, p.48]. Further, fixing of crossings
at line 0.13 of Algorithm 1, would take O(|E|2) in the worst case since it
comprises of list section reversals. The complexity of the algorithm is pre-
dominantly due to the splitAndCheck procedure. Considering the main
routine as the root node, the complete search tree has 2k+1− 1 nodes, where
k = |{v ∈ V : deg(v) ≥ 6}|. In the worst case, we carry out splitting, patch-
ing and checking of connectivity in each node of the search tree. Checking
connectivity by depth-first search takes linear time. Splitting, at line 1.2,
entails addition of vertices and addition and removal of edges which can all
be done in O(|E| + |V |) time [55] (which equals O(|V |) for simple planar

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 53

graphs); with a factor of d/2 for a degree d branch vertex. Patching of
edges and removal of split vertices can also be done in linear time [55]. The
algorithm thus has a worst-case complexity of O(2k∆|E|), where ∆ is the
maximum degree in G. The main parameter affecting the complexity is the
number of branch vertices which begs the question: how many of the vertices
in a given simple planar graph are branch vertices?

A simple planar graph must have at least one vertex with degree less
than six [60, p.68]. If all degrees are six or more then the number of edges is
lower bounded by 6|V |/2 = 3|V | which is greater than 3|V | − 6. Analogous
reasoning shows that the average degree of a simple planar graph cannot
be above six [56, p.118]. Thus, if there are many high degree vertices, we
expect that there are many degree two and degree four vertices, which would
entail a large reduction in the search space. Unfortunately, there is even
an infinite family of Eulerian triangulations which have a constant fraction
of degree four vertices as shown in Figure 5.4(b). The triangulations are
two-dimensional representations of 3D towers (depicted in Figure 5.4(a)) en-
visioned by Högberg’s team [36]. The parameter generating the family of
Eulerian triangulations is the number of floors in the 3D tower. Only the
vertices on the base of the first floor and the vertices on the ceiling of the top
most floor have degree four; all the other vertices have degree six. Even for
this graph family, the algorithm can save a factor of 26 by only considering
degree six vertices.

(a) 3D tower family. (b) 2D representation.

Figure 5.4: Eulerian triangulations with a large number of branch vertices.

We can still look for improvements in the algorithm: in particular in
the splitting schedule. Thus, we develop a scheduling heuristic based on

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 54

conflicts. First, let us define some terms. A parity configuration of a set of
branch vertices in an Eulerian plane graph G is a Boolean assignment of each
branch vertex in the set to the value odd or even. A set of branch vertices
are said to be in conflict with respect to a parity configuration if a splitting
based on the configuration disconnects G. Note that a parity configuration
on a set of branch vertices imposes no order in the splitting sequence of the
branch vertices.

Suppose that three branch vertices (u, v, w) in a graph G are in conflict
with respect to a configuration (odd, odd, odd). Further suppose, without loss
of generality, that u and v are the first vertices that get split in accordance
with the configuration. If w is scheduled next, the algorithm will backtrack
after detecting an odd-splitting of w disconnects G and then splits w with
an even parity. Thus, the search tree is pruned at depth four from its root
(where the root, considered to be the main routine, is at depth zero, and
the first vertex is split at depth one). The number of nodes visited in the
search tree would be reduced by a size of 2k−2−2. If, however, w is scheduled
late, suppose last, then the algorithm will descend to the leaf of the search
tree before realizing that an odd-splitting of w disconnects the graph. There
would be no reduction in the number of visited nodes in the search tree from
the conflicting parity. In general, if w is split at depth t, where we assume
the first branch vertex gets split at depth one and the root is at depth zero,
the number of visited nodes is reduced by a size of 2k−t+1 − 2.

To ensure a significant reduction in the number of visited nodes in the
search tree, the branch vertices should be scheduled so that the vertices which
are likely to have conflicts in a certain parity configuration are scheduled as
close to each other as possible. Now, consider a 3-cycle face in an Eulerian
plane graph with branch vertices u, v, w as boundaries as shown in Figure
5.5. The parity configuration indicated by the bold lines is in conflict. As
such, there is always some parity configuration of three branch vertices on the
boundary of a triangular face which is in conflict. In an Eulerian triangulation
in particular, any two vertices v, w that are ends of two edges which are
consecutive in a cyclic order around a vertex u, are adjacent to each other
(or equivalently u, v and w form a triangular face).

Taking this into account, we have used a simple modification of breadth
first search (BFS), which we call plane breadth first search, as our splitting
schedule heuristic; it is presented in Algorithm 3. The only difference with
ordinary breadth first search is in the manner incident edges of a vertex are
checked at line 2.13. In plane breadth first search (plane BFS), we check
edges according to the cyclic order where one edge is set as the start of
the order. In our particular case, branch vertices are added to the splitting
schedule, B, as they are first encountered. Plane breadth first search has a

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 55

u v

w

Figure 5.5: A conflicting parity configuration for three branch vertices bound-
ing a triangular face.

worst-case complexity of O(|V |+ |E|).
Input : An Eulerian plane graph G = (V,E)
Output: An enumeration, B, of branch vertices

({v ∈ G|deg(v) ≥ 6})
B ← empty vector;2.1

Q ← empty queue;2.2

for v in V do2.3

color[v] ← white;2.4

end2.5

Take any s in G;2.6

enqueue (Q, s);2.7

if degree of s ≥ 6 then2.8

Append s to B;2.9

end2.10

while Q is not empty do2.11

u ← dequeue (Q);2.12

for edges e in the cyclic order around u do2.13

v ← The other endpoint of e;2.14

if color[v] is white then2.15

color[v] ← gray;2.16

if degree of v ≥ 6 then2.17

Append v to B;2.18

end2.19

enqueue (Q,v);2.20

end2.21

end2.22

color[u] ← black;2.23

end2.24

return B;2.25

Algorithm 3: Plane breadth first search.

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 56

5.3 Run time experiments

In order to test the improvement we get from the plane BFS enumeration
heuristic, we carried out some run time experiments on three graph families.
For comparison, we also obtained run time data for a random enumeration
(permutation) of the branch vertices. The number of nodes visited in the
search tree was taken as the performance metric. Instead of number of ver-
tices, the number of branch vertices was taken as the independent variable.
Indeed, two graphs with the same number of vertices may have significantly
varying number of branch vertices; yet, the size of the search tree is deter-
mined by the number of branch vertices.

We tested the performance of the algorithm in three graph families. The
first family is the class of Eulerian triangulations corresponding to the 3D
towers depicted in Figure 5.4(a). As noted before, the family is obtained
by taking the number of floors as the parameter. For a t floor tower, t ≥ 1,
there are 3t−3 branch vertices; thus, a t can be obtained for a desired branch
vertex count that is a multiple of three. Figure 5.6 shows the performance of
plane BFS for branch vertex counts which are the first ten multiples of 99.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Number of branch vertices

N
um

be
r

of
 v

is
ite

d
se

ar
ch

 tr
ee

 n
od

es

Figure 5.6: Number of visited search tree nodes with plane BFS scheduling
for the tower graph family.

There is no randomness in the plane BFS enumeration and the plotted

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 57

values are based on single runs of the algorithm. The plot shows a linear
trend and even a branch vertex set of size 990 is handled efficiently. All the
tested instances had an A-trail.

In comparison, Figure 5.7 shows a box plot on the base-2 log of number
of visited search tree nodes based on a random enumeration of the branch
vertices. All logarithms shown in the upcoming plots are also to the base 2.
Branch vertex set sizes are set starting from 9 to 63 with increments of 9.
Each box in Figure 5.7 is based on 21 different random enumerations of the
branch vertices.

5

10

15

20

25

30

9 18 27 36 45 54 63
Number of branch vertices

B
as

e−
2

lo
g

of
 n

um
be

r
of

 v
is

ite
d

se
ar

ch
 tr

ee
 n

od
es

Figure 5.7: The base-2 log of number of visited search tree nodes with random
scheduling for the tower graph family.

The mid marks in the boxes indicate the medians. The edges of the box
are 25th and 75th percentiles. Points beyond the whiskers are considered
outliers. Outliers are indicated by a plus mark and are either larger than
Q3 + 1.5× (Q3−Q1) or smaller than Q1− 1.5× (Q3−Q1), where Q1 and
Q3 are the 25th and 75th percentiles, respectively. This rule also applies to
all the box-plots that follow. While the plane BFS heuristic handles branch
vertex counts up to 990 efficiently, random enumeration struggles even at the
size of 63 where the median is at 220.

The second family of graphs is based on braced (or triangulated) plane
grids, also motivated by our collaboration with Högberg and his team [36].
The bracing makes the structures rigid in the plane [38, p.155]. Two corner
vertices are left out to keep the graph 3-connected. The parameters gener-
ating the family are the width and height of the grid structure. A 3 by 3

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 58

instance of the family is depicted in Figure 5.8. The underlying simple graphs
are near-triangulations, but not necessarily Eulerian. Edges can be added
to make the graphs Eulerian by the Chinese postman procedure as shown in
the figure. All the interior vertices (i.e. vertices not on the boundary of the
unbounded face) are branch vertices. To get an approximate count of branch
nodes from 200 to 2000 with increments of 200, ten grids of height-by-width
dimensions, 11x21, 11x41, 11x61, . . . , 11x201, were generated. The result
of running the algorithm with plane BFS for this graph family is shown in
Figure 5.9.

Figure 5.8: The braced grid graph family.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

500

1000

1500

2000

2500

3000

3500

Number of branch vertices

N
um

be
r

of
 v

is
ite

d
se

ar
ch

 tr
ee

 n
od

es

Figure 5.9: Number of visited search tree nodes with plane BFS scheduling
for the braced grid graph family.

Once again, the algorithm equipped with the plane BFS heuristic handles
the braced grid family efficiently. The number of visited search tree nodes is

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 59

only 3260 for a branch node set size of 2178. All the tested plane grid graphs
had A-trails.

On the other hand, the algorithm quickly struggles when the branch
vertices are scheduled by random enumeration as shown in Figure 5.10. The
plane grids corresponding to the branch vertex sizes had dimensions, 6x3,
6x5, 6x7, . . . , 6x15. The plotted values in Figure 5.10 are based on 21
random enumerations for each instance size. While the the best random
enumeration only visits 27 search tree nodes at branch vertex set size of 71,
the median random enumeration at the same size visits 213 search tree nodes
(more than the amount plane BFS visits at branch set size of 2178).

5

10

15

20

25

15 20 31 40 50 60 71
Number of branch vertices

B
as

e−
2

lo
g

of
 n

um
be

r
of

 v
is

ite
d

se
ar

ch
 tr

ee
 n

od
es

Figure 5.10: The base-2 log of number of visited search tree nodes with
random scheduling for the braced grid graph family.

The last family of graphs that were tested are random 2-connected plane
graphs. This family was used to investigate the performance of the algorithm
on unstructured graphs. These graphs were generated with a random planar
graph generating function from the LEDA algorithms library [1]. To generate
a graph on n vertices and m edges, a random plane triangulation on n − 1
vertices is first generated. Then, the last vertex is inserted into a random
face of the plane triangulation and connected to the bounding vertices of that
face. Edges of the plane triangulation on n vertices are then deleted until m
edges are left remaining. In our case, the generated graph is discarded if it
is not 2-connected.

Figure 5.11 shows box plots of the base-2 log of number of visited search
tree nodes of the algorithm running on plane BFS scheduling of branch ver-

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 60

tices. The figure shows the plots for branch vertex sizes up to 100. For
each (approximate) instance size, the plane BFS heuristic was tested on 21
random 2-connected planar graphs.

4

6

8

10

12

14

16

18

20

22

24

10 20 30 40 50 60 70 80 90 100
Number of branch vertices

B
as

e−
2

lo
g

of
 n

um
be

r
of

 v
is

ite
d

se
ar

ch
 tr

ee
 n

od
es

Figure 5.11: The base-2 log of number of visited search nodes with plane
BFS scheduling for the random 2-connected plane graphs.

Controlling the exact value of the number of branch vertices was difficult,
thus each box has ±2 in the x-values. The median performance, as indicated
by the mid markers in the boxes, was good with a maximum of 211 at sizes 80
and 90. However, the worst-case performance, plotted either as a top whisker
or as an outlier, grows rapidly. For branch vertex set size of approximately
100, around 223 nodes in the search tree were visited. This is in stark contrast
with the performance of plane BFS on structured graphs. The testing beyond
this mark, not shown here, resulted in incomplete data as the algorithm did
not halt on most instances within a reasonable time frame. From the set
shown in the figure, only two of the tested instances, with sizes 90 and 100,
did not admit A-trails.

For testing the random enumeration on random 2-connected plane graphs,
the top five best performing instances in the test of plane BFS was selected
for each instance size. Eleven runs of the algorithm based on random enu-
merations were then carried out for each instance. Each box in Figure 5.12
thus represents 55 runs. However, the runs based on random enumeration
did not all complete for instances greater than 50. It can be seen from the
figure that both the median and the worst-case run time quickly grow.

To summarize the results of our run time experiments, we observed that

CHAPTER 5. A BACKTRACKING ALGORITHM FOR A-TRAILS 61

5

10

15

20

25

30

10 20 30 40 50
Number of branch vertices

B
as

e−
2

lo
g

of
 n

um
be

r
of

 v
is

ite
d

se
ar

ch
 tr

ee
 n

od
es

Figure 5.12: The base-2 log of number of visited search tree nodes with
random scheduling for the random 2-connected plane graphs.

the plane BFS heuristic considerably outperforms random scheduling on the
structured graphs (the tower family and the braced grid family). However,
both scheduling methods quickly become intractable for some random in-
stances. Almost all tested instances had an A-trail which lends support to
the claim that well connected Eulerian plane graphs are likely to have A-
trails.

Chapter 6

Conclusions

In this work, we studied the problem of routing a scaffold on DNA polyhedral
beam-frames proposed by Högberg and his team (Section 2.3). We modelled
the problem of scaffold routing in graph-theoretic terms and applied graph-
theoretic results to tackle the problem. The general setting is that we are
given a three-dimensional polyhedral beam-framework as an input, and we
wish generate a scaffold routing path as an output if such a path can be
found (cf. the software diagram of BScOR in Figure 7.1 in the Appendix).

First, we presented Steinitz theorem (Theorem 3.3.1) which states that
polyhedral skeletons are exactly the 3-connected simple planar graphs. Thus,
we can ignore the three-dimensional geometric aspects of the framework and
study the problem of scaffold routing under an embedding in a plane. More-
over, Whitney’s unique embedding theorem (page 30) ensures that we need
not worry about the particular embedding we obtain, since a polyhedral
graph essentially has a unique embedding. In addition, if the polyhedron is
convex, the framework is guaranteed to be rigid if all the faces are triangles
(page 28). When the skeleton of a rigid polyhedral framework is projected to
a plane, all the faces are triangles. Thus plane triangulations are the projec-
tions of rigid polyhedral frameworks and the problem of scaffold routing on
rigid polyhedral beam-frameworks can be stated as one of routing in plane
triangulations.

Next, we formulated the problem of scaffold routing in terms of Eulerian
trails (Chapter 4). We noted that if all the polyhedral beams are to be made
of single helical domains, the polyhedral graph needs to be Eulerian. If the
graph is not Eulerian, we can add a minimal number of edges by the Chinese
postman procedure (page 34) to ensure an Eulerian trail can be found. How-
ever, this does not guarantee that the scaffold can be stapled. To ensure that
the scaffold can be stapled, we need to find A-trails (Figure 4.4). The prob-
lem of deciding whether an Eulerian 3-connected planar graph, the output

62

CHAPTER 6. CONCLUSIONS 63

of the Chinese postman procedure on polyhedral graphs, admits an A-trail
was shown to be NP-complete (Section 4.3). On the other hand, Fleischner’s
conjecture (Conjecture 4.3.1) states that every Eulerian triangulation admits
an A-trail. If the conjecture holds, then there exists a scaffold routing path
for any Eulerian rigid polyhedral beam-framework.

We also mentioned Fleischner’s conjecture (page 42) that every 4-connected
planar graph admits an A-trail. Indeed, in light of the fact that bridges pro-
hibit Eulerian trails (Proposition 4.1.3); cuts prohibit Hamiltonian cycles [59,
p.287]; and there are near-triangulations which do not admit A-trails (Figure
4.6); connectivity gives a good platform to study traversal problems of which
routing is one kind. Indeed, by Whitney’s theorem (Theorem 3.2.1) and its
generalization by Menger [59, p.167], well connected graphs have multiple in-
ternally disjoint paths between vertices which gives an intuition as why such
graphs are easier to traverse. We have also intermittently noted that cuts
give flexibility to a framework (Figure 3.7(a)) and flexibility in the embedding
(Figure 4.2). Further investigating the relationship between connectivity on
the one hand and embedding, routing, and rigidity on the other may be a
worthwhile endeavour.

Given the general NP-completeness result, we then introduced a back-
tracking search algorithm for finding A-trails on Eulerian plane graphs. More-
over, we introduced an enumeration heuristic, plane BFS, to help reduce the
number of visited nodes in the search tree. The algorithm, equipped with
plane BFS, was shown to significantly reduce the number of visited search
tree nodes in well connected planar graphs. Our run time experiments also
supported the position that well connected planar graphs generally admit
A-trails.

We have reformulated the problem of scaffold routing on polyhedral beam-
frameworks as a problem of finding A-trails in their skeletal graphs. Would a
scaffold routed according to an A-trail and then stapled using complementary
staple strands form the desired nanostructure in a solution?

First, we have concern over the rigidity of the formed nanostructures or
more precisely whether our target geometry can be achieved through self-
assembly even when the desired structure is a triangular framework. Even
though no edge length preserving transformation may take a convex tri-
angular framework to another shape, perhaps another framework with the
same set of edge lengths (or congruent faces) may form under self-assembly.
For instance, an asymmetric octahedron has a congruent non-convex variant
where the shorter apex is pushed in towards the longer one [31]. Interestingly
enough, combinatorics has much to say about rigidity [31] and studying its
applicability and implications on the rigidity of DNA nanoscale structures
may be one possible line of future work.

CHAPTER 6. CONCLUSIONS 64

In addition, we have ignored the geometry of the three-dimensional struc-
ture as well as the helical geometry of B-DNA when we studied the problem
of scaffold routing. However, the helical geometry of B-DNA dictates that
the scaffold should be in a specific phase once it has traversed an edge. If
the routing path generated by BScOR is opposite to the natural direction
that the scaffold wishes to turn, the helix will come under stress. We are
presently investigating the possibility of defining an optimization version of
A-trails whereby an unnatural turn for B-DNA under the edge length would
be penalized. We are planning to integrate BScOR with vHelix in our contin-
ued collaboration with Högberg’s team taking the geometric considerations
into account.

To conclude, we have used combinatorial techniques to tackle a problem
arising from DNA nanotechnology. We hope to give further combinatorial
insights to researchers in DNA nanotechnology to help them resolve some of
their design challenges.

Bibliography

[1] Algorithmic Solutions Software GmbH. The LEDA User Man-
ual, 6.4 ed. Germany, 2008.

[2] Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Lind-
Thomsen, A., Mamdouh, W., Gothelf, K. V., Besenbacher,
F., and Kjems, J. DNA Origami Design of Dolphin-shaped Structures
with Flexible Tails. ACS Nano 2, 6 (2008), 1213–1218.

[3] Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Sub-
ramani, R., Mamdouh, W., Golas, M. M., Sander, B., Stark,
H., Oliveira, C. L., et al. Self-assembly of a Nanoscale DNA box
with a Controllable Lid. Nature 459, 7243 (2009), 73–76.

[4] Andersen, L. D., Fleischner, H., and Regner, S. Algorithms
and Outerplanar Conditions for A-trails in Plane Eulerian Graphs. Dis-
crete Applied Mathematics 85, 2 (1998), 99–112.

[5] Areddy, P. K. Computer-Aided Design of Polyhedral DNA Nanos-
tructures. Master’s thesis, KTH, 2012.

[6] Argüelles, J. C. The Double Helix Revisited: a Paradox of Science
and a Paradigm of Human Behaviour. Asclepio 59, 1 (2007), 239–260.

[7] Balakrishnan, V. Schaum’s Outline of Theory and Problems of
Graph Theory. Schaum’s Outline Series. McGraw-Hill, New York, USA,
1997.

[8] Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G.
Graph Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, Upper Saddle River, New Jersey, USA, 1999.

[9] Bent, S. W., and Manber, U. On Non-intersecting Eulerian Cir-
cuits. Discrete Applied Mathematics 18, 1 (1987), 87–94.

65

BIBLIOGRAPHY 66

[10] Bhatia, D., Mehtab, S., Krishnan, R., Indi, S. S., Basu, A.,
and Krishnan, Y. Icosahedral DNA Nanocapsules by Modular As-
sembly. Angewandte Chemie International Edition 48, 23 (2009), 4134–
4137.

[11] Binns, C. Introduction to Nanoscience and Nanotechnology, vol. 14 of
Wiley Survival Guides in Engineering and Science. John Wiley & Sons,
Hoboken, N.J, USA, 2010.

[12] Boncheva, M., and Whitesides, G. M. Making Things by Self-
assembly. MRS Bulletin-Materials Research Society 30, 10 (2005), 736.

[13] Bourke, P. PLY - Polygon File Format. http://paulbourke.net/

dataformats/ply/, 2013. [Online; accessed 30-December-2013].

[14] Boyer, J. M., and Myrvold, W. J. On the Cutting Edge: Simpli-
fied O(n) Planarity by Edge Addition. J. Graph Algorithms Appl. 8, 2
(2004), 241–273.

[15] Castro, C. E., Kilchherr, F., Kim, D.-N., Shiao, E. L.,
Wauer, T., Wortmann, P., Bathe, M., and Dietz, H. A Primer
to Scaffolded DNA Origami. Nature methods 8, 3 (2011), 221–229.

[16] Chen, J., and Seeman, N. C. Synthesis from DNA of a Molecule
with the Connectivity of a Cube. Nature 350, 6319 (1991), 631–633.

[17] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. Introduc-
tion To Algorithms, second ed. MIT Press, Cambridge, Mass, 2001.

[18] Cromwell, P. R. Polyhedra. Cambridge University Press, Shaftesbury
Rd, Cambridge, United Kingdom, 1999.

[19] Dairbekov, N., Alexandrov, A., Kutateladze, S., and Sossin-
sky, A. Convex Polyhedra. Springer, Berlin, Germany, 2005.

[20] Diestel, R. Graph Theory, second ed., vol. 173 of Graduate Texts in
Mathematics. Springer-Verlag, New York, USA, 2000.

[21] Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf,
F., and Shih, W. M. Self-assembly of DNA into Nanoscale Three-
dimensional Shapes. Nature 459, 7245 (2009), 414–418.

[22] Douglas, S. M., Marblestone, A. H., Teerapittayanon, S.,
Vazquez, A., Church, G. M., and Shih, W. M. Rapid Prototyping
of 3D DNA-origami Shapes with caDNAno. Nucleic Acids Research 37,
15 (2009), 5001–5006.

http://paulbourke.net/dataformats/ply/
http://paulbourke.net/dataformats/ply/

BIBLIOGRAPHY 67

[23] Døvling Andersen, L., and Fleischner, H. The NP-completeness
of Finding A-trails in Eulerian graphs and of Finding Spanning Trees in
Hypergraphs. Discrete Applied Mathematics 59, 3 (1995), 203–214.

[24] Edmonds, J., and Johnson, E. L. Matching, Euler Tours and the
Chinese Postman. Mathematical Programming 5, 1 (1973), 88–124.

[25] Feldkamp, U., and Niemeyer, C. M. Rational Design of DNA
Nanoarchitectures. Angewandte Chemie International Edition 45, 12
(2006), 1856–1876.

[26] Feynman, R. P. There is Plenty of Room at the Bottom. Engineering
and Science 23, 5 (1960), 22–36.

[27] Fleischner, H. Eulerian Graphs and Related Topics, vol. 1 of Annals
of Discrete Mathematics 45. Elsevier Science Publishers B.V., Amster-
dam, The Netherlands, 1990.

[28] Fu, T. J., and Seeman, N. C. DNA Double-crossover Molecules.
Biochemistry 32, 13 (1993), 3211–3220.

[29] Goodman, R. P., Berry, R. M., and Turberfield, A. J. The
Single-step Synthesis of a DNA Tetrahedron. Chemical Communica-
tions, 12 (2004), 1372–1373.

[30] Gould, R. J. Recent Advances on the Hamiltonian Problem: Survey
III. Graphs and Combinatorics 30, 1 (2014), 1–46.

[31] Graver, J. E., Servatius, B., and Servatius, H. Combinatorial
Rigidity, vol. 2 of Graduate Studies in Mathematics. American Mathe-
matical Society, Providence, RI, USA, 1993.

[32] Harary, F. Graph Theory. Addison-Wesley Series in Mathematics.
Addison-Wesley Publishing Company Inc, Reading, MA, USA, 1969.

[33] He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A. E., Jiang, W.,
and Mao, C. Hierarchical Self-assembly of DNA into Symmetric
Supramolecular Polyhedra. Nature 452, 7184 (2008), 198–201.

[34] Högberg, B., and Gardell, J. vHelix - a Plugin for Autodesk
Maya for DNA Nanostructure Design. http://www.vhelix.net/, 2013.
[Online; accessed 30-December-2013].

[35] Hopcroft, J., and Tarjan, R. Efficient Planarity Testing. Journal
of the ACM (JACM) 21, 4 (1974), 549–568.

http://www.vhelix.net/

BIBLIOGRAPHY 68

[36] Johan Gardell, Pavan Kumar Areddy, A. L. B. K. K. G.,
and Högberg, B. vHelix for Maya – Lattice Free DNA Nanostructure
CAD. Poster, FNANO, 2012.

[37] Jungnickel, D. Graphs, Networks and Algorithms, vol. 5 of Algorithms
and Computation in Mathematics. Springer, Berlin, Germany, 1999.

[38] Kappraff, J. Connections: The Geometric Bridge between Science
and Art, first ed. McGraw-Hill, Inc, New York, USA, 1991.

[39] Kolmogorov, V. Blossom V: A New Implementation of a Minimum
Cost Perfect Matching Algorithm. Mathematical Programming Compu-
tation 1, 1 (2009), 43–67.

[40] Lo, P. K., Metera, K. L., and Sleiman, H. F. Self-assembly of
Three-dimensional DNA Nanostructures and Potential Biological Appli-
cations. Current Opinion in Chemical Biology 14, 5 (2010), 597–607.

[41] Meyer, W. A. Geometry and its Applications. Elsevier Academic
Press, Burlington, MA, USA, 2006.

[42] Qiu, H., Dewan, J. C., and Seeman, N. C. A DNA Decamer with
a Sticky-end: The Crystal Structure of d-CGACGATCGT. Journal of
Molecular Biology 267, 4 (1997), 881–898.

[43] Richmond, T. J., and Davey, C. A. The Structure of DNA in the
Nucleosome Core. Nature 423, 6936 (2003), 145–150.

[44] Robinson, B. H., and Seeman, N. C. The Design of a Biochip: a
Self-assembling Molecular-scale Memory Device. Protein Engineering 1,
4 (1987), 295–300.

[45] Rothemund, P. W. Design of DNA Origami. In Proceedings of the
2005 IEEE/ACM International Conference on Computer-aided Design
(2005), IEEE Computer Society, pp. 471–478.

[46] Rothemund, P. W. Folding DNA to Create Nanoscale Shapes and
Patterns. Nature 440, 7082 (2006), 297–302.

[47] Rothemund, P. W. Scaffolded DNA Origami: From Generalized Mul-
ticrossovers to Polygonal Networks. In Nanotechnology: Science and
Computation. Springer, 2006, pp. 3–21.

BIBLIOGRAPHY 69

[48] Sa-Ardyen, P., Vologodskii, A. V., and Seeman, N. C. The
Flexibility of DNA Double Crossover Molecules. Biophysical Journal 84,
6 (2003), 3829–3837.

[49] Seeman, N. C. Nucleic Acid Junctions and Lattices. Journal of The-
oretical Biology 99, 2 (1982), 237–247.

[50] Seeman, N. C. An Overview of Structural DNA Nanotechnology.
Molecular Biotechnology 37, 3 (2007), 246–257.

[51] Seeman, N. C. Nanomaterials based on DNA. Annual Review of
biochemistry 79 (2010), 65.

[52] Shih, W. M., and Lin, C. Knitting Complex Weaves with DNA
Origami. Current Opinion in Structural Biology 20, 3 (2010), 276–282.

[53] Shih, W. M., Quispe, J. D., and Joyce, G. F. A 1.7-kilobase
Single-stranded DNA that Folds into a Nanoscale Octahedron. Nature
427, 6975 (2004), 618–621.

[54] Shlyakhtenko, L. S., Potaman, V. N., Sinden, R. R., Gall,
A. A., and Lyubchenko, Y. L. Structure and Dynamics of Three-
way DNA Junctions: Atomic Force Microscopy Studies. Nucleic Acids
Research 28, 18 (2000), 3472–3477.

[55] Siek, J. MutableGraph - 1.54.0. http://www.boost.org/doc/libs/1_

54_0/libs/graph/doc/MutableGraph.html, 2001. [Online; accessed 29-
December-2013].

[56] Thai, M., and Sahni, S. Computing and Combinatorics: 16th Annual
International Conference, COCOON 2010, Nha Trang, Vietnam, July
19-21, 2010 Proceedings. Springer, 2010.

[57] Tian, Y., He, Y., Chen, Y., Yin, P., and Mao, C. A DNAzyme
That Walks Processively and Autonomously along a One-Dimensional
Track. Angewandte Chemie International Edition 44, 28.

[58] Tsai, M.-T., and West, D. B. A New Proof of 3-colorability of
Eulerian Triangulations. Ars Mathematica Contemporanea 4, 1 (2011).

[59] West, D. B. Introduction to Graph Theory, 2nd ed. Prentice Hall,
Upper Saddle River, New Jersey, USA, 2001.

[60] Wilson, R. J. Introduction to Graph Theory, 4th ed. Prentice Hall,
Harlow, Essex, England, 1996.

http://www.boost.org/doc/libs/1_54_0/libs/graph/doc/MutableGraph.html
http://www.boost.org/doc/libs/1_54_0/libs/graph/doc/MutableGraph.html

BIBLIOGRAPHY 70

[61] Windsor, A. Boost Graph Library: Boyer-Myrvold Planarity
Testing/Embedding - 1.36.0. http://www.boost.org/doc/libs/1_36_

0/libs/graph/doc/boyer_myrvold.html, 2007. [Online; accessed 29-
December-2013].

[62] Winfree, E. Simulations of Computing by Self-assembly. Tech.
Rep. 22, California Institute of Technology, Pasadena, California, 1998.

[63] Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C. Design
and Self-assembly of Two-dimensional DNA Crystals. Nature 394, 6693
(1998), 539–544.

[64] Wolf, E. L. Nanophysics and Nanotechnology: An Introduction to
Modern Concepts in Nanoscience, second ed. WILEY-VCH Verlag
GmbH & Co, Weinheim, Germany, 2008.

[65] Zhang, Y., and Seeman, N. C. Construction of a DNA-truncated
Octahedron. Journal of the American Chemical Society 116, 5 (1994),
1661–1669.

[66] Ziegler, G. Lectures on Polytopes, vol. 152 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, USA, 1995.

http://www.boost.org/doc/libs/1_36_0/libs/graph/doc/boyer_myrvold.html
http://www.boost.org/doc/libs/1_36_0/libs/graph/doc/boyer_myrvold.html

Chapter 7

Appendix

The BScOR software package is a pipelined set of executables for finding
a scaffold routing path on a (triangular) 3D mesh given as a Polgon File
Format (PLY). The BScOR pipeline is illustrated in Figure 7.1. The first
executable is a PLY to DIMACS converter, which extracts the graph adja-
cency information from the objects surface mesh. A surface mesh gives an
approximation of a 3D object by a set of polygons. A PLY text file [13] gives
a description of each polygon in the mesh. The converter outputs a graph in
DIMACS format.

Given that the graph may not be Eulerian, the second executable con-
structs a weighted complete graph on the odd degree vertices which is then
output as a DIMACS file. The DIMACS file, containing edge weights cor-
responding to the length of shortest paths between odd degree vertices, is
then fed to Kolmogorov’s Blossom V implementation [39] for the minimum
weight perfect matching problem. The output of Blossom V in the BScOR
pipeline is a file with the minimum weight perfect matching.

The original graph and the matching file are then given as an input to
the fourth executable which adds multiedges based on the matching. The
resulting Eulerian graph is then given as an input to an executable utilizing
the Boyer Myrvold planar embedding algorithm. The executable outputs a
custom text file which stores the cyclic order of edges around the vertices
according to the planar embedding. Finally, the last executable searches for
an A-trail for the given embedding. Additional Matlab scripts have also been
developed for visualizing the scaffold routing path given the resulting trail
file and the PLY file for the 3D mesh.

BScOR was implemented in standard C++ and uses the boost graph li-
brary. BScOR has been compiled by GNU C++ compiler (g++ version 4.6.3),
and has been tested on 64 bit Linux based machines.

71

CHAPTER 7. APPENDIX 72

A 3D Object's
surface mesh

(PLY ASCII file)

A PLY to DIMACS converter

The Object's skeletal
graph

(DIMACS format)

A weighted complete
graph on the

odd degree vertices
(DIMACS format)

Minimum weight
perfect matching

(Blossom V)

Odd degree vertices
to match

A perfect matching of
the odd degree vertices

(Custom text file)

Multiedge addition

An Eulerian version of
the Object's skeleton

(DIMACS format)

Boyer Myrvold
planar embedding

A combinatorial
embedding
of the graph

(Custom text file)

A-trail search

An A-trail
(Custom text file)

Figure 7.1: The BScOR pipeline.

	Cover page
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the thesis

	2 DNA nanotechnology
	2.1 DNA as a building material
	2.2 DNA origami
	2.3 DNA polyhedral beam-frameworks

	3 Graph theoretic preliminaries
	3.1 Planarity
	3.2 Connectivity
	3.3 Polyhedral graphs and beam-frameworks

	4 Scaffold routing and Eulerian trails
	4.1 Eulerian trails and postman tours
	4.2 A-trails
	4.3 Complexity considerations

	5 A backtracking algorithm for A-trails
	5.1 Vertex parities
	5.2 A splitting schedule heuristic
	5.3 Run time experiments

	6 Conclusions
	7 Appendix

