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The system should let users incrementally 
direct their search toward relevant, though 
not initially obvious, information. 

BY TUUKKA RUOTSALO, GIULIO JACUCCI,  
PETRI MYLLYMÄKI, AND SAMUEL KASKI 

COMBINING INTENT MODELING and visual user interfaces 
can help users discover novel information and dramatically 
improve their information-exploration performance. 

Current-generation search engines serve billions 
of requests each day, returning responses to search 
queries in fractions of a second. They are great tools 
for checking facts and looking up information for 

which users can easily create queries 
(such as “Find the closest restau-
rants” or “Find reviews of a book”). 
What search engines are not good at 
is supporting complex information-
exploration and discovery tasks that 
go beyond simple keyword queries. In 
information exploration and discov-
ery, often called “exploratory search,” 
users may have difficulty expressing 
their information needs, and new 
search intents may emerge and be dis-
covered only as they learn by reflecting 
on the acquired information.8,9,18 This 
finding roots back to the “vocabulary 
mismatch problem”13 that was iden-
tified in the 1980s but has remained 
difficult to tackle in operational infor-
mation retrieval (IR) systems (see the 
sidebar “Background”). In essence, 
the problem refers to human com-
munication behavior in which the hu-
mans writing the documents to be re-
trieved and the humans searching for 
them are likely to use very different vo-
cabularies to encode and decode their 
intended meaning.8,21 

Assisting users in the search proc-
ess is increasingly important, as ev-
eryday search behavior ranges from 
simple look-ups to a spectrum of 
search tasks23 in which search behavior 
is more exploratory and information 
needs and search intents uncertain 
and evolving over time. 

We introduce interactive intent 
modeling, an approach promoting 
resourceful interaction between hu-
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Intent 
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Search 

 key insights
˽˽ Current search engines offer limited 

assistance in complex search tasks; 
users are distracted by having to focus 
their cognitive effort on finding navigation 
cues rather than on learning and 
selecting relevant information. 

˽˽ Interactive intent modeling enhances 
human information exploration through 
computational modeling (visualized for 
interaction), helping users search and 
explore via user interfaces that are highly 
functional but not cluttered or distracting. 

˽˽ Interactive intent modeling can 
improve task-level information-seeking 
performance by over 100%. 
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mans and IR systems to enable infor-
mation discovery that goes beyond 
search. It addresses the vocabulary 
mismatch problem by giving users 
potential intents to explore, visualiz-
ing them as directions in the informa-
tion space around the user’s present 
position, and allowing interaction 
to improve estimates of the user’s 
search intents. 

Interactive intent modeling is based 
on two scientific principles (see Figure 1): 

Visualization. Visualizing the cur-
rent search intent and directions in the 
information space; and 

Adaptation. Interactive adaptation 
of the intent model, balancing explora-
tion of the information space and ex-
ploitation of user feedback; the intent 
model must be able to rigorously han-
dle uncertainty due to limited, possibly 
suboptimal, user feedback. 

By visualizing query and data ele-
ments (such as keywords), this ap-
proach enables the system to show its 
understanding of user search intent 
to the user and also provide a view of 
available search directions around 
the user’s current position in the in-
formation space. The initial evidence 
concerning user search intent is of-
ten limited. The intent model is thus 
manageable for the user only if the 
system is able to predict a sufficient 
subset of the potentially relevant in-
tents. Given the visualization of the 
intent model and its relation to the 
information space, the user is able to 
provide feedback for the intent model, 
allowing the system to improve intent 
estimates on subsequent iterations, 
retrieve and rank data, and update the 
visualization of directions in the infor-
mation space.

Interactive Intent 
Modeling Example 
The SciNet system for scientific literature 
search (http://augmentedresearch.hiit.
fi/) is an example of the two principles 
in interactive intent modeling (see 
Figure 2).20 The system currently in-
dexes more than 50 million scientific 
articles and is designed to assist users 
exploring information related to a par-
ticular research topic through rapid 
feedback loops and in making sense 
of the available information around 
the initial query context.14,20 

In the Figure 2 scenario, a user is 
trying to learn about “3D gestures” 
and types in the corresponding query. 
The user is visualized with an estimate 
of his or her present search intents, as 
well as potential intents, and direc-
tions in the information space on a ra-
dar screen. The user then navigates by 
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and “spatial interaction”) estimated 
to be relevant for the user’s interac-
tion history. The modeling is based 
on a fast online regression model that 
estimates task-level search intents.20 
The model estimates relevance related 
to potential search intent and uncer-
tainty related to these estimates based 
on user feedback. Search intents are 
visualized as keywords, and selection 
of which intents to visualize is deter-
mined through the exploration-exploi-
tation paradigm. The trick is to present 
to the user not only choices estimated 
to be most relevant but those for which 
the upper confidence bound is the 
greatest. The user decides whether to 
explore or exploit, as both relevant and 
uncertain keywords are visualized; for 
example, if the user first selects “ges-
ture recognition” and then “hidden 
Markov models,” the system would 
then suggest specific hidden Markov 
model applications in gesture recogni-
tion, which would be exploitative, as 
they are estimated to be most relevant 
and also allow the user to continue 
to explore more uncertain directions 
(such as other computational tech-
niques in gesture recognition). 

While the idea of providing the user 
uncertain interaction options may be 
counterintuitive from a conventional 

directly manipulating the estimated 
intents on the display. 

Figure 2a is the system’s response to 
the initial query on 3D gestures, offer-
ing directions to, say, “video games,” 
“user interfaces,” “gesture recogni-
tion,” and “virtual reality.” In Figure 

2b, the user has selected “gesture rec-
ognition” and is offered further op-
tions to continue the exploration to 
more specific topics (such as “nearest 
neighbor approach” and “hidden Mar-
kov models”) but also to more general 
topics (such as “pointing gestures” 

Figure 1. Exploring information with interactive intent modeling is based on two principles: 
visualizing current search intent and direction; and balancing exploration and exploitation 
of user feedback. The user’s cognitive effort is thus reduced, as it is easier to recognize 
items instead of having to remember them when reformulating queries. 

Relevance

feedback

Recognize

directions

Explore and   

exploit user

feedback

Visualize

search 

directions

Figure 2. SciNet system search user interface. 

(a) The user issues the query “3D gestures,” and the system visualizes an intent model on the radar 
screen consisting of potentially interesting intent as keywords and a ranked document list. The 
estimated intents, for which the results on the right side have been retrieved, are visualized for the 
user (inner darker-gray area). The angular distance corresponds to similarity of intent and the radial 
distance from the center to relevance. Predicted potential future intents, which help users orient 
themselves on the radar, is visualized in the outer (lighter-gray) area. The user provides positive feed-
back by dragging keywords closer to the center of the radar and negative feedback by dragging them 
further away. Multiple keywords can be dragged in each iteration. Online learning methods make it 
possible for the system to respond in less than one second. 

(b) The user has increased the relevance of “gesture 
recognition” by dragging the corresponding keywords 
to the center of the radar screen. The system then 
visualizes new estimated relevant intents as a set of 
keywords (such as “pattern recognition,” “pointing 
gestures,” “recognition rates,” “nearest neighbor ap-
proaches,” and “hidden Markov models”). 
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IR perspective, which is based on the 
principle of maximizing relevance, 
our interactive intent modeling helps 
users overcome the vocabulary-mis-
match problem, as the system provides 
them interaction resources to continu-
ously direct the search and actively ex-
plore relevant, though not initially ob-
vious, information. Experiments show 
user-task-level performance can be im-
proved significantly. 

To deliver such support, the in-
terface provides a nonintrusive rele-
vance-feedback mechanism in which 
the user pulls keywords closer to the 
center of the radar screen to increase 
their importance and pushes key-
words away from the center of the 
radar screen to decrease their impor-
tance. The keywords can be enlarged 
with a fisheye lens that follows the 
mouse cursor anywhere on the radar 
screen. In response, the system up-
dates intent visualization and search 
results. The radar screen’s radial lay-
out represents good balance between 
the amount of information shown 
and comprehensibility compared to 
alternative visualizations with lower 
or higher degrees of freedom that 
could make interaction with the visu-
alization more difficult. 

Interactive Visualization of 
Search Intent and Direction 
The SciNet example demonstrates how 
visualization can be used to elicit feed-
back. Feedback can be targeted directly 
to the intent model (the inner circle of 
the radar screen in Figure 2) or to pos-
sible future directions (the outer rim 
of the radar screen in Figure 2). Due to 
the vocabulary-mismatch problem, us-
ers often have trouble expressing their 
needs as written queries and are likely 
to start their search with imprecise 
queries. Hence, interaction and feed-
back mechanisms that engage users to 
provide feedback on how to direct their 
search in the subsequent iterations 
are crucial. This is grounded in a well-
known cognitive-science theory stat-
ing users find recognition easier than 
recall.3 It is usually easier for humans 
to recognize something they see than 
describe it from scratch. 

However, increasing evidence from 
IR research supports the finding that 
while relevance feedback is useful in 
enabling systems to better serve user 

search intent, in most cases users 
do not in fact use feedback mecha-
nisms.18 This observation is related to 
two other cognitive science findings: 
users find it easier to recognize small-
er units than more complex ones, and 
it is easier for them to make sense of 
information relative to a reference 
point than in isolation.6 Assessing the 
relevance of a full document may be 
an even more demanding task than 
formulating a new query. 

Information visualization can turn 
laborious relevance assessment into 
a more fluent recognition task; for ex-
ample, visualizing essential document 

content can be faster for recognizing 
important directions toward finding 
relevant information than forcing us-
ers to read this information from an 
original document.1,17 

Recent visualizations applied in 
search tasks support sense making 
of bibliographic data by, for example, 
incrementally interactively exploring 
networks of data.10 While these sys-
tems show the importance of visualiza-
tion for sense making, they are limited 
by not allowing users to negotiate the 
intent model with the system, allow-
ing them only to explore information 
through direct links already present in 

Recent behavioral studies show a large portion of user information-seeking activities 
are exploratory and characterized by the complex and evolving nature of user 
information needs.18 As a result, users face the problem of entering correct terms 
that describe their search intents so the desired information can be retrieved on 
subsequent iterations. This is one of the major findings of information-seeking 
research, as identified by Furnas et al.,13 Saracevic and Kantor,21 and Bates.7,8 
All demonstrated human communication patterns are not likely well suited to 
creating written queries. For example, two study subjects in Furnas et al.13 favored 
the same search term with a probability smaller than 0.2, which was shown to 
lead to 80%–90% failure rates in many common search situations; Saracevic and 
Kantor21 and Zhao and Callan25 later obtained similar results. These findings 
limit the success of various design methodologies for written-query-driven search 
interfaces, highlighting the importance of the user interface for modeling and 
discovering users’ potential, yet unspecified, search intent. 

The simplistic search interfaces of the current generation of search engines 
not only force users to focus their cognitive effort on the discovery of information 
potentially relevant for their search intents, in most cases, they deliver only the 
search result listing that supports this activity. A system’s ability to discover 
potentially relevant search intents could be better supported by search engines 
in the first place. As user expressions of information needs are often suboptimal, 
reflecting only limited evidence of their real search intents, opportunities for IR 
software developers focus on figuring out ways to get users to negotiate with the 
search engines to better capture their needs. This goal of utilizing the human 
information-processing system more effectively in the search process has led 
researchers to combine work in human-computer interaction, information 
retrieval, and machine learning to overcome barriers between techniques that rely 
on only human information-processing capabilities and computational methods 
employed by search engines. 

Other researchers have investigated adaptive and interactive search user 
interfaces and their effect on retrieval performance. For example, Hearst et al.16 
developed a variety of search user interfaces that use filtering and visualization 
techniques ranging from hierarchical, faceted metadata24 and search result 
clustering16 to visualization of the similarity between query term and result item.15 
Marchionini18 proposed user interfaces to support exploratory search, including 
browsing and retrieving video content. While these techniques are all highly 
functional and have shown increased search effectiveness, they exploit only the 
information already found by the search engine in response to a user’s query. 
They did not take into account that the initial expression and future refinement 
of information needs are often suboptimal,12 especially when users are unfamiliar 
with the domain and its vocabulary. 

Moreover, users are learning the search vocabulary as they make sense of the 
information space during the search process; for example, if a user searches for 
“search engines,” techniques that exploit the results already found by the search 
engine may limit the user’s options for exploring beyond the initially found 
results, as the user is not presented different words for the same highly relevant 
additional topics (such as “information retrieval” and “information seeking 
behavior”). Despite these findings, the objective of much current IR system theory 
is toward systems where the user has limited and often only reactive involvement 
in the search process. 

Background
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Online learning 
methods are able  
to update models 
one observation  
at a time so  
future predictions 
can be made 
immediately  
when feedback  
is received. 

received. The goal in online learning for 
search is to predict the relevance of con-
tent interactively, meaning that soon 
after prediction is made, the judgment 
of its usefulness is received from user 
feedback. This information can then be 
used by the IR system to refine the pre-
diction hypothesis used by the method. 

Standard machine learning for online 
prediction does not solve the problem 
of discovering what interaction options 
are most useful in allowing the learn-
ing method to improve its estimates 
and therefore create visualizations for 
the user. Straightforward exploitation 
by choosing the directions currently es-
timated to be most relevant could lead 
to converging to suboptimal goals and 
locking users in context bubbles pre-
determined by the user’s limited prior 
knowledge; for example, a user search-
ing for “3D gestures” might never ex-
plore “pointing gestures,” as the initial 
query scope could already be too specific 
to allow such exploration. A promising 
solution for collecting feedback that also 
allows exploration is the “exploration-ex-
ploitation” paradigm of reinforcement 
learning.5 In it, the model and its envi-
ronment (the user) form an online loop, 
and learning involves finding a balance 
between exploration (showing items 
from uncharted information space for 
feedback) and exploitation (showing 
items most likely to be relevant, given the 
current user intent model). 

Users can thus be assisted to direct 
their searches under conditions of un-
certainty by learning intent models on-
line based on feedback they give about 
the models. Due to the limited and im-
perfect feedback available, the amount 
of uncertainty about user intent can be 
substantial. It is therefore important 
for an IR system to use models capable 
of handling uncertainty in a rigorous 
manner. Probabilistic online learning 
models can be used in the exploitation 
part of the exploration-exploitation 
dilemma; moreover, as the models 
are probabilistic, they quantify uncer-
tainty related to the estimates, using 
it to determine the optimal alternative 
choices to be visualized for users.5 

From Effectiveness  
to Task Performance 
When studying IR systems designed 
to negotiate user search intent, it is 
important to realize the utility these 

the network data.1 
By visualizing potential intents, an 

IR system can give users a spectrum of 
choices in a form suitable for the hu-
man visual system to process rapidly, 
even when the data changes dynami-
cally as interaction occurs. Such an 
interface requires advanced data-driv-
en visualizations that can be comput-
ed online. Moreover, a visualization 
should not contain only informa-
tion already familiar to the user that 
would be good for recognition but 
lead to the intent model getting stuck 
in a “context bubble.” Instead, un-
seen parts of the information space 
must be offered to the user, facilitat-
ing sense making through the rela-
tion of these parts to already familiar 
information when possible. 

Balancing Exploration 
and Exploitation 
Given the evolutionary nature of 
search, as demonstrated in our exam-
ple search scenario involving SciNet, 
it is important to not only exploit the 
feedback elicited from the user but bal-
ance it with exploration. Users must be 
able to focus on a specific location in 
the information space (exploit) and be 
able to broaden their search through 
more general areas (explore). 

This insight is particularly impor-
tant for users exploring information 
with which they are not familiar. Users 
often suffer from what psychologists 
call “anchoring,” or the tendency to 
make insufficient adjustments to ini-
tial values when judging under condi-
tions of uncertainty.22 Users may thus 
tend to refrain from abandoning their 
initial expression of their information 
needs or from adjusting them very 
much, causing subsequent expression 
of information needs to be biased to-
ward their current knowledge. This 
bias reduces the likelihood they will 
discover something novel. 

This behavioral finding has con-
sequences for machine-learning ap-
proaches to modeling search intent. 
A promising direction for predicting 
intent while still allowing users to be 
in control of the search process comes 
from machine-learning methods that 
learn online. Online learning methods 
are able to update models one observa-
tion at a time so future predictions can 
be made immediately when feedback is 
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systems improve is not retrieval ef-
fectiveness at a query-response level 
but task-level performance. Within 
interactive IR systems, users are often 
required to do more work to complete 
their tasks, and, while some of it may 
be wasted, they may be more success-
ful in correcting their initially sub-
optimal actions. To get a complete 
picture of performance, two aspects 
of IR systems should be measured 
simultaneously: IR system effective-
ness, given a complete description 
of an information need; and human 
task performance, given the system’s 
interaction modes. 

The SciNet system was recently stud-
ied in task-based experiments in which 
users were given 30 minutes to solve re-
search tasks using IR systems operat-
ing on a database of more than 50 mil-
lion scholarly articles. We compared 
a system setup with interactive intent 
modeling against a conventional IR 
system with a list-based visualization 
and interaction with typed queries. 
We quantified the quality of retrieved 
information, adoption of the visual-
ization, and feedback mechanisms 
separately.14,20 We found interactive 
search intent modeling significantly 
improved users task performance. We 
also found the task outcomes graded 
more highly by experts, and the search 
user interface enhanced interaction 
without compromising task execution 
time. We attributed the improved task 
performance to the improved qual-
ity of retrieved information and to the 
improved visualizations and interac-
tion modes offered by the system. In 
particular, interactive intent modeling 
increased recall of novel information 
without losing precision. This perfor-
mance demonstrates the power of the 
interactive intent modeling technique 
in supporting exploration and discov-
ery of information that can be difficult 
to find with systems that rely on con-
ventional search user interfaces (see 
the table here). 

Making Intent Modeling Ubiquitous 
Engaging users to interact with IR sys-
tems is crucial for such systems to be 
able to offer better interaction modes 
and reduce uncertainty related to user 
expression of search intent. Despite 
significant improvement in user task 
performance on the example SciNet 

system discussed earlier, we are only 
scratching the surface of human-cen-
tered computing as part of the search 
activity. Intent-aware IR systems can 
benefit from ubiquitous computing in 
at least two ways, as discussed next. 

Wearable User Interfaces 
and Augmented Reality 
IR systems can be extended by aug-
menting a real scene with predictions 
of what the user might find useful, 
shown as augmented reality on head-
mounted displays (HMDs). Users’ im-
plicit and explicit reactions to visual-
ized content can reveal their intent and 
help improve the user intent model 
contextualized to the immediate set-
ting. Figure 3a shows how suitable 
information (such as topics, research 
group, and publications) the user can 
recognize and act upon can be visual-

ized on a HMD superimposed on the 
real scene;2 for example, augmenting 
a user’s environment when visiting a 
poster session at a conference with vi-
sual cues and information can help the 
system collect information about the 
user’s intent even when the user is not 
actively engaged with a search engine. 

Implicit feedback from physiologi-
cal computing. Recent advances in 
wearable computing have facilitated 
capturing users’ affective and cogni-
tive states (such as wearable electro-
encephalography, or EEG, systems). 
Moreover, other physiological sensors 
(such as galvanic skin response and 
heart-rate sensors) are being integrat-
ed into wrist-wearable products like 
smartwatches. Such physiological sig-
nals give researchers additional sourc-
es of feedback information not previ-
ously available. 

Key benefits of interactive intent modeling. 

Improved task performance Interactive intent modeling improves users’ task perfor-
mance compared to state-of-the-art retrieval methods and 
alternative search user-interface techniques.20

Quality of retrieved information Interactive intent modeling helps users go beyond their 
initial query context, allowing them to increase recall signifi-
cantly while preserving precision, particularly for novel infor-
mation, leading to session-level improvement of 100%.14,20 

Enhanced interaction Interactive visualizations enhance interaction without 
compromising task execution time. Users in our experiments 
chose visualization as their main user-interface component 
for making sense of returned information and for expressing 
their search intent.20 

Figure 3. Making intent modeling ubiquitous. 

(a) Suitable information the user can recognize 
and act upon can be visualized on a display as 
augmented reality.2 While the user visits a poster 
session at a conference, the IR system suggests 
information by augmentations on the data glasses. 
The system can then, based on implicit and explicit 
interactions, iterate the intent model and propose 
new information. 

(b) An experiment involving term-relevance 
prediction from brain signals via EEG to 
automatically detect the relevance of textual 
information directly from brain signals. Wearable 
EEG and other techniques can be used for implicit 
relevance feedback to improve prediction of the 
intent model to complement or substitute explicit 
relevance judgments.11 
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It has been shown that affective 
state information can be used for rel-
evance judgment prediction,4 and 
affective and psychophysiological 
signals are being employed in mul-
timedia search systems with encour-
aging results.19 Figure 3b shows an 
example of an EEG sensor setup used 
to demonstrate term-relevance pre-
diction from brain signals. The ex-
periment shows it is possible to auto-
matically detect the relevance of text 
information visualized for the user di-
rectly from brain signals by analyzing 
neural activity of participants while 
providing relevance judgments to 
text terms for a given topic.11 Employ-
ing such physiology-based relevance 
detection for implicit relevance feed-
back on visualized information can 
be used by IR system developers to 
improve the prediction of the intent 
model to complement or substitute 
explicit user relevance ratings. 

Conclusion 
Recent work demonstrates there is sig-
nificant room for improving the support 
provided to users involved in explor-
atory forms of search. Overall, research-
ers recognize the need for search and 
information-exploration systems that 
combine the information-processing 
capabilities of humans and computers. 

Interactive intent modeling is a 
theoretically motivated, empirically 
proven way to support information ex-
ploration and discovery. It can increase 
users’ capacity for information process-
ing and discovery through computing 
technologies that assist users navigat-
ing complex information spaces. 

Interactive intent modeling pro-
vides additional resources for users 
to better learn about the information 
space and give increased feedback for 
the system so it can efficiently adapt its 
understanding of user-search intent. 

Engaging users to adopt interactive 
feedback mechanisms for information 
exploration and sense making requires 
user-interface techniques that go be-
yond search boxes and lists of links 
to enable them to better interact with 
the system and have control over their 
findings. Modeling user intent online 
as interaction occurs and even in situa-
tions where user feedback is noisy and 
suboptimal requires machine-learning 
models that learn online and are able 

to explore, not just exploit. IR system 
design must ultimately integrate inter-
active visualizations, intent prediction, 
multimodal feedback, and a higher-
level context of tasks and goals. 

IR systems must be able to help us-
ers solve tasks, not just retrieve docu-
ments. Users need search engines and 
user interfaces that adapt to their ca-
pabilities and search behavior, rather 
than require them to adapt to them. 
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