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Abstract

Bayesian inference often requires approximating the posterior distribution by Markov
chain Monte Carlo sampling. The samples come from the true distribution only after
the simulation has converged, which makes detecting convergence a central prob-
lem. Commonly, several simulation chains are started from different points, and
their overlap is used as a measure of convergence. Convergence measures cannot
tell the cause of convergence problems; it is suggested that complementing them
with proper visualization will help. A novel connection is pointed out: linear dis-
criminant analysis (LDA) minimizes the overlap of the simulation chains measured
by a common multivariate convergence measure. LDA is thus justified for visual-
izing convergence. However, LDA makes restrictive assumptions about the chains,
which can be relaxed by a recent extension called discriminative component anal-
ysis (DCA). Lastly, methods are introduced for unidentifiable models and model
families with variable number of parameters, where straightforward visualization in
the parameter space is not feasible.
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1 Introduction

Bayesian inference makes very accurate predictions possible, and provides rig-
orous methods for model selection and complexity control. In a nutshell, the
uncertainty in the data is converted into uncertainty of the model parameters,
in the form of a posterior distribution. Inference of parameter values and of
predictions is then made based on this distribution.

Although Bayesian inference is potentially very powerful, closed-form solutions
are seldom available. Inference has to be based on either sophisticated approx-
imation methods or simulations with Markov chain Monte Carlo (MCMC, [9])
sampling. MCMC sampling is a very versatile yet computationally intensive
procedure, which produces samples of parameter values from the posterior
distribution. The main practical problem in MCMC simulations is how to as-
sess whether they have converged. The resulting samples come from the true
distribution only after convergence.

There are several strategies for monitoring convergence of MCMC sampling [2].
A common approach is to start the simulation from several different initial con-
ditions, and measure when the different simulation chains become sufficiently
mixed together. However, a measurement by itself only indicates whether there
are problems with the simulations; if there are, the analyst must still discover
what is preventing convergence, and resolve the problems by tuning simula-
tion parameters, for instance. Finding the cause of the problems by inspecting
the parameter values can be practically impossible for high-dimensional sim-
ulations.

In this paper we introduce techniques for visualizing convergence. The visual-
izations yield low-dimensional overviews that aim to reveal differences between
the chains. Such differences are indications of where and how the chains did
not mix. The visualizations reduce the burden of analyzing convergence to a
manageable level, and complement traditional convergence monitoring.

We start by giving a brief introduction to measuring convergence with two
common variance-based measures: the potential scale reduction factor (PSRF)
and its multivariate version. We also suggest an information-theoretic alter-
native, mutual information. Next, we introduce two methods for convergence
visualization: linear discriminant analysis (LDA) is based on the PSRF mea-
sures whereas discriminative component analysis (DCA) is based on mutual
information; the latter method is theoretically more sound but computation-
ally more complex. We test both methods in a detailed case study. Lastly, we
consider more complicated MCMC simulations where LDA and DCA cannot
be used directly (due to unidentifiability or changing dimensionality of pos-
terior models); we show two ways to extend the visualization methods and
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present case studies of both approaches.

This paper extends our previous conference paper [29]. The major additions
are the extension to unidentifiable and variable-dimensional model families
in Section 5, two new case studies in the same Section, and a theoretical
justification in Appendix C.

2 Measuring convergence

We use the following notation: c denotes an MCMC simulation chain. For a
posterior sample (model of the data) in such a chain, s and s denote, respec-
tively, the univariate or multivariate parameters of the sample, and s̆ denotes
the sample without specifying how it is parameterized. Lastly, x denotes a
posterior predictive sample, that is, a (multivariate) vector in the data space.

2.1 Univariate PSRF

One of the most common quantitative measures for monitoring MCMC con-
vergence is the potential scale reduction factor (PSRF) proposed by Gelman
and Rubin [8]. Multiple MCMC sequences are started from different (overdis-
persed) initial points. At convergence the chains should come from the same
distribution, which is assessed by comparing the variance and mean of each
chain to those of the combined chain.

The PSRF is defined for one-dimensional data as follows. A number (m) of
parallel chains are started, with 2n samples each. Only the last n (potentially
better converged) samples from each chain are used.

The between-chain variance B/n and pooled within-chain variance W are
defined by

B

n
=

1

m − 1

m
∑

j=1

(s̄j· − s̄··)
2 and (1)

W =
1

m(n − 1)

m
∑

j=1

n
∑

t=1

(sjt − s̄j·)
2 , (2)

where sjt is the parameter value of the t:th sample in the jth chain, s̄j· is the
mean of the samples in chain j and s̄·· is the mean of the combined chains.

By taking the sampling variability of the combined mean into account we get
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a pooled estimate for the posterior variance

V̂ =
n − 1

n
W +

(

1 +
1

m

)

B

n
. (3)

Finally an estimate R̂ of PSRF is obtained by dividing the pooled posterior
variance estimate with the pooled within chain variance,

R̂ =
V̂

W
=

n − 1

n
+
(

1 +
1

m

)

B

nW
. (4)

If the chains have converged, the PSRF is close to one, which makes it a
useful indicator of convergence. It does not guarantee convergence, however.
The chains might not have traveled the whole state space yet and might still
be able to discover possible new areas of high probability if sampling were
continued.

2.2 Multivariate PSRF

One weakness of the PSRF measure is that it is only applicable to one variable
at a time. Brooks and Gelman [1] have extended it to a multivariate version,
MPSRF. It is defined, similarly to the univariate PSRF, based on the esti-
mated posterior covariance matrix V̂, which we get from (3) by replacing the
scalar variances B/n and W with the corresponding covariance matrices.

In the multivariate case the comparison of within-chain variance to the pooled
variance requires comparing the matrices. Brooks and Gelman summarized
the comparison by a maximum root statistic which gives the maximum scale
reduction factor of any linear projection of s. The estimate R̂p of MPSRF is
defined by

R̂p = max
a

aT V̂a

aT Wa
(5)

=
n − 1

n
+
(

1 +
1

m

)

max
a

aT Ba/n

aT Wa
(6)

=
n − 1

n
+
(

1 +
1

m

)

λ1, (7)

where the λ1 is the largest eigenvalue of the matrix W−1B/n.

Implementations of PSRF and MPSRF are available in software packages such
as [23].
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2.3 Mutual information

Brooks and Gelman [1] noted that any statistic calculated from the separate
chains should equal the one calculated from the combined chain when the
chains have reached convergence, as the distributions should then be the same.
PSRF and MPSRF compare means and covariances. We propose that instead
of comparing a statistic, a more general measure would result from comparing
the distributions themselves.

Appendix A shows that comparing distributions of posterior samples s̆ in two
MCMC chains results in measuring the mutual information between the sam-
ples and indices c that tell which chain each sample is from. For multiple chains
we consider the straightforward generalization, the mutual information I(c, s̆)
between posterior samples s̆ and their chain indices c. I(c, s̆) tells how much
chains differ: it is nonnegative and is zero if and only if all chains generate the
same distribution of models. It would be suitable for a convergence measure.

In Section 3.3 we present a convergence visualization method based on a prac-
tically computable measure related to I(c, s̆); we further extend the method
in Sections 5.1 and 5.3. We also use mutual information in Appendices A–C
to prove theoretical connections between our methods.

3 Visualizing convergence

The convergence measures discussed in Section 2 cannot tell why simulations
did not converge and in some cases they might even be fooled to falsely indicate
convergence. It is therefore common practice to complement the measures with
visualizations of the MCMC chains. The visualizations help assess convergence
in detail, and help analyze reasons of convergence problems.

3.1 Current practice

MCMC chains have traditionally been visualized in three ways. Each param-
eter of the posterior samples can be plotted as a separate time series, or the
marginal distributions can be visualized as histograms. The third option is
a scatter or contour plot of two parameters at a time, possibly showing the
trajectory of the chain on the projection. The obvious problem with these
visualizations is that they do not scale up to large models having numerous
parameters. The number of displays would be large, and it would be hard to
grasp the underlying high-dimensional relationships of the chains based on the
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component-wise displays.

Some new methods have been suggested. Advanced computer graphics meth-
ods can be used to visualize the shape of a three-dimensional distribution [30].
Alternatively, if the outputs of the models can be visualized in an intuitive
way, an animation of the MCMC chain can be created whose frames are vi-
sualizations of the individual samples [13]. However, these visualizations are
applicable only to special models.

Some dimension-free methods can show a large number of variables in a few
plots. A parallel coordinate plot (PCP) shows each variable as a column,
and each sample as a piecewise linear curve connecting the columns. How-
ever, a PCP shows interactions only between adjacent columns (variables);
therefore, when visualizing MCMC sampling in a high-dimensional parameter
space, some interactions between the parameters may be lost. A generalized
association plot (GAP; [6]) visualizes a sequence of matrices, from a correla-
tion matrix to higher-order matrices containing correlations of correlations. A
GAP could be used for example to find a clustering of all MCMC samples;
a clustering that corresponds to the chains would indicate non-convergence.
However, a GAP would try to show all cluster structure, whereas in con-
vergence visualization the goal is to find differences between chains and not
structure within chains. Overall, such dimension-free methods can be used in
convergence analysis but they do not fully answer the needs of the analyst.

The fundamental problem with the usual visualization methods is that they
lack the means to focus on visualizing variables or dimensions that are rele-
vant for convergence. This worsens the problems caused by the required large
number of plots.

Note that with specific model families, expert knowledge about the model may
be available, and thus it may be possible to summarize differences between
chains based on known-to-be-useful comparison metrics as in [16] for phylo-
genetic trees. However, such knowledge is not always available for the models
of interest; moreover, in case of non-convergence, detailed analysis using more
complicated visualizations could still be needed to find the reasons for the
convergence problems.

3.2 Principled visualization: MPSRF and LDA

We next show that the MPSRF criterion in Section 2.2 is very closely related
to linear discriminant analysis (LDA; see [27] for a definition).

The goal of (a one-dimensional) LDA is to find the linear transformation
y = aT s that maximizes the variance between classes, relative to the vari-
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ance within classes. Here s is the multivariate data vector and a contains the
parameters of the transformation. More formally, LDA solves the problem

max
a

aTBssa

aTWssa
, (8)

where Bss and Wss are the between class and within class sum of squares and
cross products (SSCP) matrices which differ only by a constant scale from the
corresponding covariance matrices. This is a generalized eigenvalue problem,
and its solution a is the eigenvector corresponding to the largest eigenvalue of
W−1

ss Bss.

Hence, disregarding the constants, MPSRF (6) equals the cost function of
(a one-dimensional) LDA where the MCMC chains are the classes. In other
words, optimizing LDA is equivalent to choosing the component that best de-
tects convergence, in the sense of MPSRF. Monitoring convergence by either
MPSRF or the LDA cost function is equivalent; if the chains can be discrimi-
nated, then they have not converged.

There is no reason to make only one-dimensional visualizations. LDA chooses
the second direction or projection axis to be the eigenvector corresponding
to the second largest eigenvalue, etc. A K-dimensional LDA then maximizes
∑K

k=1 λk, the relative between-chain variance representable by the K directions
together. For any choice of dimensionality K ≥ 1, LDA shows as much as
possible according to its optimization criteria, so it always shows at least part
of the convergence problems.

The more LDA directions are used, the more differences between chains are
visualized; it can be shown that K directions are sufficient for discriminating
all differences of K + 1 chains under the LDA assumptions (this follows from
the proof of [18] with d = K), but that upper limit can be too large in
practice. In principle K could be chosen by fitting a model like [14] that
tries to discriminate chains (i.e., predict the chain index of a sample from its
location); models like [14] have internal methods for choosing K, and more
generally for instance Bayesian inference or cross-validation could be applied
to choose K for a model. However, for practical visualization a fixed small
limit K ≤ 3 can simply be taken, so that projection to all the LDA directions
can be visualized in a single plot which is optimized to show as much of the
convergence problems as possible. In the next subsection we will extend LDA
to analyze convergence even better with low-dimensional visualizations.

In convergence analysis LDA should typically be used together with a con-
vergence measure such as MPSRF, so that when the measure indicates non-
convergence, the visualization is used to analyze the reason. The number of
MCMC chains is typically chosen for the needs of the convergence measure;
since the LDA cost function is equivalent to MPSRF, the number of chains is
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good for LDA when it is good for MPSRF.

In summary, we suggest using LDA for both monitoring and visualizing con-
vergence of MCMC. When LDA is used to visualize MCMC convergence we in
effect try to find a linear transformation that visualizes the convergence prob-
lems as clearly as possible, in the sense of the (extended) MPSRF measure.

3.3 Extending LDA for principled visualization

Although LDA (or MPSRF) is a good starting point, it has theoretical weak-
nesses which motivate the need for more principled convergence visualization.
Here we discuss the problems, present a recently introduced extension which
solves them, and discuss the connection between LDA and the extension.

Problems with LDA. Like the PSRF and MPSRF measures, LDA compares
only means and covariances. LDA assumes that each class is normally dis-
tributed with the same covariance matrix. If the assumptions are correct, LDA
discriminates optimally between two classes. However, this does not hold in
general.

Another problem surfaces when generalizing LDA to several classes. The objec-
tive considers only pairwise divergences between classes, and no longer results
in optimal discrimination. See Appendix B for details.

In the specific case of MCMC convergence visualization, the posterior distri-
butions being simulated are often not Gaussian; even if they were, the MCMC
chains do not have the same covariance matrix before convergence. Therefore,
LDA is suboptimal for convergence visualization.

Discriminative component analysis. To address the above problems, we sug-
gest to complement LDA-based analysis with a recently developed generaliza-
tion of LDA. The projection remains linear but the assumptions about the
distribution of data are relaxed.

The recently developed generalization finds discriminative or relevant compo-
nents by directly maximizing their class-prediction power [18]. Formally, the
conditional (log) likelihood

L =
∑

(s,c)

log p(c|WTs) (9)

of classes is maximized within the subspace formed by the components. Here
s is the sample, c is its class, W is the projection matrix whose columns are
the component directions, and p is the estimated probability for the class;
in this paper we use a nonparametric estimate (see “Technical note” below
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for details). The task of finding such components can be called discriminative

component analysis (DCA). A sketch of the connection between LDA and
DCA is presented in Appendix B.

In this paper the c are the indices of the different chains, the s are the model
parameters of the posterior samples, and DCA maximizes the (log) likelihood
of correctly guessing which MCMC chain each sample is from. For converged
chains one cannot (asymptotically) do better than a random guess; hence,
large likelihood indicates the chains have not converged, which can be assessed
visually from the DCA projection.

Maximizing the likelihood is asymptotically equivalent to maximizing the mu-
tual information between the (projected) posterior sample parameters and
their chain indices; therefore DCA asymptotically stems from the mutual in-
formation convergence measure of Section 2.3 in the same way as LDA can be
regarded to stem from the MPSRF measure of Section 2.2.

Technical note. With a finite number of samples, we do not know the exact
densities p(c|WTs), but the projection parameters can be optimized by an
estimate. Here we use a nonparametric estimate, without needing to make
distributional assumptions. The nonparametric estimate is a Parzen window
estimate with a Gaussian window, written as

p(c|WTs) =

∑

(s′,c′)|c′=c exp(−||WTs− WTs′||2/2σ2)
∑

(s′,c′) exp(−||WTs− WTs′||2/2σ2)
(10)

where the sum in the nominator goes over samples in chain c, the sum in the
denominator goes over samples in all chains, and σ is a smoothing parameter.
This is a consistent estimator of the conditional density under mild conditions
on the choice of σ. For further details on nonparametric DCA and its optimiza-
tion, see [18]. In this paper we use conjugate (batch) gradient optimization
instead of the original stochastic gradient.

It is also possible to use mixture model-based estimation in DCA in place of
the nonparametric estimation, as described in [17]. This could be called semi-
parametric DCA; it can yield faster computation but the estimation can be
less accurate for complicated data sets. In this paper we will use the nonpara-
metric estimation for DCA.

Summary. DCA removes two weaknesses of LDA: restrictive assumptions
about the distributions and suboptimality for multiple chains. As a result,
DCA is able to produce improved visualizations. The disadvantage of non-
parametric DCA is the laborious iterative computation. Whether to use LDA,
nonparametric DCA, or semiparametric DCA thus depends on how much com-
putation time is available; if there is enough, nonparametric DCA should be
used.
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It remains an empirical question how much DCA improves the LDA-based vi-
sualizations. In [18], nonparametric DCA attained better results than LDA in
benchmark comparisons; similarly, in [17] semiparametric DCA outperformed
LDA. In Sections 4.1 and 4.2 we apply LDA and nonparametric DCA to assess
convergence in a relatively simple task.

Note that both LDA and DCA visualize convergence by finding linear projec-
tions that discriminate the MCMC chains. In principle, nonlinear projections
could be made based on the same principles that would discriminate the chains
even better; however, from nonlinear visualizations it could be hard to ana-
lyze the cause of the differences. By contrast, in linear visualizations each
coordinate axis corresponds to a weighted sum of original coordinates (model
parameters). It is then easy to interpret the visualization; for example, if
there are interesting differences between chains along one axis, one can iden-
tify which parameters contribute most to those differences simply by checking
the weights of the projection matrix.

For both LDA and DCA, the analyst chooses what samples to visualize. For
instance, to avoid effects of dependencies between samples within the MCMC
chains, one can as usual take only every k:th sample from each chain where k
is some appropriate interval; or one can visualize all samples, in which case our
methods visualize all differences between chains including possible differences
caused by between-sample dependencies.

4 Case study 1: analysis of an MCMC run

To demonstrate visual analysis of an MCMC sampler we have chosen a data
set that contains reaction times for schizophrenics and nonschizophrenics. The
model and the problem are described in [7] (in Example 16.4, p. 426 of the
book) and were also used to illustrate the use of the PSRF measure in the
original article [8].

The data are (log) reaction time measurements from 11 nonschizophrenics and
6 schizophrenics. Each person had their reaction time measured 30 times. It is
believed that schizophrenics suffer from attentional deficit on some measure-
ments, as well as an overall motor reflex retardation.

For the nonschitzophrenics the reaction time is modeled as a random-effects
model with a distinct mean αj for each person and a common variance σ2

y .
The reaction times for the schizophrenics are modeled with a two-component
Gaussian mixture. With probability (1 − λ) there is no attention lapse and
the response time has mean αj and variance σ2

y . With probability λ there is
a delay and the response time has mean αj + τ and the same variance σ2

y . To
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address the question about the amount of motor reflex retardation a hierar-
chical population model is devised. The means of the reaction times αj are
modeled to be normally distributed with a mean µ for the nonschizophrenics
and a mean µ + β for the schizophrenics, and a common variance σ2.

The hyperparameters are assigned a noninformative uniform prior. The mix-
ture parameter λ is restricted to the interval [0.001, 0.999], and τ and the
variance parameters are restricted to be positive. All necessary conditional
distributions were readily available, so Gibbs sampling was used.

Ten chains of 1500 samples each were generated from random starting posi-
tions. The MPSRF showed that the sampling had not converged. We calcu-
lated the univariate PSRF measures for the 23 variables that we were inter-
ested in; the PSRF values showed that several variables had not converged.
At this point we still had no idea what had gone wrong with the sampler, or
whether the convergence was just slow.

4.1 Visualization with LDA

Gaining insight into the problem. In order to understand the behavior of the
chains better, we visualized a part of the simulation. More precisely, we vi-
sualized an interval (samples [200, 600]) around the point 350, since after the
point 350 the MPSRF seemed to have stabilized at a high value.

Note that the purpose of these kinds of convergence visualizations is not to
replace convergence measurement methods like MPSRF but to complement
them. Visualization can be useful even in cases where it is already known that
chains have not converged, as in this case study. Visualization shows differences
between chains which are clues to the non-convergence. Visualization then
helps quickly find out and correct the cause of convergence problems, which a
single convergence measure cannot reveal.

The LDA projection (Fig. 1a) shows that there are five distinct clusters. The
chains were easy to identify after they were color-coded. Six chains were clus-
tered together and the other four formed a separate cluster each. Three chains
were separated from the main cluster on discriminative component 1 and one
on component 2. We also checked whether any of the separate chains could
still be converging toward the common cluster, by color coding the sampling
time. Drift of the distribution should then be visible as a “tail” of gradually
changing color; there was no visible hint of that.

At this point, it is not known for certain whether there are differences among
the the six chains that were clustered together (chains 1,3-7 in Fig. 1a). It could
be that the distributions of those six chains are nearly identical, but it could
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Fig. 1. Convergence visualization for MCMC simulations on the reaction time data.
a) A two-dimensional LDA projection of all samples from the time interval [200, 600]
is shown as a scatterplot. Each chain has been given a unique color. The relative
scaling of the axes is meaningful but the absolute values are not informative. b) A
time series plot of the delay parameter τ for each chain in the same time interval.
The three straight lines are degenerate chains 2, 9, and 10. A logarithmic scale is
used for τ in order to show the evolution of the other seven chains.

also be that the two-dimensional LDA projection has focused on separating
the chains 2, 8, 9, and 10 from each other and from the main cluster, instead
of trying to show differences inside the main cluster. At the end of this section
we will study this by a new LDA projection that focuses exclusively on the
main cluster.

Verifying the findings. A study of the parameter values showed that four chains
had quickly ended up in a degenerate part of the parameter space where the
mixture model has collapsed to a one-component model. Means and standard
deviations for five of the 23 parameters of interest are listed for all chains
in Table 1. For three of these degenerate chains (chains 2, 9, and 10) the
probability λ of the delayed component was so low that no samples were
assigned to it. This was apparent already from the one-dimensional time series
plots of these chains: The delay parameter τ had not changed from its starting
position. Fig. 1b shows a time series plot of τ for all chains; the three chains
where τ does not change are clearly visible as straight lines.

The fourth degenerate chain (chain 8 in the LDA visualization, Fig. 1a), was
harder to diagnose because the time series plots of the chain looked normal,
showing clear variation in the parameters. Fig. 2a shows three examples of
time series plots for the chain. However, only a little additional work was
needed to identify the actual problem: Nearly all samples were modeled as
delayed measurements, and hence the parameters β and τ became linked. The
comparatively high proportion of delayed measurements was easily visible by
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Table 1
Mean values and standard deviations of the 10 chains for 5 of the 23 parameters of
interest, under the time interval [200, 600].

Chain σ2 β λ τ σ2
y

1 0.16 ± 0.04 0.33 ± 0.09 0.12 ± 0.03 0.85 ± 0.06 0.19 ± 0.01

2 0.19 ± 0.04 0.41 ± 0.11 0.01 ± 0.01 26.94 ± 0.00 0.24 ± 0.01

3 0.16 ± 0.04 0.31 ± 0.09 0.12 ± 0.03 0.85 ± 0.06 0.19 ± 0.01

4 0.38 ± 0.34 0.07 ± 0.43 0.21 ± 0.11 1.42 ± 0.86 0.21 ± 0.02

5 0.16 ± 0.04 0.31 ± 0.09 0.12 ± 0.03 0.84 ± 0.06 0.19 ± 0.01

6 0.19 ± 0.11 0.29 ± 0.14 0.13 ± 0.04 0.97 ± 0.40 0.19 ± 0.01

7 0.16 ± 0.04 0.33 ± 0.09 0.11 ± 0.02 0.86 ± 0.06 0.19 ± 0.01

8 0.26 ± 0.06 −0.16 ± 0.15 0.81 ± 0.04 0.71 ± 0.06 0.20 ± 0.01

9 0.18 ± 0.04 0.41 ± 0.09 0.01 ± 0.01 4.83 ± 0.00 0.24 ± 0.01

10 0.18 ± 0.04 0.41 ± 0.09 0.01 ± 0.01 65.36 ± 0.00 0.24 ± 0.01
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Fig. 2. Time series plots of the fourth degenerate MCMC chain (chain 8 in Fig. 1a)
whose degeneracy required more investigation. a) Three example time series plots
of the interval [200, 600], showing the parameters λ, τ , and β. b) Time-series plot
of λ for all chains (colors as in Fig. 1).

plotting the evolution of the delay probability λ for all chains in a single plot
(Fig. 2b).

Note that for instance pairwise comparisons of chains using a convergence
measure could also reveal which chains are degenerate. However, for large
numbers of chains the number of required pairwise comparisons would be-
come very large; moreover, comparison with a convergence measure cannot
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Fig. 3. Convergence visualization for MCMC simulations on the reaction time data,
after removing degenerate chains. a) MPSRF measure calculated from the nonde-
generate chains (1,3-7). b) LDA projection computed by applying LDA to the
nondegenerate samples from the time interval [200, 600]. The colors are time-based,
t denotes time. Each color covers 50 time steps.

reveal e.g. ongoing drift of the distributions without further comparisons. By
contrast, the LDA visualization used here shows the main differences in a
single display.

Checking the behavior of the sampler near convergence. At this point we could
have modified our model or our sampler to remove the problems. A rapid
alternative is to discard the degenerate chains, and we did that. We computed
the MPSRF again for the remaining chains. It is clear from Fig. 3a that they
have converged after about 350 samples. For a demonstration we created a
new LDA projection of the nondegenerate chains only; that is, we optimized an
LDA visualization to show differences between the six nondegenerate chains
(1,3-7), by applying LDA to all samples of those six chains in the interval
[200, 600]. In Fig. 3b we can see two “tails” from chains moving toward the
common distribution. By color coding the samples based on time we verified
that the tails were indeed early samples and that the two chains became
combined with the rest after the early samples. Thus we conjecture that the
simulation had converged this time.

4.2 Visualization with DCA

We finally compare qualitatively the projection given by nonparametric DCA
with the ones given by LDA, to verify that DCA gives the same or better
insights on convergence. We again take the samples in the interval [200, 600]
from all ten chains, but now we apply DCA instead of LDA to create a two-
dimensional convergence visualization.
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Fig. 4. Discriminative component analysis (DCA) based visualization of MCMC
convergence on the reaction time data; a single DCA visualization of all ten chains
shows the same information as two LDA visualizations (Figs. 1a and 3b). a) 2D
nonparametric DCA projection of all samples from the time interval [200, 600] from
all chains. b) Enlarged view of the box in lower right corner of a.

The resulting DCA projection is shown in Fig. 4. Comparing the DCA pro-
jection to the corresponding LDA projection of all chains (Fig. 1a), we can
see that DCA has discovered the same five clusters as LDA. Four clusters are
composed of a single chain each: chains 2, 9, and 10 as seen in Fig. 4a, and
chain 8 as seen in the enlarged view in Fig. 4b. The fifth cluster consists of
six chains (chains 1, 3-7). Thus all of the information that we saw in Fig. 1a
is also visible in the DCA visualization.

However, DCA has also shown additional information that was not visible
in Fig. 1a: DCA shows the two “tails” of samples, generated by two chains
converging toward the multi-chain cluster. These are the same “tails” that we
previously found by creating a separate LDA visualization of the nondegener-
ate chains (Fig. 3b).

Comparing the DCA and LDA visualizations of all chains (Fig. 4 and Fig. 1a)
in more detail, we see that chains 2 and 10 are far from the others in both
the LDA and DCA visualizations. However, the LDA visualization kept chain
8 far apart as well, whereas DCA placed it closer to chains 1,3-7 and instead
separated the “tails” of early samples of chains 4 and 6 which were not visible
in the LDA visualization. Since chain 8 can still be discriminated well in the
DCA visualization, the DCA projection is overall more informative than the
LDA projection.

In conclusion, the DCA visualization displayed all the discovered convergence
properties in a single two-dimensional visualization. No additional studies were
required as with LDA. (Just in case, to check whether there could be still
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more to discover, we computed a DCA visualization of nondegenerate chains
corresponding to Fig. 3b, and it revealed only the same properties. Thus the
original single DCA visualization was enough to show all the information.)

5 Unidentifiable and variable-dimensional model families

LDA and DCA visualize the chains in the parameter space. However, there are
useful model families, and MCMC simulations based on them, where LDA or
DCA visualization in the parameter space is not possible or does not give good
results; we discuss the main reasons, unidentifiability and variable dimension-
ality, and introduce visualization methods useful for such model families.

Unidentifiability. Label switching (unidentifiability of labels) causes the pos-
terior distribution to have multiple modes, which are identical except for the
order of the parameters. Examples are mixture models where the labeling be-
tween mixture components is unidentifiable. Such models are useful, so con-
vergence visualization methods are needed for their MCMC simulations.

For unidentifiable models, parameter-space convergence criteria may be too
strict. In simulations where label switching occurs, different chains may change
modes seldom; when chains inhabit different modes, usual convergence mea-
sures indicate non-convergence and visual analysis mostly shows separate clus-
ters. It could be argued that to reach convergence the simulation must go
through all the modes, but it would be more useful to disregard the order
of components when measuring convergence. One traditional way to handle
label switching is to restrict parameter values of different components by a
prior; however, developing suitable restrictions can be hard. Samples can also
be postprocessed to fix the labeling [25], but this may be computationally
demanding and software for it is not readily available.

Changing dimensionality. In some simulations the complexity or dimensional-
ity of the model is varied during the run; for example one might use reversible
jump MCMC [11] to cover models with different numbers of parameters. Such
simulations can be hard to analyze: one cannot compute the MPSRF measure
or the LDA and DCA visualizations, as they assume a fixed parameter space.

Proposed ideas for convergence monitoring include devising a function to mon-
itor that is invariant to the model complexity. Convergence could also be stud-
ied within each fixed-dimensional subfamily separately and convergence of the
model selection part with yet another method; the number of different models
can be high though. The methods in [4] monitor convergence of the model se-
lection without measuring other aspects. In [3], changes in one parameter are
studied across both chains and model selections; [5] proposes an improved ver-
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sion with a multivariate extension. Both [3] and [5] require that it is possible
to identify one or more parameters having the same meaning in all models.

Varying dimensionality is also a problem for visual analysis of the simulation.
If the different-dimensional models are submodels of a more complete model it
might be possible to give sensible fixed values for parameters absent from the
submodel, and then apply normal visualization methods. This is not possible
in general, however. It might be possible to extend the simple LDA-based
convergence visualization method in Section 3.2 to the approaches in [3,5], but
this would not be a general solution since [3,5] require one or more parameters
having the same meaning in all models; also, they do not solve problems
caused by unidentifiability. Instead, below we introduce a new solution for
visualization in unidentifiable and changing-dimensional cases.

Solution: compare predictive distributions. To bypass the problems caused by
unidentifiability and changing dimensionality, we study what kinds of distri-

butions the parameter values actually represent. Each posterior sample in an
MCMC chain corresponds to some model M and parameter values θ for the
model. Such a model generates a posterior predictive distribution p(x|θ, M)
over potential observations x in the data space; the form of the distribution
depends on the model M . An MCMC chain, having many posterior samples,
corresponds to a distribution of such posterior predictive distributions.

The solution to unidentifiability and changing dimensionality is to measure
whether the distribution of the posterior predictive distributions (defined by
the posterior samples) is the same in all chains, as it should be at convergence.

Note that it is possible that the simulation has converged in regard to the
posterior predictive distribution but not in regard to all parameters. In this
case, the parameters that have not converged have either only a minor effect
on the output distribution of the model or their nonconvergence is caused
by some form of unidentifiability. On the other hand if the simulation has
not converged in regard to the predictive distribution, then there can be no
convergence in the parameter space either. (For details see Appendix C).

5.1 Visualizing the model space

To visualize the distribution of the posterior predictive distributions we first
change the similarity measure of the posterior samples from measuring differ-
ences in parameter values to measuring differences in the predictive distribu-
tions. After this all data samples are in the same data space, in contrast to
parameter vectors of variable-dimensional models, but since we do not have
a handy vectorial representations for the predictive distributions, we cannot
apply LDA and DCA directly to them. Instead, the data is now represented by
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the distance matrix consisting of pairwise distances between all pairs of pre-
dictive distributions. Our solution is to apply multidimensional scaling (MDS)
to transform the distance matrix to a set of points in a vector space. In the
vector space we can again apply LDA or DCA to the chains as previously.

The procedure for visualizing samples has three steps, each of which is dis-
cussed below.

Step 1: Compute distances between samples. Select a divergence measure and
calculate the distance matrix of pairwise divergences between all posterior
samples. This bypasses the problems caused by unidentifiability and changing
dimensionality. As a divergence measure we use the Jensen-Shannon diver-
gence [15]:

DJS(p1, p2) =
∑

i=1,2

∑

x∈X

πipi(x) log
pi(x)

∑

j=1,2 πjpj(x)
, (11)

where p1 and p2 are two posterior predictive distributions and the πi:s are
weights defining the relative importance of the distributions. For MCMC anal-
ysis the weights should be equal, πi = 1/2.

For discrete distributions it is always possible to calculate DJS, but for contin-
uous distributions the sum would be replaced by an integral which typically
cannot be computed analytically; thus it must be estimated. Here we suggest a
simple estimate: for each posterior sample, generate a set of data-space points
from the posterior predictive distribution, and use a binned density estimator
to compute a discrete estimate of the density. The discrete estimates can then
be used to compute DJS. In a case study (Section 5.2), a simple estimator
with 10 bins and 100 data-space points per posterior sample sufficed, since
the data in the case study is low-dimensional (one-dimensional).

For higher-dimensional data, the number of bins and data-space points re-
quired for accurate estimation would quickly grow, which would increase com-
putational cost. Such growth of the number of bins and points would be nec-
essary, as inaccurate estimation with an insufficient number of bins or points
could cause noise (bias): insufficient bins could overlook local differences in
the models, and insufficient points could introduce sampling noise. In Section
5.3 we will describe an alternative, fast approach for high-dimensional data.

Step 2: Transform samples to a vector space. Having computed the distances
between all sample pairs, select a multidimensional scaling (MDS) method to
transform the distance matrix to a configuration of points in a vector space.
The configuration of the points will be an appropriate representation of the
differences between the predictive distributions.

Here we use linear MDS [28,10] to find the configuration of vectorial points
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that represent the predictive distributions. It can be shown [10] that the con-
figuration found by linear MDS equals the configuration found by Principal
Component Analysis [12] of the same dimensionality. Thus the MDS solution
of high enough dimensionality contains all the variance information inherent
in the data.

Step 3: Create the visualization. Now that we have a vector-space representa-
tion for each posterior sample, we can use LDA or DCA to create a visualiza-
tion that discriminates between the different simulation chains. The procedure
is the same as described in Section 3; the only difference is that LDA or DCA
is applied to the vector-space points found in Step 2, rather than some existing
parameter vectors.

In Section 5.2 (below) we test the three-step approach described above in a
case study.

5.2 Case study 2: Simulation of a one-dimensional Gaussian mixture model

The data chosen for this illustration is the galaxy data described by Roeder
([21]; first presented by Postman et al. [19], with one additional data point) and
later analyzed with mixture models by several authors, including Richardson
and Green [20] and Stephens [25,24].

The data are the velocities of 82 distant galaxies diverging from us. There
seems to be multimodality in the data. We fitted a mixture of seven Gaussian
components to the data by Gibbs sampling, with priors picked from [20]. We
simulated 10 chains of 2000 samples each, and computed both the PSRF and
MPSRF convergence measures along the run.

Judging from the PSRF and MPSRF measures the simulation did not con-
verge. Some parameters like the hyperprior of component variances converged
early, but others kept fluctuating during the simulation. Based on the LDA
projection of the samples at the end of the simulation (Fig. 5) it is clear that
while some mixing of chains is going on there are still several areas where one
or two chains are predominant. Thus the convergence measures indicate that
the chains have not converged in the parameter space.

In order to measure convergence of the predictive distributions we transformed
the samples to points in the model space by estimating the pairwise diver-
gences and finding a configuration of the points with linear MDS. The dimen-
sionality of the MDS solution was selected to hold 99% of the variance.

More specifically, for each posterior sample, we generated 100 data-space
points, and used a 10-bin density estimator to estimate a discretized ver-
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Fig. 5. Posterior simulation of a mixture model on galaxy velocity data; convergence
visualization in the parameter space, by LDA projection of the last 200 samples.
Each chain is marked with a unique color.

sion of the predictive distribution. These estimates were used to compute the
pairwise Jensen-Shannon divergences between each pair of posterior samples.
MDS was applied to the resulting matrix of divergences.

Based on the MPSRF measure calculated in the MDS space the simulation
seems to have roughly converged after approximately 100 samples (Fig. 6a).
A common rule of thumb is that a simulation has converged when the con-
vergence measure stays under 1.2 [7]. From the LDA visualization of the first
100 samples in the MDS space (Figs. 6c and d) it can be seen that there are
areas where some of the chains dominate. There are clearly more red and dark
green points on the left side of the image while light green and dark blue are
more dominant on the right. This can be compared to the visualization from
the last 200 samples (Fig. 6b) where it is impossible to separate any of the
chains from the others. In summary, the new visualizations corrected for the
apparent divergence caused by unidentifiability in the parameter space.

Additionally, we did the same analysis using the reversible jump MCMC
method for mixture models, developed by [20]. The results were very simi-
lar except that it was not possible to visualize samples in the parameter space
(as we did in Fig. 5) due to the changing model dimensionality.

It should be noted that even though we used MDS to monitor convergence of
the simulation in the model space (by the MPSRF measure) the method is in
general better suited for visual inspection. The computational complexity of
forming the distance matrix and finding the MDS solution restricts the appli-
cability to only comparatively small sets of samples. While this is a setback
for convergence monitoring it still allows visual inspections which is crucial
when the simulations do not converge.
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Fig. 6. Posterior simulation of a mixture model on galaxy velocity data; conver-
gence visualization of the model space through multidimensional scaling (MDS).
a) Change in the MPSRF measure during the first 100 samples of the simulation,
calculated in the MDS space. An often used rule of thumb is that a simulation has
converged when the convergence measure stays under 1.2 [7]. b) MDS-LDA projec-
tion of predictive distributions of the last 200 samples of each chain. c) MDS-LDA
projection of predictive distributions of the first 100 samples of each chain. d) As
c, but only two chains are shown to illustrate some of the differences. Samples are
color coded based on the chain they belong to.

5.3 Fast and simple solution for high-dimensional data

In Sections 5.1 and 5.2, chains were visualized based on Jensen-Shannon di-
vergences between models. The divergences were estimated by generating pos-
terior predictive samples (data-space points) from the models. However, if
the predictive distribution is high-dimensional, approximating the divergence
takes much computational time.
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A solution is to study the pooled posterior predictive distribution of each
chain. Instead of forming the matrix of pairwise divergences, pool all generated
posterior predictive samples from each chain and study the distribution of
these samples in the data space. If convergence has been reached, all chains
have the same distribution of pooled posterior predictive samples. Deviation
of some chains from the rest can be visualized by applying LDA or DCA to
the pooled posterior predictive samples.

The above method needs less samples than the previous approach because
it need not estimate a distribution for each model; it only needs to generate
enough samples to represent the pooled distribution. On the other hand, the
pooled distribution does not contain as much information as the posterior
predictive distributions of all individual models. It turns out that this kind of
indirect visualization has a simple justification: it optimizes a lower bound of
a justified but computationally expensive cost function. The cost function di-
rectly compares models instead of samples generated from them; see Appendix
C for details.

5.4 Case study 3: Simulation of a five-dimensional mixture model

We illustrate use of the pooled data samples in a setting with two characteris-
tics: 1) the data are relatively high-dimensional, which makes binned density
estimation infeasible, and 2) we use a model family which does not contain the
true model, which causes non-trivial convergence problems. The data set con-
tained 500 data points generated from a mixture of five-dimensional multivari-
ate Gaussians. The mixture had one wide component generating background
noise and three small tight components, forming modes in the data.

The model family to be fitted was a restricted mixture of uniform distributions.
Each model in the family was a mixture of four uniform distributions in the
shape of hypercubes. The first component was fixed and was set to cover the
whole domain of data. The other three components were unit hypercubes with
equal mixture weights. Only the locations of the three small hypercubes were
allowed to change; that is, their locations were the parameters in the family.
A wide Gaussian prior centered on the data mean was used on these location
parameters.

We simulated six chains with 5000 samples in each using the Metropolis-
Hastings algorithm, jumping along one parameter at a time. The jumping
kernel was Gaussian; the average acceptance ratio of a chain was around 0.4.
As was expected from a mixture model because of the label switching problem,
no convergence was indicated in the parameter space. Fig. 7 shows an LDA
projection of the last 200 samples; all chains are clearly separate.
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visualization by LDA projection of the last 200 samples. Each chain is illustrated
with a different color.

Because of the relatively high dimensionality (five) of the data space we do
not try to estimate the pairwise divergences as was done in Section 5.2 but
study the pooled posterior predictive samples directly. We generated one pos-
terior predictive data sample from each parameter sample of the posterior and
calculated the MPSRF measure directly from the generated samples.

The result can be seen in Fig. 8a. The MPSRF measure first falls rapidly but
then stays stable near a level of about 1.1. Based on the rule of thumb we
could say that the simulation has converged. This is not the case, however. A
visual inspection by projecting the chains with LDA helps see what is going
on (Fig. 8b). There are clearly areas where one chain dominates. For example
chains two (red) and three (green) form clusters. The means of the chains
just happen to lie close to each other because of the multimodal nature of
the distribution, and this fools MPSRF to give a low value even when the
chains have not converged. This case study suggests that it is always a good
idea to check the results visually. If there had been no problems aside from
unidentifiability, the posterior predictive samples from each chain would have
looked mixed in the visualization. In this case study the visualization reveals
that there really is a problem in convergence which is not caused by the
unidentifiability in the model.

If we enlarge the center part of the LDA projection and add the projection of
the original data points to the visualization, as is done in Figs. 8c and d, it is
easier to get an idea of what is happening. Chains four (yellow) and five (light
blue) have found the three modes in the data. Chains one (dark blue) and six
(pink) have found two of the modes. Each has two components describing one
of these modes. Chains two (red) and three (green) have only found one mode
and both have two components that have got stuck in the background noise
generated by the wide Gaussian. It seems the simulation is very sensitive to
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Fig. 8. MCMC simulation of a multivariate mixture; convergence visualization by
studying the pooled posterior predictive distribution of each chain. a) Change in the
MPSRF measure of the pooled posterior predictive distributions. b) LDA projection
of the last 2500 pooled posterior predictive samples. Only every 10th sample is
shown. c) Enlarged view of the center area of the LDA projection. d) As c but with
the training data (black dots) projected in the same image. Each chain is illustrated
with a different color.

slight variation in the density of data.

This behavior was verified by running the simulation several times with dif-
ferent jumping kernel widths. The same behavior was evident in all runs.

As a side note, we also checked how a Gaussian mixture model simulated with
a Gibbs sampler performed on the data. The posterior predictive distributions
of the chains converged in about 100 steps. A visual inspection showed that
the chains were completely mixed and the model fit the data quite well. Hence,
in this case, the problems in convergence clearly stem from using the wrong
model family. This case study is realistic in the sense that the model family
rarely is perfect.
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6 Discussion

We have shown how to create visualizations for MCMC convergence analy-
sis. Problems can be identified quickly using only a few visualizations. For
most simulations we recommend linear discriminant analysis (LDA) for vi-
sualization. Justification for LDA comes from its connection to a common
convergence measure: Its goal is to separate the different simulation chains,
and if it is successful the simulation has not converged. This was demonstrated
in a case study. We also discussed and demonstrated an alternative method,
discriminative component analysis (DCA), which is based on an improved
objective but is computationally more complex.

Convergence analysis by studying mixing of multiple chains is problematic
for some common models, where label switching causes unidentifiability, and
for simulations covering several models with different numbers of parameters.
These problems can be bypassed by studying the posterior predictive dis-
tributions that the posterior samples define. For discrete or low-dimensional
continuous predictive distributions this can be done by estimating the distri-
butions by binning, and comparing them with suitable divergence measures.
The chains can then be visualized by first transforming all samples into a vec-
tor space with MDS, and then applying LDA as usual. For high-dimensional
continuous distributions divergence measures can be hard to estimate, but we
can still study convergence by comparing pooled sets of samples from poste-
rior predictive distributions of each chain in the data space. Two case studies
of these methods were given. Fig. 9 summarizes the proposed visualization
methods.

In this paper we focused on visualizations that try to separate different simu-
lation chains from each other. It would also be possible to discriminate based
on some other parameter of interest. We could for example try to see whether
models with different complexities can be separated based on their generative
distributions. These ideas could be combined in an interactive visualization
tool.

Some of the ideas we have presented could also be used to define measures
for convergence. A K-dimensional LDA maximizes the relative between-chain
variance representable by the K directions together. Using all K eigenvalues
for measuring convergence takes directly into account deviation in several
directions instead of only the dominant one, as is done by the commonly
used PSRF. We could also measure convergence in the model space. This is
computationally very costly, however. Finally, the objective function of DCA
could serve as a measure of convergence, when compared with a naive estimate
that simply predicts the overall chain proportions. If the values are different,
MCMC has not converged.
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• If the simulation has a fixed parameter set and the parameters are
identifiable, use LDA, as described in Section 3.2. Replace LDA by
nonparametric DCA (or by semiparametric DCA), as described in
Section 3.3, if computational resources are not scarce or if LDA is
not informative enough.

• If the parameter space is not fixed or the model is unidentifiable, and
the output space is low-dimensional, 1) generate output samples from
each model, 2) compute binned estimates of their distribution, 3)
compute Jensen-Shannon divergences between all distribution pairs,
4) convert the samples into a vector space with MDS, and 5) apply
LDA or DCA. This method is described in Section 5.1.

• If the parameter space is not fixed or the model is unidentifiable,
and the output space is high-dimensional, 1) generate output sam-
ples from each model in each chain and pool them. 2) Visualize the
samples in the data space with LDA or DCA. Details of the method
are in Section 5.3.

Fig. 9. A summary of the proposed ways to visualize MCMC simulations.

Implementations of LDA are available for example in the MASS package for R,
available from http://cran.r-project.org/web/packages/VR/index.html.
An implementation of DCA is available from
http://www.cis.hut.fi/projects/mi/software/dca/.
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Appendix A Jensen-Shannon divergence and mutual information

We show that, in a special case, the Jensen-Shannon divergence between two
distributions is equal to a mutual information measure; this is essentially a
particular case of the result shown in [22].

Let y be a scalar variable whose distribution is a mixture of several classes,
including c1 and c2. In particular, in this paper y can be a scalar parameter of
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a posterior sample s̆ (or a scalar-valued function of several parameters of s̆),
and the classes c1 and c2 can be two MCMC chains generating such samples.
Denote proportions of the class prior probabilities by pc1 = p(c1)/(p(c1)+p(c2))
and pc2 = p(c2)/(p(c1) + p(c2)), and set q(y) = pc1p(y|c1) + pc2p(y|c2) =
p(y|c1 ∨ c2), where c1 ∨ c2 refers to the distribution containing only the classes
c1 and c2.

The Jensen-Shannon divergence between p(y|c1) and p(y|c2), with weights pc1

and pc2, is

DJS(p(y|c1), p(y|c2); pc1, pc2) = pc1DKL (p(y|c1), q(y))+pc2DKL (p(y|c2), q(y))

= pc1

∫

p(y|c1) log
p(y|c1)

q(y)
dy + pc2

∫

p(y|c2) log
p(y|c2)

q(y)
dy

=
∫

∑

c=c1,c2

p(y|c)pc log
p(y|c)

q(y)
dy

=
∫

∑

c=c1,c2

p(y, c|c1 ∨ c2) log
p(y, c|c1 ∨ c2)

p(y|c1 ∨ c2)pc

= I(y, c|c1 ∨ c2) (A.1)

which is the mutual information between y and the index c that tells which
category y is from, given the assumption that y is from c1 or c2.

Appendix B Connection between LDA and DCA

Reformulating LDA. For simplicity, consider only the first LDA component a.
Denote σ2

a
= aT Wssa/N , where N is the total number of samples. The LDA

objective equals the variance of class centers along the projection direction,
relative to the within-class variance:

aT Bssa

aT Wssa
=

1

Nσ2
a

aT Bssa =
∑

c

nc

N

(aT (s̄c. − s̄..))
2

σ2
a

. (B.1)

Since, for a scalar variable s, Ep(s1)p(s2)[(s1 − s2)
2] = 2Ep(s)[s

2]− 2(Ep(s)[s])
2 =

2Ep(s)[(s−Ep(s)[s])
2], the objective further equals (up to a constant multiplier)

the weighted sum of squared distances between class pairs:

2

Nσ2
a

aT Bssa =
∑

c1,c2

nc1nc2

N2

(aT (s̄c1. − s̄c2.))
2

σ2
a

. (B.2)

Since aT a = 1, each Gaussian class has a variance of σ2
a

along the projection
dimension. Then, for each pair of classes c1 and c2, the rightmost term equals
the squared Mahalanobis distance of the projected class centers along the
projection. This in turn equals the following symmetrized Kullback-Leibler
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divergence between the distributions along the projection [26]:

1

σ2
a

(aT (s̄c1. − s̄c2.))
2 = DKL(p(aT s|c1), p(aT s|c2)) + DKL(p(aT s|c2), p(aT s|c1))

(B.3)
LDA thus maximizes a sum of symmetrized Kullback-Leibler divergences be-
tween the classes along the projection, weighted by the fractions nc1nc2/N

2.

Improving the cost function. Optimizing the objective (B.2) does not result in
optimal discrimination. We will improve it in two steps. First, for each class
pair (c1, c2), replace the symmetrization in (B.3) with the Jensen-Shannon

divergence. This helps reinterpret the objective in a form that can be easily
generalized. For brevity, denote y = aT s and denote proportions of the class
prior probabilities by pc1 = p(c1)/(p(c1)+p(c2)) and pc2 = p(c2)/(p(c1)+p(c2)).
As shown in Appendix A, the Jensen-Shannon divergence here is

DJS(p(y|c1), p(y|c2); pc1, pc2) = I(y, c|c1 ∨ c2) (B.4)

which is the mutual information between a projected sample and its class,
when only the classes c1 and c2 are possible. LDA then finds (roughly, due to
the different symmetrization) the direction that maximizes the sum of pair-
wise mutual informations between classes, weighted by the class proportions.
This suggests the natural extension to consider more than just pairwise class
interactions, and maximize the complete mutual information I(c, y) between
classes and projected data. It can be shown that as the amount of data grows,
the likelihood objective of DCA asymptotically equals I(c, y), up to a con-
stant; see [18]. DCA is then a finite-data implementation of an extension of
LDA.

Appendix C Justification for the indirect visualization method

The method in Section 5.3 visualizes convergence indirectly, from pooled pre-
dictive samples instead of the underlying chains of models. It is meant for
situations where directly visualizing the chains is not feasible.

Here we justify the method: we show its cost function is a lower bound to a
cost function which would directly use the models instead of samples generated
from them. Thus, if the visualization finds differences between chains, the
direct measure would indicate non-convergence.

The proof is in two parts. First, we show that a difference measure with no
assumptions about the model family leads to the DCA visualization method
for pooled predictive samples. Next, we show that a similar difference measure,
specific to Gaussian models, leads to the LDA visualization method for pooled

30



predictive samples. The latter method is recommended in practice since it is
faster.

General result. The mutual information I(c, s̆) between models and the indices
of the chains that generated them would be a suitable convergence measure, as
discussed in Section 2.3. However, here the model space is difficult to work with
(it may have variable-dimensional parameterizations or unidentifiability). We
therefore consider a third variable: x, denoting a posterior predictive sample
generated by some model in some chain.

We can derive a lower bound: I(c, s̆) ≥ I(c,x), as follows: we have p(c, s̆,x) =
p(c)p(s̆|c)p(x|s̆) since x is conditionally independent of c given s̆. Therefore
p(c, s̆,x) = p(c|s̆)p(s̆,x), and it then follows that

I(c, s̆) − I(c,x) = Ep(c,s̆,x)

[

log

(

p(c, s̆)p(c)p(x)

p(c)p(s̆)p(c,x)

)]

= Ep(s̆,x)

[

Ep(c|s̆)

[

log

(

p(c|s̆)

p(c|x)

)]]

= Ep(s̆,x) [DKL(p(c|s̆), p(c|x))] ≥ 0 . (C.1)

If x is a vector variable, we further have I(c,x) ≥ maxW I(c,Wx) where
W are projections to a smaller-dimensional space (the proof is similar to the
above, with x and Wx in place of s̆ and x, respectively). The DCA visual-
ization method maximizes a cost function which asymptotically approaches
I(c,Wx); therefore DCA asymptotically maximizes a lower bound to I(c, s̆).

Gaussian-specific result that leads to LDA. We do not know a direct connection
from the mutual information discussed above to the LDA method for pooled
predictive samples. However, a weaker justification for LDA can be derived
from an alternative cost function suitable for measuring convergence. Here
we propose such a cost function, show that it is suitable under a Gaussianity
assumption, and derive a connection to LDA.

We propose that convergence can be measured by how mutually different the
models within each chain are on average, compared to how different all models
are on average. If models within chains are less different, the chains have not
converged. The difference between two models s̆1 and s̆2 can be measured by
the difference between the data distributions they generate, that is, ps̆1

and
ps̆2

. We will consider one-dimensional marginal distributions along a direction
w, namely pw

s̆1
and pw

s̆2
, instead of the full distributions. (This will lead to a

connection to a single LDA component; behavior with several components is
discussed at the end of the proof.)

We will measure the difference between the distributions by symmetrized
Kullback-Leibler divergence DSKL(p, q) = DKL(p, q)+DKL(q, p). The compar-
ison of average differences (within chains vs. between any models irrespective
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of chains) can then be done by the following measure:

Ep(c1)p(c2)p(s̆1|c1)p(s̆2|c2)[DSKL(pw

s̆1
, pw

s̆2
)]

Ep(c)p(s̆1|c)p(s̆2|c))[DSKL(pw

s̆1
, pw

s̆2
)]

− 1 . (C.2)

We will next show that (C.2) is suitable for measuring convergence. Assume
that each model s̆ in each chain c is Gaussian with the same covariance matrix
Σ, but different means θs̆. It is easy to see that the measure is zero when the
chains are identical. To show it is always at least zero, denote σ2

w
= wTΣw.

As noted in Appendix B, for Gaussians with equal variances, DSKL becomes
a Mahalanobis distance. The measure (C.2) then becomes

Ep(c1)p(c2)p(s̆1|c1)p(s̆2|c2)[(w
T (θs̆1

− θs̆2
))2/σ2

w
]

Ep(c)p(s̆1|c)p(s̆2|c)[(w
T (θs̆1

− θs̆2
))2/σ2

w
]

− 1 =
V arp(c,s̆)[w

T θs̆]

Ep(c)[V arp(s̆|c)[wT θs̆]]
− 1

=
V arp(c)[Ep(s̆|c)[w

T θs̆]] + Ep(c)[V arp(s̆|c)[w
Tθs̆]]

Ep(c)[V arp(s̆|c)[wT θs̆]]
− 1

=
V arp(c)[Ep(s̆|c)[w

T θs̆]]

Ep(c)[V arp(s̆|c)[wT θs̆]]
≥ 0 . (C.3)

where the first equality follows from the general relation between variance and
average squared distance for scalar variables (see Appendix B) and the second
equality follows by adding and subtracting the chain-wise mean inside the
difference used in the definition of variance. Hence (C.2) is a justified measure
of convergence.

Finally, we show that, under the same Gaussianity assumption, LDA optimizes
a lower bound to the convergence criterion (C.2) and therefore is a justified
visualization method. The first LDA component for chains of generated data
maximizes

V arp(c)[Ep(x|c)[w
Tx]]

Ep(c)[V arp(x|c)[wTx]]
=

V arp(c)[Ep(s̆|c)[w
Tθs̆]]

Ep(c)[Ep(x,s̆|c)[(wTx − Ep(x,s̆|c)[wTx])2]]

=
V arp(c)[Ep(s̆|c)[w

Tθs̆]]

Ep(c)[Ep(x,s̆|c)[(wTx −wT θs̆ + wT θs̆ − Ep(s̆|c)[wT θs̆])2]]

=
V arp(c)[Ep(s̆|c)[w

Tθs̆]]

Ep(c)[Ep(x,s̆|c)[(wTx − wTθs̆)2 + (wTθs̆ − Ep(s̆|c)[wT θs̆])2]]

=
V arp(c)[Ep(s̆|c)[w

Tθs̆]]

σ2
w

+ Ep(c)[V arp(s̆|c)[wT θs̆]]
≤

V arp(c)[Ep(s̆|c)[w
Tθs̆]]

Ep(c)[V arp(s̆|c)[wTθs̆]]
. (C.4)

Therefore, the first LDA component maximizes a quantity that is a lower
bound to (C.3). Both quantities are tightly lower bounded by zero.

For several LDA components we do not know as strict optimality results, but
we do know the following. Assume the data has been preprocessed so that the
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within-chain covariance matrix is an identity matrix. Then LDA component
directions are orthogonal and they can be found one by one, by removing the
previous components from the data. Each component by itself is optimal for
data where the previous ones have been removed, but the components together
may not be optimal for discriminating the chains of pooled posterior predictive
samples. Similarly, each LDA component maximizes a lower bound to (C.2)
when that measure is computed for data where the previous LDA components
have been removed, but the components together do not maximize a lower
bound to a generalization of (C.2) to multidimensional marginal distributions.
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