
DISCOVERING CONDITION-DEPENDENT BAYESIAN NETWORKS FOR GENE

REGULATION

Antti Ajanki, Janne Nikkilä, and Samuel Kaski

Adaptive Informatics Research Centre & Helsinki Institute for Information Technology

Laboratory of Computer and Information Science

Helsinki University of Technology

P.O. Box 5400, FI-02015 TKK, Finland

antti.ajanki@tkk.fi, janne.nikkila@tkk.fi, samuel.kaski@tkk.fi

ABSTRACT

Among the main interests in many biological studies are

the structure of gene regulatory network, and in particular

differences in the regulatory interactions between differ-

ent conditions. However, since the number of available

samples is always very small and estimating the network

structure is extremely hard, most current algorithms have

to assume that the gene regulation does not change be-

tween conditions. We propose a new Bayesian network

algorithm which (i) utilizes all the samples for estimat-

ing regulatory relations that remain the same across con-

ditions, and (ii) explicitly searches for regulatory relation-

ships that are active only in one of the conditions. The

result is an easily interpretable map of changes in regula-

tion in several conditions.

1. INTRODUCTION

A Bayesian network is a graphical representation of a mul-

tivariate joint probability distribution. The nodes are the

random variables and edges encode the dependency rela-

tions between them. They are a commonly used for mod-

eling the regulation of gene expression. Value of a node in

the network corresponds to the expression of a gene and

the edges describe the regulatory relationships in which

the protein product of the parent genes binds to the child

gene.

Most previously introduced Bayesian network mod-

els for modeling the regulation of gene expression assume

that the regulation does not change between the condi-

tions. There have been some methods which model con-

text specific regulation, but they have done so in an unsu-

pervised manner by clustering similarly regulated genes

together (see for example [1]).

In this paper, we will introduce a method that is able

to discover differences in regulation if explicit classes, for

example the measurement conditions, are available. This

is achieved by a new representation for the conditional

probability distributions for the nodes on a Bayesian net-

work. We introduce also a structure search algorithm that

takes advantage of the new representation.

The algorithm takes genes’ expression profiles and their

classes as input and fits a special Bayesian network to

them. Only a subset of the edges in the resulting network

are associated with all classes; the rest are present in only

a subset of the classes. This makes it straightforward to

interpret differences in the regulation between the classes.

Using toy data we show that our new method will re-

cover a greater proportion of correct edges than a state-

of-the-art method trained separately for each class, espe-

cially when only a small number of training examples are

available. We apply the method to discover the differences

in regulation of Saccharomyces cerevisiae yeast between

normal and stressful growth conditions.

2. RELATED WORK

Most genes in a cell are naturally divided into functional

modules which are co-regulated and co-expressed. It is

important to take this organization into account when mod-

eling the activity of the cell. Module networks [1] have

been previously proposed as a way to predict the regula-

tory network and, at the same time, group the genes into

biologically plausible modules.

A module network is a Bayesian network where the

nodes are gathered into modules and the values of the

nodes inside one module follow the same distribution. Par-

ticularly, this means that all nodes in a module have the

same parent nodes. The module assignment is found dur-

ing the optimization of the network. The optimization is

based on the Bayesian score, or the logarithm of the poste-

rior probability of the dependency structure S and assign-

ment A of the nodes in the modules given the observed

values D of the nodes:

score(A,S|D) = log p(D|A,S) + log p(A,S) (1)

The optimization is done by alternating two greedy

steps. In the structure search step the score is computed

for every possible local modification i.e. all additions and

deletions of single edge in the current network. The mod-

ification which results in the highest increase in the score

is selected for the next iteration step. In the module as-

signment search step a better assignment for the nodes is

sought by iterating over the nodes and trying to move each

node at a time to the other modules. If the new module

class node

regulators

targets

Figure 1. In a condition-dependent network the nodes are divided into regulator modules and target modules. The dashed

edges from regulators to targets modules, which have the class node as the additional parent, are condition-dependent, i.e.

may be present only in some classes.

assignment leads to a higher score the move is accepted,

otherwise the node is returned to the original module. This

step is continued until no assignment change improves the

score. The two steps are repeated until convergence. Dur-

ing the optimization, care must be taken not to introduce

any cycles in the network.

The score can be decomposed into terms, each of which

depends only on the observations of nodes inside one mod-

ule. This means that computing the score changes during

the algorithm is very efficient; only scores for the mod-

ules which are affected by the local modification need to

be recomputed.

The nodes in a module network can include regres-

sion trees with separate probability distributions associ-

ated with each leaf. The probability distribution for a

node is chosen by traveling through the tree along the path

defined by the values of the parent nodes. Some combi-

nations of the parent values may lead to the same distri-

bution. In Section 3 we will introduce a similar scheme

for sharing distributions between different parent combi-

nations, but our approach will include a class variable ex-

plicitely unlike the earlier module network algorithm.

3. CONDITION-DEPENDENT NETWORKS

3.1. Class dependency in the distributions of the nodes

By the term condition-dependent we mean the kind of de-

pendency where the node depends on a parent in one class

but not in an other class. For example, the values of the

node X may depend on the values of the both A and B on

class 1 but only on the value of A on class 2:

{

p(X |C = 1, A, B) = p1(X |A, B)

p(X |C = 2, A, B) = p2(X |A).

Because we want to explicitly model condition depen-

dencies we add a new discrete-valued class node to the

network to stand for the class of the observation. The chil-

dren of the class node have separate distributions, which

may depend on different parent nodes, for each class.

A more general framework for selecting a distribution

based on the values of the parent nodes have been sug-

gested previously for regularizing the model [2]. Our mo-

tivation is to make the model easier to interpret.

3.2. Condition-dependent network structure

Because the gene expression data sets typically contain

maximally some dozens of measurements of the expres-

sion for thousands of genes, it is not possible to learn a

very detailed Bayesian network. Therefore, we choose to

bring prior knowledge into the model by constraining the

network structure in two ways. First, the nodes are di-

vided into modules like in the module network described

in Section 2, but we further constrain the model by having

two types of modules. The genes which are suspected to

function as regulators in some condition must belong to

regulator modules, the other genes must belong to target

modules. Like in the original module networks, we as-

sume that a list of candidate regulators is available. Only

they may belong to regulatory modules. The class node

is always kept in isolation in its own module. Secondly,

only the regulator modules are allowed to depend freely

on the class node; the target modules may depend on the

class only when they have a regulator as a parent as well.

This constrains the model to explain the class-dependent

changes in the expression of target genes through regula-

tory relationships.

In Subsection 3.1 it was mentioned that the child mod-

ules of the class node may have different parent nodes in

different classes. The edges that may be present only in

a subset of classes are called condition-dependent regula-

tory edges. These edges are dashed in the example net-

work in Figure 1.

3.3. Training algorithm

The basic idea of the training algorithm for condition-

dependent networks is similar to that of the training of

the module network (see Section 2). The iteration alter-

nates between structure search and assignment optimiza-

tion. The first step tries to add or remove edges in the

network and the second step moves nodes from one mod-

ule to another. In both steps the criterion for acceptance is

that the proposed modification must increase the Bayesian

number of modules

s
e
n
s
it
iv

it
y
 r

a
ti
o

5
;
3

7
;
4

1
0

;
5

1
2

;
6

1
5

;
7

2
0

;
8

5
0

;
1

0

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

2
.4

30

60

100

300

number of modules

s
e
n
s
it
iv

it
y
 r

a
ti
o

5
;
3

7
;
4

1
0

;
5

1
2

;
6

1
5

;
7

2
0

;
8

5
0

;
1

0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

1
.0

5
1

.1
0

1
.1

5

30

60

100

300

Figure 2. Sensitivity ratio between the condition-dependent network and the multinet (on the left) and between the

condition-dependent network with and without condition-dependent edges (on the right). Values above 1 indicate that

the regular condition-specific network is better. The X-axis shows the number of the target (the first figure) and regulator

modules (the second figure) in the learned network. The curves correspond to different sample sizes used in training.

score. Similarly to the module network approach, the

number of modules must be fixed in advance.

The Bayesian score for the case when the distribution

of the nodes may depend on the class is

score(A,S,L|D) =

log p(D|A,S,L) + log p(L|A,S) + log p(A,S), (2)

where L encodes the class dependencies. Except for the

middle term, the class dependence prior, this is similar to

(1), the Bayesian score of a module network. We choose

to use a Minimum Description Length-based formulation

that has been proposed for log p(L|A,S) before [2]. The

score for a module that does not depend on the class is

computed from all observations. The score for a class de-

pendent module is sum of scores of the individual classes.

The potential condition-dependency of the distribu-

tions requires special consideration in the structure search.

Whenever the optimization algorithm is considering adding

or removing a parent for a child of the class node it must

re-select best parents for each class. This requires evaluat-

ing the score function for all combinations of class values

and parent subsets. While the cost of this step is exponen-

tial in the number of parent nodes we can still control it

by restricting the maximum number of parents for a node

to be smaller than some constant.

The assignment optimization step is almost identical

to the similar step in training of the module networks. The

only difference is that the candidate regulators and the tar-

get genes are not allowed to mix in the same module.

4. EXPERIMENTS

4.1. Toy data

We generated a random artificial network of 400 nodes

which were divided into 5 regulator modules and 10 tar-

get modules. A random subset of edges, but not the node

assignments, were modified to get a network for the sec-

ond class. Sets of 30, 60, 100 and 300 random samples

were generated from the probability distributions of these

two networks to be used in the training.

Next, we trained a condition-dependent network us-

ing the simulated samples with the assumption that in this

simple setup the training algorithm should quite well be

able to find the correct modules and identify which of the

edges are condition-dependent. We used several different

numbers of modules close to the correct module count.

We had two comparison network models which were

trained using the same samples. The first was a multinet

which consists of two separate Bayesian networks (with-

out the class node), each trained with only the samples

from one class. The networks were otherwise like normal

module networks but the nodes were divided into regu-

lators and targets as described in Section 3.2. Because

only a subset of the samples was used for training each of

the networks, one could assume that this model may be

more likely to overfit than the condition-dependent net-

work. The second comparison model was similar other-

wise in structure to the condition-dependent network but

the parents were forced to be the same in all classes. It is

much harder to interpreted this kind of a network because

the condition-dependent edges are not clearly labeled.

The learned networks were compared to the true gen-

erating networks by computing sensitivity and specificity

of the edges averaged over the two classes. Sensitivity is

the proportion of edges that are recovered by the training

and specificity is the percentage of missing links in the

original network that are also missing in the learned net-

work.

For the smallest training set of 30 samples the average

sensitivity of the condition-dependent network with cor-

rect number of modules in 10 trials was 27%, and for the

training set of 300 samples the sensitivity was about 95%.

The specificities for different sample sizes ranged from

90% to 99%. The sensitivities of the multinet were lower

especially for small sample sizes; the left-hand side in the

Figure 2 plots the sensitivity of the condition-specific net-

work divided by the sensitivity of the multinet for different

sample sizes and numbers of modules in the learned net-

work. The results show that the condition-dependent net-

work is better at avoiding overfitting and achieves higher

sensitivity with a small number of samples. When plenty

of samples are available the models have similar perfor-

mance.

The right plot in the Figure 2 shows the sensitivity

ratio between the condition-dependent network with and

without class-specific distributions. The sensitivities are

quite similar for both models, which means that permit-

ting the condition-dependent edges in the model does not

affect the performance very much but does make it a lot

easier to find the dependency differences. The wild oscil-

lations with the smallest samples size are probably due to

overfitting. The specificities are above 90% for all tested

models with the differences between the proposed and com-

parison models being less than 5 percent (data not shown).

4.2. Regulation of stress in yeast

We tested the method by searching for differences in reg-

ulation in the Saccharomyces cerevisiae yeast using gene

expression measurements from stressful and normal growth

conditions. Finding new regulatory mechanisms for stress

might help to characterize the stress response in yeast.

The stress samples are measured by Gasch et al. [3] and

the samples of the normal conditions are the cell cycle

samples by Spellman et al. [4]. In total, we had 80 stress

samples and 53 cell cycle samples. After leaving out genes

which showed negligible variance 1268 genes remained.

We used a list of candidate regulators composed by Segal

et al. [1], which included 69 of the genes we had selected.

We trained a condition-dependentnetwork with 15 reg-

ulator modules and 25 target modules, which translates

to 50 genes per target module on average. This is a bio-

logically plausible figure. The optimization resulted in a

network having 143 edges (excluding the outbound edges

from the class node), of which 25 were associated with

only the stress class, 3 with only the cell cycle class and

the rest with both classes. To get some indication on the

validity of the results we compared the predicted regula-

tor genes of the condition-dependentedges, to information

available at the Saccharomyces Genome Database [5]. All

3 of the predicted cell cycle regulators have been pre-

viously annotated as regulators of the cell cycle, and 20

out of 25 predicted stress regulators have been annotated

to operate as regulators in stressful environmental condi-

tions.

5. CONCLUSION

We have proposed a Bayesian network structure which is

targeted towards discovering condition-specific gene reg-

ulatory relationships and derived an optimization algorithm

which can identify condition-dependent edges. The con-

dition-dependent edges are easier to interpret in our model

that in previous models.

Using a toy example we have shown that the new model

is able to find larger proportion of correct edges than a

multinet model, especially when the number of observa-

tions is low. We also used the model to discover regulation

differences in yeast, between stressful and normal growth

conditions, with real gene expression data. The results

seem promising as the majority of the edges which the

method associated with only one of the conditions have

been annotated to the same condition in the existing liter-

ature.

6. ACKNOWLEDGMENTS

This work was supported in part by the IST Programme of

the European Community, under the PASCAL Network

of Excellence, IST-2002-506778. Part of the work was

done at the Department of Computer Science, University

of Helsinki, under a grant from the University’s Research

Funds. This publication only reflects the authors views.

All rights are reserved because of other commitments.

7. REFERENCES

[1] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Bot-

stein, D. Koller, and N. Friedman, “Module networks:

identifying regulatory modules and their condition-

specific regulators from gene expression data,” Nature

Genetics, vol. 34, pp. 166–176, 2003.

[2] N. Friedman and M. Goldszmidt, “Learning Bayesian

networks with local structure,” in Learning in Graph-

ical Models, M. I. Jordan, Ed., pp. 421–459. MIT

Press, Cambridge, MA, USA, 1999.

[3] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-

Harel, M. B. Eisen, G. Storz, D. Botstein, and

P. O. Brown, “Genomic expression programs in the

response of yeast cells to environmental changes,”

Molecular Biology of the Cell, vol. 11, pp. 4241–

4257, 2000.

[4] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer,

K. Anders, M. B. Eisen, P. O. Brown, D. Botstein,

and B. Futcher, “Comprehensive identification of

cell cycle-regulated genes of the yeast Saccharomyces

cerevisiae by microarray hybridization,” Molecular

Biology of the Cell, vol. 9, pp. 3273–97, 1998.

[5] S. S. Dwight, R. Balakrishnan, K. R. Christie, M. C.

Costanzo, K. Dolinski, S. R. Engel, B. Feierbach,

D. G. Fisk, J. Hirschman, E. L. Hong, L. Issel-

Tarver, R. S. Nash, A. Sethuraman, B. Starr, C. L.

Theesfeld, R. Andrada, G. Binkley, Q. Dong, C. Lane,

M. Schroeder, S. Weng, D. Botstein, and J. M. Cherry,

“Saccharomyces genome database: Underlying prin-

ciples and organisation,” Briefings in Bioinformatics,

vol. 5, no. 1, pp. 9–22, 2004.

