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Abstract. We apply a recent formalization of visualization as infor-
mation retrieval to linear projections. We introduce a method that op-
timizes a linear projection for an information retrieval ta sk: retrieving
neighbors of input samples based on their low-dimensional visualization
coordinates only. The simple linear projection makes the method easy to
interpret, while the visualization task is made well-de�ne d by the novel
information retrieval criterion. The method has a further a dvantage: it
projects input features, but the input neighborhoods it pre serves can be
given separately from the input features, e.g. by external d ata of sample
similarities. Thus the visualization can reveal the relati onship between
data features and complicated data similarities. We furthe r extend the
method to kernel-based projections.
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1 Introduction

Linear projections are widely used to visualize high-dimensional data. They have
the advantage of easy interpretation: each axis in the visualization is a simple
combination of original data features, which in turn often have clear meanings.
Linear projections are also fast to apply to new data. In contrast, nonlinear pro-
jections can be hard to interpret, if a functional form of the mapping is available
at all. Some nonlinear methods also need much computation orapproximation
of the mapping to embed new points. Kernel-based projections are a middle
ground between linear and nonlinear projections; their computation is linear in
the kernel space, and their interpretability depends on thechosen kernel.

The crucial question in linear visualization is what criterion to use for �nd-
ing the projection. Traditional answers include preservation of maximum vari-
ance as in principal component analysis (PCA); preservation of an independence
structure as in independent component analysis; preservation of distances and
pairwise constraints as in [1]; or maximization of class predictive power as in
linear discriminant analysis, informative discriminant analysis [2], neighborhood
components analysis [3], metric learning by collapsing classes [4], and others.

When the linear projection is intended for visualization, the previous criteria
are insu�cient, as they are only indirectly related to visua lization. One must
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�rst formalize what is the task of visualization, and what ar e good performance
measures for the task. This question has recently been answered in [5], where the
task of visualization is formalized as aninformation retrieval task , and goodness
measures are derived which are generalizations ofprecision and recall. Based on
the goodness measures one can form an optimization criterion, and directly op-
timize the goodness of a visualization in the information retrieval task; however,
so far this approach has only been used for nonlinear embedding where output
coordinates are directly optimized without any parametric mapping [5, 6].

We introduce a novel method for linear and kernel-based visualization called
Linear Neighbor Retrieval Visualizer (LINNEA): we apply th e formalization of
visualization as an information retrieval task, and optimize precision and recall
of such retrieval. A useful property is that the input featur es being projected and
the distances used to compute the input neighborhoodscan be given separately:
for example, features can be word occurrence vectors of textdocuments and
distances can be distances of the documents in a citation graph. In special cases,
LINNEA is related to the methods stochastic neighbor embedding[7] and metric
learning by collapsing classes[4], but it is more general; it can be used for
unsupervised and supervised visualization, and allows theuser to set the tradeo�
between precision and recall of information retrieval. We show by preliminary
experiments that LINNEA yields good visualizations of several data sets.

2 Visualization as Information Retrieval

We briey summarize the novel formalization of visualizati on introduced in [5].
The task is visualization of neighborhood or proximity relationships within

a high-dimensional data set. For a set of input pointsx i 2 Rd0 , i = 1 ; : : : ; N ,
a visualization method yields output coordinates y i 2 Rd, which should reveal
the neighborhood relationships. This is formalized as aninformation retrieval
task: for any data point, the visualization should allow the user to retrieve its
neighboring data points in the original high-dimensional data. Perfect retrieval
from a low-dimensional visualization is usually not possible, and the retrieval
will make two kinds of errors: not retrieving a neighbor decreasesrecall of the
retrieval, and erroneously retrieving a non-neighbor decreasesprecision.

To apply the information retrieval concepts of precision and recall to visual-
ization, in [5] they are generalized to continuous and probabilistic measures as
follows. For each point i , a neighborhood probability distributionpi;j over all other
points j is de�ned; in [5] an exponentially decaying probability based on input
distancesd(x i ; x j ) is used. In this paper we allow thed(x i ; x j ) to arise from any
de�nition of distance between points i and j . The retrieval of points from the
visualization is also probabilistic: for each point i a distribution qi;j is de�ned
which tells the probability that a particular nearby point j is retrieved from
the visualization. The qi;j are de�ned similarly to the pi;j , but using Euclidean
distancesjjy i � y j jj between visualization coordinatesy i . This yields

pi;j =
e� d2 (x i ;x j )=2� 2

i

P
k6= i e� d2 (x i ;x k )=2� 2

i
; qi;j =

e�jj y i � y j jj 2 =2� 2
i

P
k6= i e�jj y i � y k jj 2 =2� 2

i
(1)
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where � i are scale parameters which can be set by �xing the entropy of the pi;j

as suggested in [5]. Sincepi;j and qi;j are probability distributions, it is natural
to use Kullback-Leibler divergences to measure how well theretrieved distri-
butions correspond to the input neighborhoods. The divergence DKL (pi ; qi ) =P

j 6= i pi;j log(pi;j =qi;j ) turns out to be a generalization of recall and DKL (qi ; pi )
turns out to be a generalization of precision. The values of the divergences are
averaged over pointsi which yields the �nal goodness measures.

3 The Method: Linear Neighborhood Retrieval Visualizer

The generalizations of precision and recall above can be directly used as opti-
mization goals, but as both precision and recall cannot usually be maximized
together, the user must set a tradeo� between them. Given thetradeo� a sin-
gle cost function can be de�ned and visualizations can be directly optimized in
terms of the cost function. In the earlier works [5, 6] this approach was used
to compute a nonlinear embedding, that is, the output coordinates y i of data
points were optimized directly. In this paper we instead consider a parametric,
linear projection y i = Wx i whereW 2 Rd� d0 is the projection matrix. We wish
to optimize W so that the projection is good for the information retrieval task
of visualization. We call the method Linear Neighborhood Retrieval Visualizer
(LINNEA). We use the same cost function as in [5], that is,

E = �
X

i

DKL (pi ; qi ) + (1 � � )
X

i

DKL (qi ; pi )

=
X

i

X

j 6= i

�
� �p i;j logqi;j + (1 � � )qi;j log

qi;j

pi;j

�
+ const: (2)

where the tradeo� parameter � is to be set by the user to reect whether precision
or recall is more important. We simply use a conjugate gradient algorithm to
minimize E with respect to the matrix W . The gradient @E

@W is

X

i;j 6= i

h
� (pi;j � qi;j )+ (1 � � )qi;j

�
DKL (qi ; pi ) � log

qi;j

pi;j

�i (y i � y j )(x i � x j )T

� 2
i

(3)

which yields O(N 2) computational complexity per gradient step.

Optimization details. In this paper we simply initialize the elements of W to
uniform random numbers between 0 and 1; more complicated initialization, say
by initializing W as a principal component analysis projection, is naturallypos-
sible. To avoid local optima, we use two simple methods. Firstly, in each run we
�rst set the neighborhood scales to large values, and decrease them after each
optimization step until the �nal scales are reached, after which we run 40 con-
jugate gradient steps with the �nal scales. Secondly, we runthe algorithm from
10 random initializations and take the result with the best cost function value.
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3.1 Kernel Version

We now present a kernel version of LINNEA. Instead of simple linear projections
we optimize projections from a kernel space: we sety i = W � (x i ) where � (�) is
some nonlinear transformation to a potentially in�nite-di mensional space with
inner products given by a kernel function k(x i ; x j ) = � (x i )T � (x j ). As usual,
the kernel turns out to be all we need and knowing� is not required.

The task is the same as before: to optimize the projection (visualization) so
that it is good for information retrieval according to the co st function (2).

It is reasonable to assume that the rowsw T
l of W can be expressed as

linear combinations of the � (x i ), so that w l =
P

m al
m � (xm ) where al

m are the
coe�cients. Then the projection has the simple form

y i =
hX

m

a1
m � (xm ); : : : ;

X

m

ad
m � (xm )

i T
� (x i ) = AK (x i ) (4)

where the matrix A 2 Rd� N contains the coe�cients A(l; m) = al
m and K (x i ) =

[k(x1; x i ); : : : ; k(xN ; x i )]T . As before, the coordinatesy i can be used to compute
the neighborhoodsqi;j , the cost function, and so on.

To optimize this kernel-based projection, it is su�cient to optimize the cost
function with respect to the coe�cient matrix A . We can again use a standard
conjugate gradient method: the gradient with respect toA is the same as equa-
tion (3), except that x i and x j are replaced byK (x i ) and K (x j ). Since A has
N columns, the computational complexity becomesO(N 3) per gradient step.

3.2 Properties of LINNEA

A crucial property of LINNEA is that the input features x i being projected and
the distancesd(x i ; x j ) used to compute the input neighborhoods can be given
separately. At simplest d(x i ; x j ) can be the Euclidean distancejjx i � x j jj , but it
can also be based on other data: for example,x i can be word occurrence vectors
of text documents and d(x i ; x j ) can be distances of the documents in a citation
graph (we test this example in Section 4). When distances aredirectly computed
from input features, the projection is unsupervised. When distances are given
separately the projection is supervised by the distances; then the projection is
optimized to allow retrieval of neighbors which are based onthe separately given
distances, so it reveals the relationship between the features and the distances.

Note that a visualization based on the distances only, say multidimensional
scaling computed from citation graph distances between documents, would not
provide any relationship between the visualization and thefeatures (document
content); in contrast, the LINNEA visualization is directl y a projection of the
features, which is optimized for retrieval of neighbors based on the distances.

If we set � = 1 in (2), that is, we maximize recall, this yields the cost function
of stochastic neighbor embedding(SNE; [7]); thus LINNEA includes a linear
version of SNE as a special case. More generally, the cost function of LINNEA
implements a exible user-de�ned tradeo� between precision and recall.
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Another interesting special case follows if the input neighborhoods are derived
from class labels of data points. Consider a straightforward neighborhoodpi;j :
for any point i in class ci , the neighbors are the other points from the same
class, with equal probabilities. It is easy to show that if weset � = 1 in the cost
function (that is, we maximize recall), this is equivalent to maximizing

X

i

X

j 6= i

� ci ;c j log
e�jj y i � y j jj 2 =2� 2

i

P
j 06= i e�jj y i � y j 0 jj 2 =2� 2

i
(5)

where � ci ;c j = 1 if the classes (ci ; cj ) are the same and zero otherwise, and for
simplicity classes are assumed equi-probable. This is the cost function of metric
learning by collapsing classes(MCML; [4]) which was introduced as a supervised,
linear version of SNE. LINNEA includes MCML as a special case. We thus give
a new interpretation of MCML: it maximizes recall of same-class points.

Note that LINNEA yields meaningful solutions for the above kind of straight-
forward input neighborhoods because the mapping is a linearprojection of input
features. In contrast, methods that freely optimize output coordinates could yield
trivial solutions mapping all input points of each class to a single output point.
To avoid trivial solutions, such methods can e.g. apply topology-preserving su-
pervised metrics as in [6]; such complicated metrics are notneeded in LINNEA.

In summary, LINNEA can be used for both supervised and unsupervised
visualization; it is related to well-known methods but is more general, allowing
the user to set the tradeo� between the di�erent costs of information retrieval.

4 Experiments

In this �rst paper we do not yet make thorough comparisons between LINNEA
and earlier methods. We show the potential of LINNEA in four experiments;
we use principal component analysis (PCA) as a baseline. We use the non-
kernel version of LINNEA (Section 3), and set the user-de�ned tradeo� between
precision and recall to � = 0 (favoring precision only) in experiments 1-3 and
� = 0 :1 in experiment 4. Other parameters were defaults from the code of [5].

Experiment 1: Extracting the relevant dimensions. We �rst test LINNEA on
toy data where the visualization can perfectly recover the given input neighbor-
hoods. Consider a spherical Gaussian cloud of 500 points in the Hue-Saturation-
Value (HSV) color space, shown in Fig. 1 (left). One cannot represent all three
dimensions in one two-dimensional visualization, and without additional knowl-
edge one cannot tell which features are important to preserve, as the shape of
the data is the same in all directions. However, if we are alsogiven pairwise
distances between points, they determine which features topreserve. Suppose
those distances have secretly been computed based only on Hue and Value; then
the correct visualization is to take those two dimensions, ignoring Saturation.

We optimized a two-dimensional projection with LINNEA; we g ave the HSV
components of each data point as input features, and computed input neighbor-
hoods from the known pairwise distances. As shown in Fig. 1 (right), LINNEA
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Fig. 1. Projection of points in the Hue-Saturation-Value color spa ce. Left: the original
three-dimensional data set is a Gaussian point cloud; coordinates correspond to Hue,
Saturation (grayishness-colorfulness) and Value (lightn ess-darkness) of each dot. Pair-
wise input distances were computed from Hue and Value only. Right: LINNEA has
correctly found the Hue and Value dimensions in the projecti on and ignored Saturation.

found the Hue-Value dimensions and ignored Saturation, as desired; the weight
of Saturation in the projection directions is close to zero.

Experiment 2: S-curve. We visualize data set having a simple underlying man-
ifold: 1000 points sampled along a two-dimensional manifold, embedded in the
three-dimensional space as an S-shaped curve as shown in Fig. 2 (left). No ex-
ternal pairwise distances are given and input neighborhoods are computed from
the three-dimensional input features. The task is to �nd a visualization where
original neighbors on the manifold can be retrieved well. Unfolding the manifold
would su�ce; however, a linear projection cannot unfold the nonlinear S-curve
perfectly. The PCA solution in Fig. 2 (middle) leaves out the original Z-axis,
which is suboptimal for retrieving original neighbors as it leaves visible only one
of the coordinates of the underlying two-dimensional manifold. The LINNEA re-
sult in Fig. 2 (right) emphasizes directions Z and Y; this shows the coordinates
of the underlying manifold well and allows retrieval of neighbors of input points.

Experiment 3: Projection of face images.We visualize a data set of human faces
([8]; available at http://web.mit.edu/cocosci/isomap/datasets.html ). The
data set has 698 synthetic face images in di�erent orientations and lighting
directions; each image has 64� 64 pixels. We �rst �nd linear projections of
the face images using the pixel images as input features, without giving any
additional knowledge. As shown in Fig. 3 (top left), PCA reveals part of the
data structure, but the result is unsatisfactory for retrie ving neighboring faces,
since PCA has clumped together the back-lit faces. In contrast, as shown in
Fig. 3 (top right), LINNEA spreads out both front-lit and bac k-lit faces. The
projection directions can be interpreted as linear �lters of the images. For PCA
the �lter on the horizontal axis roughly responds to a left-f acing head; the �lter
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Fig. 2. Projections of an S-curve. Left: the original three-dimensional data. Middle:
PCA neglects the original Z-direction. Right: LINNEA �nds a projection where neigh-
bors on the underlying manifold can be retrieved well from th e visualization.

on the vertical axis roughly detects left-right lighting di rection. The LINNEA
�lters are complicated; more analysis of the �lters is needed in future work.

Projection to retrieve known pose/lighting neighbors. For the face data the pose
and lighting parameters of the faces are available. We can then compute pairwise
input distances based on these parameters, and use LINNEA to�nd a supervised
visualization of the pixel images that best allows retrieval of the pose/lighting
neighbors of each face. The LINNEA projection is shown in Fig. 3 (bottom).
The face images are arranged quite well in terms of the pose and lighting; the
top left{bottom right axis roughly separates left and right -facing front-lit faces,
and the top right{bottom left axis roughly separates left and right-facing back-lit
faces. The corresponding �lters are somewhat complicated;the �lters on the ver-
tical axis and horizontal axis seem to roughly detect edges and lighting direction
respectively. The underlying pose/lighting space is three-dimensional and cannot
be represented exactly by a two-dimensional mapping, thus the �lters are com-
promises between representing several aspects of pose/lighting. Note that run-
ning e.g. PCA on the known pose/lighting parameters would not yield �lters of
the pixel images, thus it would not tell how pixel data is related to pose/lighting;
in contrast, LINNEA optimizes �lters for retrieval of pose/ lighting neighbors.

Experiment 4: Visualization of scienti�c documents. We visualize the CiteSeer
data set which contains scienti�c articles and their citati ons. The data set is avail-
able at http://www.cs.umd.edu/projects/linqs/projects/lbc/i ndex.html .
Each article is described by a binary 3703-dimensional vector telling which words
appeared in the article; we used these vectors as the input features. To reduce
computational load we took the subset of 1000 articles having the highest num-
ber of inbound plus outbound citations. We provide separatepairwise input
distances, simply taking the graph distance in the citation graph: that is, two
documents where one cites the other have distance 1, documents that cite the
same other document have distance 2, and so on. As a simpli�cation we assumed
citation to be a symmetric relation, and as a regularization we upper bounded
the graph distance to 10. We use LINNEA (with � = 0 :1) to optimize a two-
dimensional visualization where neighbors according to this graph distance can
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Fig. 3. Projections of face images.Top: unsupervised projections of the pixel images
by PCA (left) and LINNEA (right). The linear projection dire ctions can be interpreted
as linear �lters of the images, which are shown for each axis. Bottom: a supervised pro-
jection by LINNEA. Pairwise distances were derived from kno wn pose/lighting param-
eters of the faces. LINNEA has optimized projections of the p ixel images, for retrieving
neighbors having similar pose/lighting parameters. See th e text for more analysis.

be best retrieved. The result is shown in Fig. 4. In the baseline PCA projection
(left sub�gure) citations are spread all over the data with l ittle visible structure,
whereas the LINNEA projection (right sub�gure) shows clear structure: clusters
where documents cite each other, and citation connections between clusters.
For this data each feature is a word; unfortunately the identities of the words
are unavailable. In general one can interpret the projection directions given by
LINNEA by listing for each direction the words having the lar gest weights.

5 Conclusions

We introduced a novel method for visualization by linear or kernel based projec-
tion. The projection is optimized for information retrieva l of original neighbor
points from the visualization, with a user-de�ned tradeo� b etween precision and
recall. The method can either �nd projections for input feat ures as such, or �nd
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Fig. 4. Projections of scienti�c documents. Documents are shown as dots and citations
between two documents are shown as lines.Left: PCA projection of document content
vectors does not reveal citation neighborhoods well. Right: projection by LINNEA
shows clusters of citing documents and connections betweenclusters.

projections that reveal the relationships between input features and separately
given input distances. The method yields good visualization of several data sets.
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