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ABSTRACT

Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. In this
context, in silico methods of phenotypic prediction and genotype–phenotype relationship
discovery are limited. In this work, we analyzed basal DNA repair proteins of most known
proteome sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to
learn a classifier that correctly predicts this bacterial phenotype. We formulated the
problem of predicting bacterial ionizing radiation resistance (IRR) as a multiple-instance
learning (MIL) problem, and we proposed a novel approach for this purpose. We provide
a MIL-based prediction system that classifies a bacterium to either IRRB or IRSB. The
experimental results of the proposed system are satisfactory with 91.5% of successful
predictions.
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1. INTRODUCTION

To date, genomic databases indicate the presence of thousands of genome projects. However, limited
computational works are available for the prediction of bacterial IRR (Sghaier et al., 2008, 2013;

Omelchenko et al., 2005; Makarova et al., 2007; Ghosal et al., 2005) and consequently the rapid determi-
nation of useful microorganisms for several applications (bioremediation of radioactive wastes). As men-
tioned in a previous article (Sghaier et al., 2008), we consider IRRB as non-spore-forming bacteria that can
protect their cytosolic proteins from oxidation and tolerate many DNA double-strand breaks (DSBs) after
exposure to high, acute ionizing radiation (IR) (dose greater than 1 kilogray (kGy) for 90% reduction (D10) in
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colony forming units [CFUs]). Partly, it seems that the shared ability of IRRB to survive the damaging effects
of IR is the result of positively selected basal deoxyribonucleic acid (DNA) repair pathways (Sghaier et al.,
2008) and high intracellular manganese concentration (Daly, 2012).

In this work, we study basal DNA repair proteins of IRRB and IRSB to develop a bioinformatics
approach for the phenotype prediction of IRR. Thus, we consider that each studied bacterium is
represented by a set of DNA repair proteins. Due to this fact, we formalize the problem of predicting
IRR in bacteria as an MIL problem in which bacteria represent bags and repair proteins of each
bacterium represent instances. Many MIL algorithms have been developed to solve several problems
such as predicting types of protein–protein interactions (PPI) (Yamakawa et al., 2007) and drug
activity prediction (Fu et al., 2012), mainly including diverse density (Maron and Pérez, 1998),
citation-kNN and Bayesian-kNN (Wang and Zucker, 2000), MI-SVM (Andrews et al., 2003), and
HyDR-MI (Zafra et al., 2013). Diverse density (DD) was proposed in Maron and Pérez (1998) as a
general framework for solving multi-instance learning problems. The main idea of DD approach is to
find a concept point in the feature space that are close to at least one instance from every positive bag
and meanwhile far away from instances in negative bags. The optimal concept point is defined as the
one with the maximum diversity density, which is a measure of how many different positive bags have
instances near the point, and how far the negative instances are away from that point. In Wang and
Zucker (2000), the minimum Hausdorff distance was used as the bag-level distance metric, defined as
the shortest distance between any two instances from each bag. Using this bag-level distance, the k-NN
algorithm predicts the label of an unseen bag. In Andrews et al. (2003), the authors proposed the
algorithm MI-SVM to modify support vector machines. The algorithm MI-SVM explicitly treats the
label instance labels as unobserved hidden variables subject to constraints defined by their bag labels.
The goal is to maximize the usual instance margin jointly over the unknown instance labels and a linear
or kernelized discriminant function. In Zafra et al. (2013), the authors proposed a feature subset
selection method for MIL algorithms called HyDR-MI (hybrid dimensionality reduction method for
multiple instance learning). The hybrid consists of the filter component based on an extension of the
ReliefF algorithm (Zafra et al., 2012) developed for working with MIL and the wrapper component
based on a genetic algorithm that optimizes the search for the best feature subset from a reduced set of
features, output by the filter component.

The above cited algorithms use an attribute-value format to represent their data. A most used approach to
represent protein sequences in an attribute-value format is to extract motifs that can serve as attributes.
Appropriately chosen sequence motifs may reduce noise in the data and indicate active regions of the
protein. A protein can then be represented as a set of motifs (Ben-Hur and Brutlag, 2003; Saidi et al., 2012)
or as a vector in a vector space spanned by these motifs (Saidi et al., 2010). However, the use of this
technique is not suitable in the context of phenotypic prediction of bacterial IRR. This is due to the fact that
the set of proteins of each bag must be represented (in the attribute-value format) with the same set of
attributes, which is possible only if all extracted motifs from the different bags of proteins were used
together as a unique set of motifs. As the different bags of proteins are processed disjointly, it is necessary
to design a novel approach for such cases.

In this article, we propose an MIL approach for predicting bacterial IRR using proteins implicated in
basal DNA repair. For this purpose, we used a local alignment technique to measure the similarity between
protein sequences of the studied bacteria. To the best of our knowledge, this is the first work that proposes
an in silico approach for phenotypic prediction of bacterial IRR.

The remainder of this article is organized as follows. Section 2 presents the materials and methods used
in our study. In section 3, we describe our experimental techniques and we discuss the obtained results.
Concluding points make the body of section 4.

2. MATERIALS AND METHODS

2.1. Terminology and problem formulation

The task of multiple instance learning (MIL) was coined by Dietterich et al. (1997) when they were
investigating the problem of drug activity prediction. In multiple-instance learning, the training set is
composed of n labeled bags. Each bag in the training set contains k instances and have a bag label yi ˛{–1,
+1}. We notice that instances of each bag have labels yij ˛{–1, +1}, but these values are not known during
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training. The most common assumption in this field is that a bag is labeled positive if at least one of its
instances is positive, which can be expressed as follows:

yi = max
j

(yij): (1)

The task of MIL is to learn a classifier from the training set that correctly predicts unseen bags. Although
MIL is quite similar to traditional supervised learning, the main difference between the two approaches can
be found in the class labels provided by the data. According to the specification given by Dietterich et al.
(1997), in a traditional setting of machine learning, an object m is represented by a feature vector (an
instance), which is associated with a label. However, in a multiple instance setting, each object m may have
k various instances denoted m1‚ m2‚ ! ! ! ‚ mk. The difference between the traditional setting of machine
learning and the multiple instance learning setting can be represented clearly in Figure 1, where the
difference between the input objects is shown.

In our work, we are interested in the prediction of the phenotype of IRR in a family composed of a set of
bacteria. Let DB = fX1‚ . . . ‚ Xng be a bacteria database. Each bacterium in the database is represented by a
set of proteins Xi = fpi1‚ ! ! ! ‚ pikg and belongs to a class label yi with yi = {IRRB,IRSB}. The problem of
phenotypic prediction of IRRB can be seen as an MIL problem in which bacteria represent bags, and basal
DNA repair proteins of each bacterium represent instances.

The problem investigated in this work is to learn a multiple-instance classifier in this setting. Given a
query bacterium Q = fp1‚ ! ! ! ‚ pkg, the classifier must use primary structures of basal DNA repair proteins in
Q and in each bag of DB to predict the label of Q.

2.2. MIL-ALIGN algorithm

Based on the formalization, we propose the MIL-ALIGN algorithm allowing to predict IRRB. The
proposed algorithm focuses on discriminating bags by the use of local alignment technique to measure the

FIG. 1. Differences between traditional supervised learning and multiple instance learning.
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similarity between each protein sequence in the query bag and corresponding protein sequence in the
different bags of the learning database.

In MIL-ALIGN algorithm we use the following variables for input data and for accumulating data during
the execution of the algorithm:

" the variable Q: corresponds to the query bag (the query bacterium), which is a vector of protein
sequences.

" the variable DB: corresponds to the bacteria database.
" the variable S: corresponds to a matrix used to store alignment score vectors.

Algorithm 1: MIL-ALIGN

Require: Learning database DB = f(X1‚ y1)‚ ! ! ! ‚ (Xn‚ yn)g, Query Q = fpq1‚ ! ! ! ‚ pqkg
Ensure: Prediction result R
1: for all pqi ˛Q do
2: for all Xj do
3: Sij)LocalAlignment(pqi‚ pXji) ==Xj = fpj1‚ ! ! ! ‚ pjkg and pXj i is the protein number i of bacterium Xj

4: end for
5: end for
6: R ) Aggregate(S)
7: return R

Informally, the algorithm works as follows (see Algorithm 1):

1. For each protein sequence pi in the query bag Q, MIL-ALIGN computes the corresponding alignment
scores (line 1 to 5).

2. Group alignment scores of all protein sequences of query bacterium into a matrix S (line 3). Line i of
S corresponds to a score vector of protein pi against all proteins pXj i of Xj with 1 £ j £ n. Element Sij

corresponds to the alignment score of protein pq i of Q with protein pXj i of bacterium Xj.
3. Apply an aggregation method to S in order to compute the final prediction result R (line 6 to 7). A

query bacterium is predicted as IRRB (respectively IRSB) if the aggregation result of similarity
scores of its proteins against associated proteins in the learning database is IRRB (respectively IRSB).

2.3. Experimental environment

Information on complete and ongoing IRRB genome sequencing projects was obtained from the GOLD
database (Liolios et al., 2008). We initiated our analyses by retrieving orthologous proteins implicated in
basal DNA repair in IRRB and IRSB with sequenced genomes. Proteins of the bacterium Deinococcus
radiodurans (B7) were downloaded from the UniProt website. PrfectBLAST tool (Santiago-Sotelo and
Ramirez-Prado, 2012) was used to identify orthologous proteins. Proteomes of other bacteria were
downloaded from the NCBI FTP website.

For our experiments, we constructed a database containing 28 bags (14 IRRB and 14 IRSB). Table 1
presents the used IRRB and IRSB. Each bacterium contains 25 to 31 instances that correspond to proteins
implicated in basal DNA repair in IRRB (see Table 2).

3. RESULTS AND DISCUSSION

3.1. Experimental techniques

Computations were carried out on an i7 CPU 2.49 GHz PC with 6 GB memory, operating on Linux
Ubuntu. In the classification process, we used the leave-one-out (LOO) technique (Han et al., 2011) also
known as jack-knife test. For each dataset (comprising n bags), only one bag is kept for the test and the
remaining part is used for the training. This action is repeated n times. In our context, the leave-one-out is
considered to be the most objective test technique compared to the other ones (i.e., hold-out, n-cross-
validation), as our training set contains a small number of bacteria.

For our tests, we used the basic local alignment search tool (BLAST) (Altschul et al., 1990) for
computing local alignments. We implemented two aggregation methods to be used with MIL-ALIGN: the
sum of maximum scores method and the weighted average of maximum scores method.
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Sum of maximum scores (SMS). For each protein in the query bacterium, we scan the corresponding
line of S, which contains the obtained scores against all other bacteria of the training database. The SMS
method selects the maximum score among the alignments scores against IRRB (which we call maxR) and
the maximum score among the scores of alignments against IRSB (which we call maxS). It then compares
these scores. If maxR is greater than maxS, it adds maxR to the total score of IRRB [which we call totalR(S)].
Otherwise, it adds maxS to the total score of IRSB [which we call totalS(S)]. When all selected proteins
were processed, the SMS method compares total scores of IRRB and IRSB. If totalR(S) is greater than
totalS(S), the prediction output is IRRB. Otherwise, the prediction output is IRSB.

Table 1. IRRB and IRSB Learning Set

Phenotype ID Bacterium Phylogenetic group D10 (kGy)a

IRRB B1 Chroococcidiopsis
thermalis PCC 7203

Cyanobacteria 4b (Billi et al., 2002)

B2 Deinococcus deserti VCD115 Deinococcus-Thermus >7.5 (Slade and Radman, 2011)
B3 Deinococcus geothermalis

DSM 11300
Deinococcus-Thermus 10–16 (Slade and Radman, 2011)

B4 Deinococcus gobiensis I 0 Deinococcus-Thermus 12.7 (Slade and Radman, 2011)
B5 Deinococcus maricopensis

DSM 21211
Deinococcus-Thermus *11 (Rainey et al., 2005)

B6 Deinococcus proteolyticus MRP Deinococcus-Thermus >15 (Brooks and Murray, 1981)
B7 Deinococcus radiodurans R1 Deinococcus-Thermus 10 (Ito et al., 1983)
B8 Geodermatophilus obscurus

DSM 43160
Actinobacteria 9 (Gtari et al., 2012)

B9 Kineococcus radiotolerans
SRS30216

Actinobacteria 2 (Phillips et al., 2002)

B10 Kocuria rhizophila DC2201 Actinobacteria 2c (Rainey et al., 1997; Brooks and
Murray, 1981)

B11 Methylobacterium radiotolerans
JCM 2831

Proteobacteria 1 (Green and Bousfield, 1983;
Ito and Iizuka, 1971)

B12 Modestobacter marinus Actinobacteria 6 (Gtari et al., 2012)
B13 Rubrobacter xylanophilus

DSM 9941
Actinobacteria 5.5 (Ferreira et al., 1999)

B14 Truepera radiovictrix DSM 17093 Deinococcus-Thermus >5 Albuquerque et al., 2005)

IRSB B15 Brucella abortus S19 Proteobacteria 0.34 (Federighi and Tholozan, 2001)
B16 Escherichia coli B REL606 Proteobacteria 0.7 (Daly et al., 2004)
B17 Escherichia coli str. K-12 substr.

DH10B
Proteobacteria 0.7 (Daly et al., 2004)

B18 Neisseria gonorrhoeae FA 1090 Proteobacteria 0.07–0.125 (Daly et al., 2004)
B19 Neisseria gonorrhoeae

TCDC NG08107
Proteobacteria 0.07–0.125 (Daly et al., 2004)

B20 Pseudomonas putida S16 Proteobacteria 0.25 (Daly et al., 2004)
B21 Shewanella oneidensis MR-1 Proteobacteria 0.07 (Daly et al., 2004)
B22 Shigella dysenteriae1617 Proteobacteria 0.22 (Federighi and Tholozan, 2001)
B23 Thermus thermophilus HB27 Deinococcus-Thermus 0.8 (Federighi and Tholozan, 2001)
B24 Thermus thermophilus HB8 Deinococcus-Thermus 0.8d (Federighi and Tholozan, 2001)
B25 Thermus thermophilus JL-18 Deinococcus-Thermus 0.8d (Federighi and Tholozan, 2001)
B26 Thermus thermophilus

SG0.5JP17-16
Deinococcus-Thermus 0.8d (Federighi and Tholozan, 2001)

B27 Vibrio parahaemolyticus
RIMD 2210633

Proteobacteria 0.03–0.06 (Federighi and
Tholozan, 2001)

B28 Yersinia enterocolitica 8081 Proteobacteria 0.1–0.21 (Federighi and
Tholozan, 2001)

aD10: Dose for 90% reduction in colony forming units (CFUs); for IRRB, it is greater than 1 kGy.
bChroococcidiopsis spp.
cKocuria rosea.
dT. thermophilus HB27.

IRRB, ionizing-radiation-resistant bacteria; IRSB, ionizing-radiation-sensitive bacteria.
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Below, we formally define the SMS method:

SMS(S) =
IRRB‚ if totalR(S) # totalS(S)‚

IRSB‚ otherwise‚

(

where

" totalR(S) =
Pn

i = 1 max1$j$k Sij such that yj = IRRB, and
" totalS(S) =

Pn
i = 1 max1$j$k Sij such that yj = IRSB.

Weighted average of maximum scores (WAMS). With the WAMS method, each protein pi has a given
weight wi. For each protein in the query bacterium, we scan the corresponding line of S, which contains the
obtained scores against all other bacteria of the training database. The WAMS method selects the maximum
score among the scores of alignments against IRRB [which we call maxR(S)] and the maximum score
among the scores of alignments against IRSB [which we call maxS(S)]. It then compares these scores. If the
maxR(S) is greater than maxS(S), it adds maxR(S) multiplied by the weight of the protein to the total score of
IRRB and it increments the number of IRRB having a max score. Otherwise, it adds maxS(S) multiplied by
the weight of the protein to the total score of IRSB and it increments the number of IRSB having a max
score. When all the selected proteins were processed, we compare the average of total scores of IRRB
[which we called avgR(S)] and the average of total scores of IRSB [which we called avgS(S)]. If avgR(S) is
greater than avgS(S), the prediction output is IRRB. Otherwise, the prediction output is IRSB.

Table 2. Replication, Repair, and Recombination Proteins

ID Protein Function

P1 Hypothetical DNA polymerase DNA polymerase
P2 DNA polymerase III, a subunit
P3 DNA-directed DNA polymerase
P4 DNA polymerase III, s/c subunit

P5 Single-stranded DNA-binding protein Replication complex
P6 Replicative DNA helicase
P7 DNA primase
P8 DNA gyrase, subunit B
P9 DNA topoisomerase I
P10 DNA gyrase, subunit A

P11 Smf proteins Other DNA-associated
proteinsP12 Endonuclease III

P13 Holliday junction resolvase
P14 Formamidopyrimidine-DNA glycosylase
P15 Holliday junction DNA helicase
P16 RecF protein
P17 DNA repair protein radA
P18 Holliday junction binding protein
P19 Excinuclease ABC, subunit C
P20 DNA repair protein RecN
P21 Transcription-repair coupling factor
P22 Excinuclease ABC, subunit A
P23 DNA helicase II
P24 DNA helicase RecG
P25 Exonuclease SbcD, putative
P26 Exonuclease SbcC
P27 Ribonuclease HII
P28 Excinuclease ABC, subunit B
P29 A/G-specific adenine glycosylase
P30 RecA protein
P31 DNA-3-methyladenine glycosidase II, putative
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Below, we formally define the WAMS method:

WAMS(S) =
IRRB‚ if avgR(S) # avgS(S)‚

IRSB‚ otherwise‚

(

where

" avgR(S) = totalR(S)=numR, and
" avgS(S) = totalS(S)=numS,

and

" totalR(S) =
Pn

i = 1 max1$j$k Sij ! wi such that yj = IRRB, and
" totalS(S) =

Pn
i = 1 max1$j$k Sij ! wi such that yj = IRSB,

where wi is the weight of the protein pi.

3.2. Results

In order to simulate the traditional setting of machine learning in the context of prediction of IRR in
bacteria, we conducted a set of experiments with MIL-ALIGN by selecting just one protein for each
bacterium in the learning set. Each experiment consists of aggregating alignment scores between a protein

Table 3. Learning Results with the Traditional Setting
of Machine Learning

Protein ID Accuracy (%) Sensitivity (%) Specificity (%)

P1 85.7 100 77.7
P2 89.2 92.3 86.6
P3 82.1 90.9 76.4
P4 89.2 92.3 86.6
P5 89.2 92.3 86.6
P6 89.2 92.3 86.6
P7 89.2 92.3 86.6
P8 78.5 83.3 75
P9 89.2 92.3 86.6
P10 89.2 92.3 86.6
P11 89.2 92.3 86.6
P12 89.2 92.3 86.6
P13 78.5 90 72.2
P14 89.2 92.3 86.6
P15 85.7 91.6 81.2
P16 89.2 92.3 86.6
P17 85.7 91.6 81.2
P18 85.7 91.6 81.2
P19 89.2 92.3 86.6
P20 85.7 91.6 81.2
P21 85.7 91.6 81.2
P22 89.2 92.3 86.6
P23 89.2 92.3 86.6
P24 89.2 92.3 86.6
P25 85.7 91.6 81.2
P26 82.1 90.9 76.4
P27 82.1 100 73.6
P28 89.2 92.3 86.6
P29 78.5 90 72.2
P30 89.2 92.3 86.6
P31 78.5 78.5 78.5
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sequence of a query bacterium and the corresponding protein sequences of each bacterium in the learning
database. We present in Table 3 learning results with the traditional setting of machine learning. The LOO-
based evaluation technique was used to generate the presented results.

As shown in Table 3, we conducted 31 experiments (with 31 proteins). Results show that the use of our
algorithm with just one instance for each bag in the learning database allows good accuracy values.

In order to study the importance of considering the problem of predicting bacterial IRR as a multiple
instance learning problem, we present in Table 4 the experimental results of MIL-ALIGN using a set of

Table 4. Experimental Results of MIL-ALIGN with LOO-Based Evaluation Technique

Used proteins Aggregation method Accuracy (%) Sensitivity (%) Specificity (%)

All proteins SMS 92.8 92.8 92.8
WAMS 89.2 92.3 86.6

DNA polymerase proteins SMS 89.2 92.3 86.6
WAMS 89.2 92.3 86.6

Replication complex proteins SMS 92.8 92.8 92.8
WAMS 92.8 92.8 92.8

Other DNA-associated proteins SMS 92.8 92.8 92.8
WAMS 92.8 92.8 92.8

SMS, sum of maximum scores; WAMS, weighted average of maximum scores.

Table 5. Percentage of Successful
Predictions Using MIL

Phenotype Bacterium ID Successful predictions (%)

IRRB B1 100
B2 100
B3 100
B4 100
B5 100
B6 100
B7 100
B8 100
B9 100
B10 100
B11 0
B12 100
B13 100
B14 62.5a

IRSB B15 0
B16 100
B17 100
B18 100
B19 100
B20 100
B21 100
B22 100
B23 100
B24 100
B25 100
B26 100
B27 100
B28 100

aSuccessfully classified bacterium using three settings: (1) all proteins

with SMS aggregation method; (2) replication complex proteins with

SMS and WAMS aggregation methods; and (3) other DNA-associated
proteins with SMS and WAMS aggregation methods.
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proteins to represent the studied bacteria. For each set of proteins and for each aggregation method, we
present the accuracy, the sensitivity, and the specificity of MIL-ALIGN. We notice that the WAMS
aggregation method was used with equally weighted proteins. We used the LOO-based evaluation tech-
nique to generate the presented results.

We notice that the use of the whole set of proteins to represent the studied bacteria allows good accuracy
accompanied by high values of sensitivity and specificity. This can be explained by the pertinent choice of
basal DNA repair proteins to predict the phenotype of IRR. The high values of specificity presented by
MIL-ALIGN indicate the ability of this algorithm to identify negative bags (IRSB). Using all proteins, we
have 92.8% accuracy and specificity. We do not exceed these values in all the cases of mono-instance
learning presented in Table 3. As shown in Table 4, the SMS aggregation method allows better results than
the WAMS aggregation method using the whole set of proteins to represent the studied bacteria. Using the
other subsets of proteins (DNA polymerase, replication complex, and other DNA-associated proteins) to
represent the bacteria, SMS and WAMS present the same results.

In order to study the correctly classified bacteria with the MIL, we computed for each bacterium in the
learning database the percentage of experiments that succeed to classify the bacterium (see Table 5).

As shown in Table 5, more than 89% of tested bacteria show successful predictions of 100%. This means
that we succeed to correctly predict the IRR phenotype of those bacteria. On the other hand, the results
illustrated in Table 5 may help to understand some characteristics of the studied bacteria. In particular, the
IRRB M. radiotolerans (B11) and the IRSB B. abortus (B15) present a high rate of failed predictions. It
means that in most cases, M. radiotolerans is predicted as IRSB and B. abortus is predicted as IRRB; the
former is an intracellular parasite (Halling et al., 2005) and the latter is an endosymbiont of most plant
species (Fedorov et al., 2013). A probable explanation for these two failed predictions is the increased rate
of sequence evolution in endosymbiotic bacteria (Woolfit and Bromham, 2003). As our training set is
composed mainly of members of the phylum Deinococcus-Thermus; expectedly, the Deinococcus bacteria
(B2-B7) present a very low rate of failed predictions.

4. CONCLUSION

In this article, we addressed the issue of prediction of bacterial IRR phenotype. We have considered that
this problem is a multiple-instance learning problem in which bacteria represent bags and repair proteins of
each bacterium represent instances. We have formulated the studied problem and described our proposed
algorithm MIL-ALIGN for phenotype prediction in the case of IRRB. By running experiments on a real
dataset, we have shown that experimental results of MIL-ALIGN are satisfactory with 91.5% of successful
predictions.

In the future work, we will study the performance of the proposed approach to improve its efficiency,
particularly for endosymbiont bacteria. Also, we will study the use of a priori knowledge to improve the
efficiency of our algorithm. This a priori knowledge can be used to assign weights to proteins during the
learning step of our approach. A notable interest will be dedicated to the study of other proteins that can
be involved with the high resistance of IRRB to the IR and desiccation, two positively correlated
phenotypes.
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