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Graphical LASSO based Model Selection
for Time Series

Alexander Jung, Gabor Hannak, and Norbert Goertz

Abstract—We propose a novel graphical model selection scheme
for high-dimensional stationary time series or discrete time pro-
cesses. The method is based on a natural generalization of the
graphical LASSO algorithm, introduced originally for the case of
i.i.d. samples, and estimates the conditional independence graph
of a time series from a finite length observation. The graphical
LASSO for time series is defined as the solution of an -regular-
ized maximum (approximate) likelihood problem. We solve this
optimization problem using the alternating direction method of
multipliers. Our approach is nonparametric as we do not assume a
finite dimensional parametric model, but only require the process
to be sufficiently smooth in the spectral domain. For Gaussian
processes, we characterize the performance of our method theo-
retically by deriving an upper bound on the probability that our
algorithm fails. Numerical experiments demonstrate the ability
of our method to recover the correct conditional independence
graph from a limited amount of samples.

Index Terms—ADMM, graphical LASSO, graphical model se-
lection, nonparametric time series, sparsity.

I. INTRODUCTION

W E CONSIDER the problem of inferring the conditional
independence graph (CIG) of a stationary high-dimen-

sional discrete time process or time series from observing
samples . This problem is referred to as graph-

ical model selection (GMS) and of great practical interest, e.g.,
for gene analysis, econometrics, environmental monitoring and
medical diagnosis [1]–[5].
Most of existing work on GMS for time series is based on

finite dimensional parametric models [6], [7]. By contrast, a
first nonparametric GMS method for high-dimensional time se-
ries has been proposed recently [8]. This approach is based on
performing neighborhood regression (cf. [9]) in the frequency
domain.
In this paper, we present an alternative nonparametric GMS

scheme for time series based on generalizing the graphical
LASSO (gLASSO) [10]–[12] to stationary time series. The
resulting algorithm is implemented using the alternating direc-
tion method of multipliers (ADMM) [13], for which we derive
closed-form update rules. Typically, ADMM-based methods
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allow for straightforward distributed implementations, e.g., in
wireless sensor networks [13], [14].
While algorithmically our approach is similar to the joint

gLASSO proposed in [15], the deployment of a gLASSO type
algorithm for GMS of time series is new.
Our main analytical contribution is a performance analysis

which yields an upper bound on the probability that our scheme
fails to correctly identify the CIG. The effectiveness of our GMS
method is also verified numerically.
Notation. Given a natural number , we define

. For a square matrix , we denote by ,
, and its elementwise complex conjugate, its

Hermitian transpose, its trace and its determinant, respectively.
We also need the matrix norm . By
writing we mean that is a positive-semidefinite
(psd) matrix. A strictly positive definite matrix is indicated
as .
We denote by the set of all length- sequences

with Hermitian matrices
. For a sequence , we define

, its squared generalized
Frobenius norm and its -norm as

. We equip the set with the inner
product .
For a sequence and some subset ,

we denote by the matrix sequence which is obtained by
zeroing separately for each index all entries of the
matrix except those in . The generalized support of a
sequence is defined as

for some . We also use
.

II. PROBLEM FORMULATION

Consider a -dimensional real-valued zero-mean stationary
time series , for . We assume
its autocorrelation function (ACF) to
be absolutely summable, i.e., , such
that we can define the spectral density matrix (SDM) via
a Fourier transform:

(1)

We require the eigenvalues of the SDM to be uniformly bounded
as

for all (2)

where, without loss of generality, we will assume in what
follows. The upper bound in (2) is valid if the ACF is
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summable; the lower bound ensures certain Markov properties
of the CIG [3], [16], [17].
Our approach is based on the assumption that the SDM is

a smooth function. Due to the Fourier relationship (1), this
smoothness will be quantified via certain ACF moments

(3)

Here, denotes a weight function which typically increases
with . For a process with sufficiently small moment ,
thereby enforcing smoothness of the SDM, we are allowed to
base our considerations on a discretized version of the SDM,
given by , with , for .
The number of sampling points is a design parameter which
has to be chosen suitably large, compared to the ACF moment

(cf. [8, Lemma 2.1]).
The CIG of a process is a simple undirected graph

with node set . Each node repre-
sents a single scalar component process . An edge between
nodes and is absent, i.e., , if the component pro-
cesses and are conditionally independent given all
remaining component processes [3].
If the process is Gaussian, the CIG can be conveniently

characterized via the process inverse SDM .
More specifically, it can be shown that, for sufficiently small

with , [3], [8],

(4)

Thus, the edge set of the CIG is determined by the generalized
support of the inverse SDM , for .
Our goal is to robustly estimate the CIG from a finite length

observation, incurring unavoidable estimation errors. There-
fore, we have to require that, in addition to (4), the non-zero
off-diagonal entries of are sufficiently large, such that
a certain amount of estimation error is tolerable. To this end,
we define the process (un-normalized) minimum global partial
spectral coherence as

For the analysis of our GMS scheme we require
Assumption II.1: We have for a known .
Our approach to GMS in the high-dimensional regime ex-

ploits a specific problem structure induced by the assumption
that the true CIG is sparse.
Assumption II.2: The CIG of the observed process is

sparse such that for some small .
The performance analysis of the proposed GMS algorithm re-

quires to quantify the conditioning of SDM sub-matrices. In par-
ticular, we will use the following assumption, which is a natural
extension of the (multitask) compatibility condition, originally
introduced in [11] to analyze LASSO for the ordinary sparse
linear (multitask) model.
Assumption II.3: Given a process whose CIG contains

no more than edges indexed by , we assume that
there exists a positive constant such that

(5)
holds for all with .

The constant in (5) is essentially a lower bound on the
eigenvalues of small sub-matrices of the SDM. As such, the As-
sumption II.3 is closely related to the concept of the restricted
isometry property (RIP) [18].
As verified easily, Assumption II.3 is always valid with
for a process satisfying (2). However, for processes having a

sparse CIG, we typically expect .

III. GRAPHICAL LASSO FOR TIME SERIES
The graphical least absolute shrinkage and selection oper-

ator (gLASSO) [10]–[12], [19] is an algorithm for estimating
the inverse covariance matrix of a high-dimensional
Gaussian random vector based on i.i.d. samples.
In particular, gLASSO is based on optimizing a -penalized
log-likelihood function and can therefore be interpreted as reg-
ularized maximum likelihood estimation.

A. Extending gLASSO to Stationary Time Series
A natural extension of gLASSO to the case of stationary

Gaussian time series is obtained by replacing the objective
function for the i.i.d. case (which can be interpreted as a
penalized log-likelihood) with the corresponding penalized
log-likelihood function for a stationary Gaussian process.
However, since the exact likelihood lacks a simple closed-form
expression (in terms of the SDM), we will use the “Whittle-ap-
proximation” [20], [21], to arrive at the following gLASSO
estimator for general stationary time series:

(6)

with and constraint set

for all (7)

This constraint set is reasonable since (i) the function is
finite only if and (ii) the true inverse SDM satisfies

, for all , due to (2) (with ).
The formulation (6) involves an estimator of the SDM

values , for . While in principle any reasonable
estimator could be used, we will restrict the choice to a multi-
variate Blackman-Tukey (BT) estimator [22]

(8)

with the standard biased autocorrelation estimate
for .

Enforcing the symmetry , we can obtain the
ACF estimate for . The window function

in (8) is a design parameter, which can be chosen freely
as long as it yields a psd estimate . A sufficient condition
such that is guaranteed to be psd is non-negativeness of
the Fourier transform
[22, Sec. 2.5.2].
The existence of a minimizer in (6) is guaranteed for any

choice of as the optimization problem (6) is equivalent
to the unconstrained problem

, where is the indicator function
of the constraint set . Existence of a minimizer of this equiva-
lent problem is guaranteed by [23, Theorem 27.2]: The objective
function is a closed proper convex function and is finite only on
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the bounded set (cf. (7)), which trivially implies that the ob-
jective function has no direction of recession [23].
We will present in Section III-C a specific choice for the

tuning parameter in (6), which ensures that the gLASSO esti-
mator is accurate, i.e., the estimation error

is small. Based on the gLASSO (6), an estimate for the
edge set of the CIG may then be obtained by thresholding:

(9)

Obviously, under Assumption II.1, if

(10)

we have , i.e., the CIG is recovered perfectly.

B. ADMM Implementation
An efficient numerical method for solving convex optimiza-

tion problems of the type (6) is the alternating direction method
of multipliers (ADMM). Defining the augmented Lagrangian
[13] of the problem (6) as

the (scaled) ADMM method iterates, starting with arbitrary ini-
tializations for , and , the following update
rules

(11)

(12)

(13)

It can be shown (cf. [13, Sec. 3.1]) that for any , the
iterates converge to a solution of (6) i.e.,

. Thus, while the precise choice for has some influence
on the convergence speed of ADMM [13, Sec. 3.4.1], it is not
very crucial. We used in all of our experiments (cf.
Section IV).
Closed forms for updates (11) and (12) are stated in
Proposition III.1: Let us denote the eigenvalue decomposi-

tion of the matrix by
with the diagonal matrix composed of the eigenvalues ,
sorted non-increasingly. Then, the ADMM update rule (11) is
accomplished by setting, separately for each ,

(14)

with the diagonal matrix whose th diagonal element is
given by .
If we define the block-thresholding operator

via , the update
rule (12) results in

(15)

Proof: Since the minimization problem (12) is equivalent
to the ADMM update for a group LASSO problem [13, Sec.
6.4.2], the explicit form (15) follows from the derivation in [13,
Sec. 6.4.2].

For the verification of (14), note that the optimization
problem (11) splits into separate subproblems, one for each

. The subproblem for a specific frequency bin is
(omitting the index )

(16)
Let us denote the non-increasing eigenvalues of the Hermitian
matrices and by and , for

, respectively. According to [24, Lemma II.1], we have
the trace inequality with equality
if is of the form with a unitary
matrix whose columns are eigenvectors of . Due to this
trace inequality, a lower bound on (16) is

(17)

The minimum in (17) is achieved by the choice
with . However, for the
choice (which is (14)), the objective func-
tion in (16) achieves the lower bound (17), certifying optimality.

We summarize our GMS method in

Algorithm 1

Given samples , parameters , , , and
window function perform the steps:
Step 1: For each , compute the SDM estimate

according to (8).
Step 2: Approximate the gLASSO (cf. (6)) by iterating

(14), (15) and (13) for a fixed number yielding
.

Step 3: Estimate the edge set via
.

C. Performance Analysis
Let us for simplicity assume that the ADMM iterates

converged perfectly to the gLASSO estimate given by (6),
i.e., . Then, under Assumption II.1, a sufficient
condition for our GMS method to recover the edge set of the
CIG is (10).
We will now derive an upper bound on the probability that

(10) fails to hold. This will be accomplished by (i) showing that
the norm can be bounded in terms of the SDM estimation
error and (ii) controlling the probability
that the error is sufficiently small.
Upper bounding . By definition of (cf. (6)),

(18)

Combining with ,

(19)

Let us, for the moment, assume validity of the condition

(20)

implying and, in turn via (19),

(21)
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Below, we present a specific choice for the tuning pa-
rameter in (6) such that (20) holds with high prob-
ability. Using and

and the (reverse) triangle in-
equality, (21) yields

(22)

where is due to . Thus, the estimation error
tends to be sparse.

As a next step, we rewrite (18) as

(23)

where we used (20). Let us denote the eigenvalues of the psdma-
trix by . We can then rewrite
the LHS of (23) as

Since and (cf. (7), (2)), we have
. Using , with some

, we further obtain

Applying [25, Lemma 4.3.1(b)] to the RHS,

(24)

Combining (24) with (23) and Assumption II.3 (which can be
invoked due to (22)), we arrive at

(25)

Controlling the SDM estimation error. It remains to control the
probability that condition (20) is valid, i.e., the SDM estimation
error incurred by the BT estimator (8) is sufficiently small.
According to [26, Lemma IV.4], for any ,

(26)

where is the ACF moment (3) with
for and else.

The main result. Recall that a sufficient condition for
, given by (9), to coincide with the true edge set is

(10). Under the condition (20), implying validity of (25), the
inequality (10) will be satisfied if is chosen as

(27)

Using (26) to bound the probability for (20) to hold yields
Proposition III.2: Consider a stationary Gaussian zero-mean

time series satisfying (2) and Assumption II.1-II.3. Then,
using the choice (27) in (6) and if the conditions

(28)
(29)

are satisfied, we have .
In order to satisfy the condition (28), the window function
in (8) has to be chosen as the indicator function for the ef-

Fig. 1. ROC curves of gLASSO based GMS method.

fective support of the ACF . Thus, the factor in
(29) corresponds to a scaling of the sample size with the square
of the effective ACF width. Moreover, the sufficient condition
(29) scales inversely with the square of the minimum partial
spectral coherence which agrees with the scaling of the
sufficient condition obtained for the neighborhood regression
approach in [8]. Note that, while our performance analysis ap-
plies only to Gaussian time series, the GMS method in Algo-
rithm I can also be applied to non-Gaussian time series. How-
ever, for a non-Gaussian time series the resulting edge estimate

(cf. (9)) is then not related to a CIG anymore but to a par-
tial correlation graph [3].

IV. NUMERICAL RESULTS
We generated a Gaussian time series of dimension
by applying a finite impulse response filter of length 2 to

a zero-mean, stationary, white, Gaussian noise process
. We choose the covariance matrix such that the

resulting CIG is a star graph containing a hub node
with neighbors. The corresponding precision matrix

has main diagonal entries equal to and off diag-
onal entries equal to . The filter coefficients are such that
the magnitude of the associated transfer function is uniformly
bounded from above and below by positive constants, thereby
ensuring that conditions (2) and (4) are satisfied with ,

and . Thus, the generated time series satisfies As-
sumption II.1 - II.3 with ,
and . Here, denotes the
autocorrelation sequence of .
Based on observed samples, we estimated

the edge set of the CIG using Algorithm 1 with ADMM
iterations, frequency points and window function

. The gLASSO parameter (cf. (6) and
(27)) was varied in the range ,
where constants and have been tuned empirically.
In Fig. 1, we show receiver operating characteristic

(ROC) curves with the empirical false alarm rate
and the empirical detection probability

, both averaged over indepen-

dent simulation runs. Here, denotes the edge estimate in the
-th simulation run.
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