

Cost Models for Distributed Pattern Mining in the Cloud

Sabeur Aridhi^{†*†}, Laurent d’Orazio^{*†}, Mondher Maddouri^{§¶}, and Engelbert Mephu Nguifo^{*†}

^{*}Clermont University, Blaise Pascal University, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France
 {dorazio, mephu}@isima.fr

[†]CNRS, UMR 6158, LIMOS, F-63173 Aubiere, France

[‡]University of Trento, Italy
 sabeur.aridhi@unitn.it

[§]University of Tunis El Manar, LIPAH - FST, Academic Campus, Tunis 2092, Tunisia

[¶]Taibah University, Almadinah, Kingdom of Saudi Arabia
 maddourimondher@yahoo.fr

Abstract—Recently, distributed pattern mining approaches have become very popular, especially in certain domains such as bioinformatics, chemoinformatics and social networks. In most cases, the distribution of the pattern mining process generates a loss of information in the output results. Reducing this loss may affect the performance of the distributed approach and thus, the monetary cost when using cloud environments. In this context, cost models are needed to help selecting the best parameters of the used approach in order to achieve a better performance especially in the cloud. In this paper, we address the multi-criteria optimization problem of tuning thresholds related to distributed frequent pattern mining in cloud computing environment while optimizing the global monetary cost of storing and querying data in the cloud. To achieve this goal, we design cost models for managing and mining graph data with large scale pattern mining framework over a cloud architecture. Furthermore, we define four objective functions, with respect to the needs of customers. We present an experimental validation of the proposed cost models in the case of distributed subgraph mining in the cloud.

Keywords—Distributed pattern mining; cost models; cloud computing; optimization

I. INTRODUCTION

Frequent pattern mining is one of the most important concepts in data mining, concerned with finding local structures in the data. It has become an important topic of research with numerous applications in several disciplines ranging from association rule mining [1] [2] and graph mining [3] [4], to image mining [5] [6] and bioinformatics [7] [8]. Generally, these fields exploit the extracted patterns for characterizing and classifying their associated data. For example, in graph mining, patterns are subgraphs extracted from a collection of graphs or a single large graph with a frequency no less than a user-specified support threshold. The discovered patterns are used lately to reveal interesting information hidden in the original data.

Nowadays, the amount of the available data has been exploding. Consequently, several distributed and cloud-based solutions have been proposed for distributed pattern mining from large-scale data. However, the distribution of the pattern mining process generates a loss of information in the output

results [9] [10]. In [9], a cloud-based approach for distributed frequent subgraph mining is presented. The proposed method relies on a density-based partitioning technique that considers data characteristics. It uses the densities of the graphs in order to partition the input data. Such a partitioning technique allows a balanced computational load over the distributed collection of machines and replaces the default arbitrary partitioning technique of MapReduce. The output of the proposed approach is an approximation of the exact solution. In [10], PARMA, a parallel technique for mining frequent itemsets and association rules is proposed. The final result of PARMA is an approximation of the exact solution since it mines random subsets of the input dataset. Reducing the loss generated by distributed pattern mining approaches may affect the performance of the distributed approach and thus, the monetary cost when using cloud environments. In this context, cost models are needed to help selecting the best parameters of distributed pattern mining approaches in order to achieve better performance especially in the cloud [11] [12] [13].

Several cost models have been developed for estimating the costs of distributed data mining applications [14] [12] [15]. However, these approaches do not deal with distributed pattern mining. In addition, they do not incorporate an optimizer to be able to estimate the costs associated with the distributed pattern mining.

In this paper, we address the multi-criteria optimization problem of tuning thresholds related to distributed frequent pattern mining in cloud computing environments while optimizing the global monetary cost of storing and querying data in the cloud. Moreover, we propose cost models for managing and mining graph data with large scale pattern mining framework over a cloud architecture. We also define objective functions, with respect to the needs of cloud customers.

The contributions of this paper are as follows:

- We propose cost models for pattern mining over a cloud architecture. We focus our work on subgraph patterns.
- We define four objective functions, with respect to the needs of customers. These needs can be expressed by

TABLE I. WINDOWS AZURE BANDWIDTH PRICES (OUTPUT DATA)

Data volume	Price per month
First 5 GB per month	free
5 GB-10 TB per month	\$0.12 per GB
40 TB per month	\$0.09 per GB
100 TB per month	\$0.07 per GB
350 TB per month	\$0.05 per GB

TABLE III. AMAZON EC2 COMPUTING PRICES

Type	Virtual cores	RAM	Price per hour
Small	1	1.7 GB	\$0.075
Medium	1	3.75 GB	\$0.15
Large	2	7.5 GB	\$0.30
Extra large	4	15 GB	\$0.60

a financial budget limit, a response time limit or a mining quality limit.

- We validate experimentally the proposed cost models and the defined objective functions.

This paper is organized as follows. In the next section, we present the background information and the preliminary notions related to our work. In Section 3, we describe our cost models for distributed pattern mining in the cloud. In Section 4, we present the optimization process and the objective functions. In Section 5, we describe our experimental study and we discuss the obtained results. Finally, in Section 6, we present an overview of some related works dealing with cost models for distributed pattern mining in the cloud.

II. BACKGROUND

In this section, we present the background information related to pattern mining in the cloud. We first introduce a simple use case that serves as a running example throughout this paper. Then, we describe a typical pricing model in the cloud, illustrated by some of Windows Azure services and Amazon Web Services (AWS).

A. Running Example

In order to illustrate our cost models, we rely on a frequent subgraph mining example. Considering a graph dataset containing a set of community networks of a social network. Nodes of the graph represent people and edges represent interactions between them. Social network analysts need to examine the community networks patterns per day, month, and year. The analysis consists in the extraction of frequent subgraph patterns in community networks. It includes queries like “frequent subgraphs that occur in more than 30% of graphs in the database”. We suppose that our dataset contains ten million graphs and its size on disk is 100 GB. The query example consists in retrieving community networks patterns that occur in more than 30% of graphs in the database and of producing a query result of 10 GB.

B. Cloud Pricing Policies

Cloud Service Providers (CSPs) supply a variety of resources, such as hardware (CPU, storage, networks), development platforms and services with different services and pricing. In addition, they provide services that allow the design of MapReduce-based applications in the cloud such as HDInsight of Windows Azure and Amazon Elastic MapReduce

of Amazon Web Services (AWS). In order to have an overview of CSPs pricing policy, the following examples present a simplified version of both HDInsight service offer [16] and Amazon Elastic MapReduce (Amazon EMR) service offer [17]. The objective of this description is indeed not to compare the different providers, but to provide an idea about CSPs pricing offers.

1) *HDInsight Offer*: HDInsight is a MapReduce service proposed by Windows Azure. It is based on Hadoop. A HDInsight environment consists of a head node, a gateway node and one or more compute nodes. The master node is charged \$0.64 per hour and compute nodes are charged \$0.32 per hour. The gateway node is free.

According to the HDInsight offer, the costs of five node hadoop cluster (one master node and four compute nodes), is $\$0.64 + \$0.32 \times 4 = \$1.92$ per hour.

We mention that the storage and the bandwidth consumption in HDInsight are billed according to the standard Windows Azure offer [16]. Bandwidth consumption is billed with respect to data volume (see Table I).

In this model, input data transfers are free, whereas output data transfer cost varies with respect to data volume, with an earned rate when volume increases. When applying this pricing model onto our use case, the cost of bandwidth consumption (query result of 10 GB) is $(10 - 5) \times \$0.12 = \0.60 .

We mention that Windows Azure Storage provides storage of non-relational data, including storage blob, table and disk. It provides two options for storage: locally and geographically redundant. The locally redundant storage option allows multiple replicas of data within a single sub-region to provide the highest level of durability. The geographically redundant storage option offers an extra level of durability by replicating data between two remote sub-regions.

In this model, the price varies with respect to data volume, with an earned rate when volume increases (see Table II). In our running example, the monthly storage price of our data (100 GB dataset) with the locally redundant storage option is $\$0.068 \times 100 = \6.8 .

2) *Amazon Elastic MapReduce Offer*: Amazon Elastic MapReduce (Amazon EMR) is a MapReduce web service provided by Amazon Web Service (AWS). Amazon EMR uses Hadoop to distribute and process the data across a resizable cluster of Amazon Elastic Compute Cloud (EC2) instances.

Amazon EMR provides a variety of standard Amazon EC2 instance that can be rent (extra small, small, large and extra large) at various prices, as illustrated in Table III. We mention that the Amazon EMR price is included in the prices presented in Table III.

For example, the costs of five node hadoop cluster, with small instances, is $\$0.075 \times 5 = \0.375 per hour.

Table IV presents EC2 bandwidth prices with respect to data volume.

In this model, input data transfers are free, whereas output data transfer cost varies with respect to data volume, with an earned rate when volume increases.

TABLE II. WINDOWS AZURE STORAGE PRICES (STORAGE BLOB)

Data volume	Price per month	
	Geographically redundant storage	Locally redundant storage
First 1 TB per month	\$0.085 per GB	\$0.068 per GB
Next 49 TB per month	\$0.075 per GB	\$0.006 per GB
Next 450 TB per month	\$0.06 per GB	\$0.048 per GB
Next 500 TB per month	\$0.044 per GB	\$0.0055 per GB
Next 4 PB per month	\$0.41 per GB	\$0.0051 per GB

TABLE IV. EC2 BANDWIDTH PRICES (OUTPUT DATA)

Data volume	Price per month
First 1 GB per month	free
2 GB-10 TB per month	\$0.12 per GB
40 TB per month	\$0.09 per GB
100 TB per month	\$0.07 per GB
350 TB per month	\$0.05 per GB

TABLE V. AMAZON S3 STORAGE PRICES

Data volume	Price per month
First 1 TB	\$0.14 per GB
Next 49 TB	\$0.125 per GB
Next 450 TB	\$0.11 per GB

Finally, AWS Storage provides storage capabilities. Amazon Elastic Block Store (EBS) proposes a fixed price (\$0.10 per GB), whereas Amazon S3 (see Table V) enables an earned rate when volume increases.

In our running example, monthly storage price of our data (100 GB dataset) with Amazon EBS is $\$0.10 \times 100 = \10 .

III. COST MODELS FOR DISTRIBUTED PATTERN MINING IN THE CLOUD

Let C_{dm} be the data management cost and C_c be the cost of computing patterns in a distributed environment. We define the total cost C of distributed pattern mining by:

$$C = C_{dm} + C_c. \quad (1)$$

Depending on the model used to distribute the computations (i.e. MapReduce or other) and the different parameters within each model, the factors which determine C_{dm} and C_c change. In our work, we consider MapReduce-based approaches. Two types of parameters setting are required in this setting. The first type consists of parameters related to the pattern mining process such as the support threshold and the size of the database. The second type consists of parameters related to the MapReduce framework that specify how the MapReduce job should execute the distributed pattern mining process. Let us define some functions that we use to express our cost models.

- Function $s(\cdot)$ returns the size in GB of any dataset, e.g., $s(DS)$ is the size of the dataset DS and $s(R)$ is the size of the result data R ;
- Function $ts(\cdot)$ returns the storage time of any dataset, e.g., $ts(DS)$ is the storage time of the dataset DS in the cloud and $ts(R)$ is the storage time of the result data R ;
- Function $t_{map}(i, Part_i(DS))$ returns the runtime taken by the map task to process the i^{th} partition of DS ;

- Function $t_{reduce}(k)$ returns the runtime taken by the reduce task of the k^{th} reducer.

A. Data Management Cost

We define the data management cost C_{dm} as the sum of data transfer cost C_t and storage cost C_s . Formally, the data management cost is:

$$C_{dm} = C_t + C_s. \quad (2)$$

Data transfer cost depends on several parameters including the size of the dataset, the size of the results and the pricing model applied by the Cloud Service Providers (CSP). The total data transfer cost C_t is the sum of the input data transfer and the output data transfer costs. The input data transfer cost is the product of the CSP's atomic transfer cost c_{ti} of the input data and the total size of input data. The output data transfer cost is the product of the CSP's atomic transfer cost c_{to} of the output data and the total size of result data ($s(R)$):

$$C_t = c_{ti} \times s(DS) + c_{to} \times s(R). \quad (3)$$

As illustrated in (3), the total data transfer cost is proportional to the total size of input and output data. We notice that most cloud providers such as Windows Azure and Amazon Web Service (AWS) do not charge for input data transfers. Consequently, total data transfer cost C_t become:

$$C_t = c_{to} \times s(R). \quad (4)$$

Storage cost depends on parameters such as the size of the dataset, the storage time, the type of data replication (locally redundant storage or globally redundant storage) and the CSP's pricing policy. We assume that the storage period in the cloud is divided into intervals. In each interval, the size of the stored data is fixed. The total storage cost (C_s) is the CSP's fixed price per GB (c_s^{CSP}) multiplied by the size of initial $s(DS)$ and result data $s(R)$, multiplied by the sum of sizes of the initial dataset and the result data, multiplied by their respective storage time during the intervals:

$$C_s = \sum_{Intervals} c_s^{CSP} \times (s(DS) + s(R)) \times (t_{end} - t_{start}), \quad (5)$$

where t_{start} , t_{end} are start and end point of an interval.

By combining (2), (3) and (5), the total data management cost is:

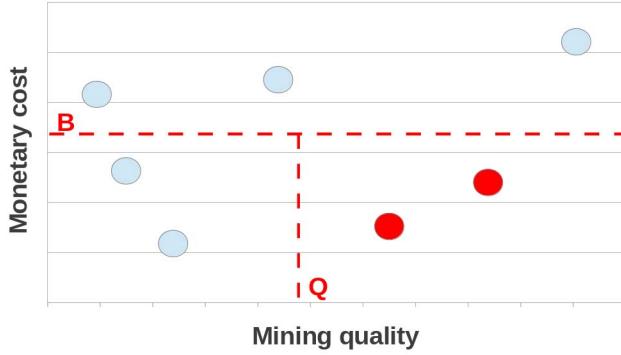


Fig. 1. Minimizing response time under monetary cost and mining quality constraints.

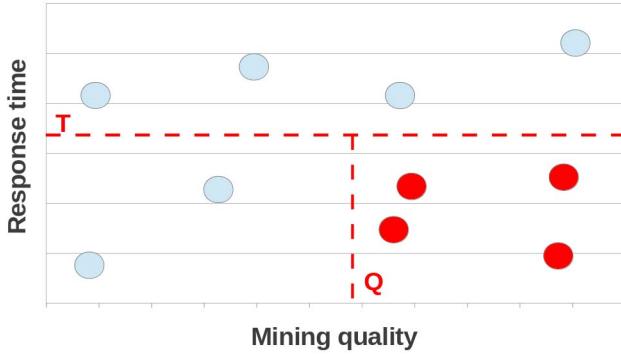


Fig. 2. Minimizing monetary cost under mining quality and response time constraints.

$$C_{dm} = \sum_{\text{Intervals}} c_s^{CSP} \times (s(DS) + s(R)) \times (t_{end} - t_{start}) + c_t \times (s(DS) + s(R)). \quad (6)$$

As illustrated in (6), the data management cost depends essentially on the size of input data and result data. Indeed, it depends on the nature of data under consideration.

Beside the data management cost, it is necessary to study the computing cost on the data. In the context of our work, this computing cost consists in pattern mining cost.

B. Pattern Mining Cost

In a cloud environment, mining processes are executed on computing instances $\{I_i\}_{i=1 \dots n}$ with different performances in terms of number of CPUs, available RAM, etc., and thus, with different costs. Each instance may bear different performances, and thus different costs.

The cost for renting instance I_i is denoted by $c(I_i)$. This cost must be paid at each connection to the cloud. We define the cost of computing patterns by:

$$C_c = \sum_{i=0}^n c(I_i) \times T_{mining}, \quad (7)$$

where

$$T_{mining} = (t_{part} + \max_{j=0}^m (t_{map}(j, Part_j(DS))) + \max_{k=0}^r (t_{reduce}(k)) + CP \times t_{compress}), \quad (8)$$

where t_{part} is the partitioning time, $t_{map}(j, Part_j(DS))$ is the time taken by the j^{th} Map task to process the j^{th} partition of DS , $t_{reduce}(k)$ is the time taken by the k^{th} Reduce task, $t_{compress}$ is the compression time of the result files, m is the number of Map tasks, r is the number of Reduce tasks and CP is a binary parameter set to 1 if the output data should be compressed and 0 otherwise. The values of t_{part} , $t_{map}(j, Part_j(DS))$ and $t_{reduce}(k)$ are estimated experimentally.

IV. OPTIMIZATION PROCESS

In this section, we investigate how the parametrization of the pattern mining approach and of MapReduce framework may impact the mining process performance. In the following, we present four objective functions with respect to the needs and capacity of customers. Such needs include budget limit, response time limit and mining quality limit.

Response time: The idea here is to achieve better performance in terms of response time. Given a predefined financial budget B and a predefined mining quality limit Q , our objective in this scenario is to select the best parameters that minimize the mining process in the cloud:

$$Obj_1 = \begin{cases} \text{minimize } T_{mining}, \\ C = C_{dm} + C_c \leq B, \\ \text{MiningQuality} \geq Q. \end{cases} \quad (9)$$

Fig. 1 presents the feasible solutions that minimize the response time with respect to financial budget B and a predefined mining quality limit Q . Each point in Fig. 1 corresponds to a feasible solution of our objective function without considering constraints defined in (9). The red points correspond to solutions that verify our mining quality limit (X axis) and budget limit (Y axis) constraints.

We notice that each point in Fig. 1 corresponds to a response time value. The optimal solution in this context is the solution that presents the lower value of the response time.

Monetary cost: For a predefined response time limit T and a predefined mining quality limit Q , the objective in this scenario is to select the best parameters that minimize the monetary cost of the mining process in the cloud:

$$Obj_2 = \begin{cases} \text{minimize } C = C_{dm} + C_c, \\ T_{mining} \leq T, \\ \text{MiningQuality} \geq Q. \end{cases} \quad (10)$$

Fig. 2 presents the set of feasible solutions that minimize the monetary cost with respect to a response time limit T and a predefined mining quality limit Q . In Fig. 2, red points correspond to solutions that verify our mining quality limit (X axis) and response time (Y axis) constraints.

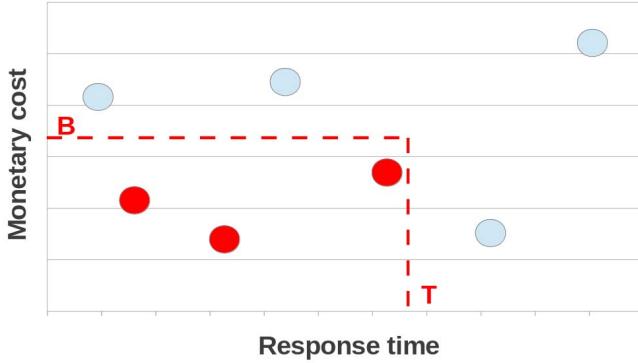


Fig. 3. Maximizing mining quality under monetary cost and response time constraints.

From the set of feasible solutions, we select the optimized solution that presents the lower value of monetary cost.

Mining quality: The goal of this objective function is to achieve the optimized quality of results (the mining quality). Given a predefined response time limit T and a predefined financial budget B , our objective in this scenario is to select the best parameters that maximize the mining quality of the distributed pattern mining method in the cloud:

$$Obj_3 = \begin{cases} \text{maximize } MiningQuality, \\ T_{mining} \leq T, \\ C = C_{dm} + C_c \leq B. \end{cases} \quad (11)$$

We show in Fig. 3, the set of feasible solutions that maximize the mining quality with respect to a financial budget B and a predefined response time limit T . Points represented in Fig. 3 corresponds to feasible solutions of our objective function without considering the constraints defined in (11). The red points correspond to solutions that verify our mining quality limit (X axis) and budget limit (Y axis) constraints.

The optimized solution here is the one that presents the higher value of mining quality.

Response time vs. monetary cost vs. mining quality tradeoff: Our objective in this scenario is to select the best parameters that offer the best tradeoff between query processing time, mining quality of the distributed pattern mining method and financial cost:

$$Obj_4 = \begin{cases} \text{minimize } (T_{mining}, C), \\ \text{maximize } (MiningQuality), \\ T_{mining} \leq T, \\ C = C_{dm} + C_c \leq B, \\ MiningQuality \geq Q. \end{cases} \quad (12)$$

The above presented objective function consists in multi-objective function since more than one objective function to be optimized simultaneously.

V. EXPERIMENTAL STUDY

In this section, we first describe the experimental data and the overall setup of our preliminary experimentation effort.

Then, we present the results we have obtained. We focused our experiments on solving the problem of distributed subgraph mining in the cloud. We adopted the Pareto-based multi-objective optimization solution which aim to produce all Pareto optimal solutions. In fact, Pareto optimal solutions are very useful for decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices.

A. Experimental Setup

All experiments of our approach were carried out using a virtual cluster composed of five virtual machines. Each virtual machine is equipped with a Quad-Core AMD Opteron(TM) processor 6234 2.40 GHz CPU and 4 GB of RAM. All used machines feature Hadoop (version 0.20.2) and operate on Linux Ubuntu.

For our experiments, we have generated our data based on the obtained results from the MapReduce-based approach for distributed subgraph mining in the cloud presented in [9]. We used results that correspond to the distributed subgraph mining from a dataset of 100,000 graphs (see [9]) to form our set of multi-objective points. For each set of parameters, we noticed the values of our objectives such as the response time (T_{mining}), the monetary cost (C) and the mining quality. The used parameters include MapReduce parameters and distributed subgraph mining approach parameters such as the support threshold (θ) and the tolerance rate (τ) [9]. Monetary cost values are estimated based on the Windows Azure pricing model [16]. We suppose that our experimental environment is close to the large cloud instances provided by Windows Azure. Consequently, we use the corresponding costs to compute the values of the monetary cost C of each experiment using our virtual cluster.

B. Experimental Results

During our experimental study, we examined the four objective functions described in Section IV. Fig. 4 draws the set of feasible solutions that minimize the response time of our distributed subgraph mining approach under monetary cost and mining quality constraints.

Each solution is represented by two points (a blue square point and a red diamond point). The blue square point corresponds to monetary cost in function of response time. The red diamond point corresponds to the mining quality in function of response time. Thus, the two points representing a solution have the same value of response time. Optimal solutions are determined by selecting solutions that present lower values of response time. For example, with budget limit = \$0.20 and mining quality limit = 80% (see Fig. 4), we distinguish one optimal solution (surrounded by an ellipse) which allows the lower value of response time. We notice that we can find more than one solution that allows a lower response time value.

In Fig. 5, we present the set of feasible solutions that minimize the monetary cost under mining quality and response time constraints. Feasible solutions are represented by couples of points. Each couple consists of one blue square point and one red diamond point. The blue square point corresponds to response time in function of monetary cost. The red diamond

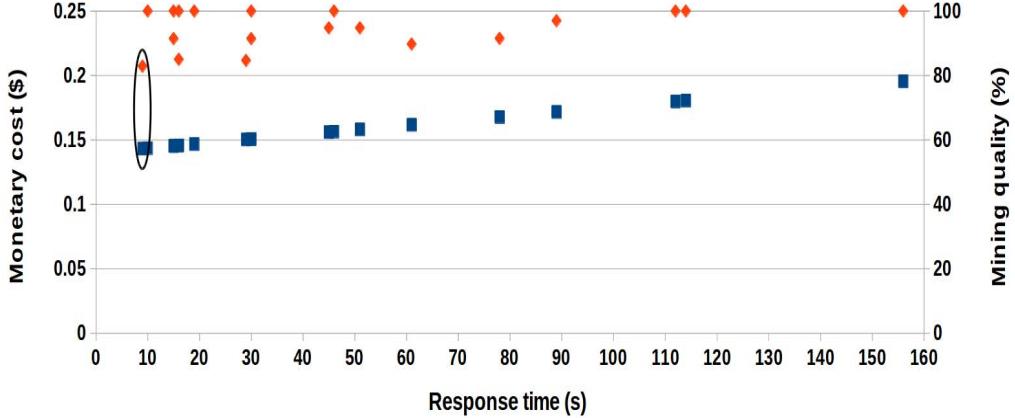


Fig. 4. Minimizing the response time (Budget limit = \$0.20 and Mining quality limit = 80%).

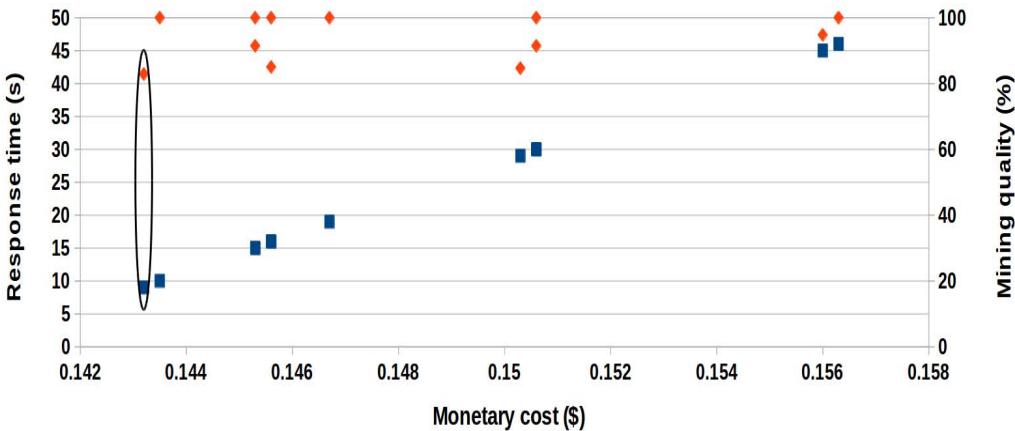


Fig. 5. Minimizing the monetary cost (Response time limit = 50 s and Mining quality limit = 80%).

point corresponds to the mining quality in function of monetary cost.

As shown in Fig. 5, we identified optimal solutions by selecting the solutions that present lower values of monetary cost in comparison with the set of feasible solutions. For example, with response time limit = 50 s and mining quality limit = 80% (see Fig. 5), we select one optimal solution (surrounded by an ellipse) which allows the lower value of mining quality.

Fig. 6 illustrates the set of feasible solutions that optimize the mining quality under monetary cost and response time constraints. We used the mining quality related to the MapReduce-based approach for frequent subgraph mining in the cloud [9]. Feasible solutions are represented by couples of points. A couple of points contains one blue square point and one red diamond point. The blue square point corresponds to response time in function of mining quality. The red diamond point corresponds to the monetary cost in function of mining quality.

We recall that each feasible solution consists of a parametrization of the cloud-based subgraph mining approach. As illustrated in Fig. 6, the set of optimal solutions (surrounded by an ellipse) contains more than one optimal solution (six

optimal solutions) that minimize the mining quality. Therefore, we have six possible parameterizations of our cloud-based subgraph mining approach.

In order to solve the multi-objective function defined in Section IV, we computed all Pareto optimal solutions from our data (a set of multi-objective points). Table VI presents the set of Pareto optimal solutions that aim to quantify the trade-offs in satisfying the different objectives (response time, monetary cost and mining quality).

We notice that the presented optimal solutions in Table VI may help the parametrization of cloud-based subgraph mining applications. They provide suggestions for the choice of parameters (cloud parameters and mining approach parameters). However, it is suitable to provide one suggestion instead of many. This can be done by ranking optimal solutions based on a user-defined parameter.

We show in Table VI, the details of the Pareto optimal solutions. These details include cloud parameter values and subgraph mining parameter values. The Pareto optimal solutions illustrated in Table VI aim to quantify the trade-offs in satisfying the different objectives (response time, monetary cost and mining quality).

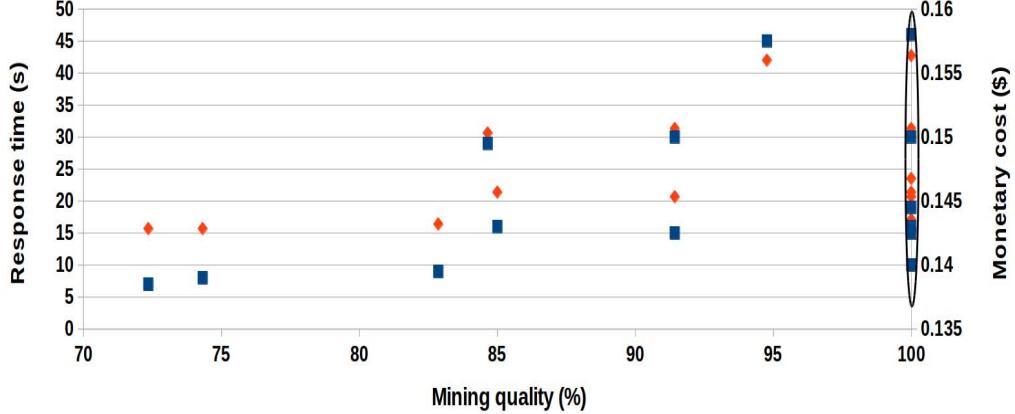


Fig. 6. Maximizing the mining quality (Budget limit = \$0.17 and Response time limit = 50 s).

TABLE VI. PARETO OPTIMAL SOLUTIONS

Optimal solution	Cloud parameters			Pattern mining approach parameters
	Number of cloud instances	Data compression (CP)	Replication factor (RF)	
First solution	5	No	3	$\theta = 50\%$ and $\tau = 60\%$
Second solution	5	Yes	3	$\theta = 30\%$ and $\tau = 0\%$
Third solution	5	No	3	$\theta = 20\%$ and $\tau = 0\%$

VI. RELATED WORKS

Several distributed data mining and graph mining systems have been proposed [18] [19] [20] [10] [21]. However, they do not incorporate an optimizer to be able to estimate the costs associated with the various distributed data mining scenarios. Consequently, several cost models have been developed for estimating costs of distributed data mining applications [14] [12].

In [14], the authors present an optimized model for estimating the response time of distributed association rule mining. In this work, three estimates were defined:

- The communication cost estimates: They involve the time needed for the computing agent to travel from the agent zone (AZ) to the data sources.
- The local association rule mining costs: They make reference to the time needed for mining association rule locally at each data source.
- The results information transfer costs: They make reference to the time needed for the computing agent to travel back to the agent zone with results information concerning each local mining.

The overall response time for the distributed association rule mining T would be calculated as follows:

$$T = t_{darm} + t_{dki},$$

where t_{darm} is the time taken to perform mining in a distributed environment and t_{dki} is the time taken to perform distributed knowledge integration and return the results to the requesting server. The term t_{darm} is defined by:

$$t_{darm} = t_1(AZ, i) + \max_{i=1}^n t_2(i) + t_3(i, AZ),$$

where the first term is the time taken by the computing agent to travel from the agent zone to data source i . The second term is the maximum of the times taken by the computing agent to mine at all data sources. The third term is the time taken for the agent to travel from the data source back to the agent zone with the results information. The authors discussed the values of t_{dki} according to the number of used data servers and the number of data mining agents.

In [15], the authors propose the MRShare framework that transforms a batch of MapReduce queries into a new batch that will be executed more efficiently, by merging jobs into groups and evaluating each group as a single query. The authors define a cost model for MapReduce that provide a solution that derives the optimal grouping of queries. The total cost of executing a set J of n individual jobs is the sum of the cost T_{read} to read the data, the cost T_{sort} to do the sorting and copying at the map and reduce nodes, and the cost T_{tr} of transferring data between nodes. Thus, the cost in MapReduce is:

$$T(J) = T_{read}(J) + T_{sort}(J) + T_{tr}(J),$$

where the values of $T_{read}(J)$, $T_{sort}(J)$ and $T_{tr}(J)$ with grouping of queries are not the same without grouping.

Another attention was carried by [12] to data management cost models in cloud environments. In their work, the authors propose new cost models that fit into the pay-as-you-go paradigm of cloud computing. They addressed the multi-criteria optimization problem of selecting a set of materialized views while optimizing the global monetary cost of storing and querying a database in a cloud environment. The total cloud data management cost C is defined by:

$$C = C_c + C_s + C_t,$$

where C_c is the sum of computing costs, C_s is the sum of storage costs and C_t is the sum of data transfer costs. The

proposed cost models complement the existing materialized view cost models with a monetary cost component that is primordial in the cloud [12].

In [14], the authors deal with cost models of classic architectural models used in the development of DDM systems namely, client-server and software agents. However, the proposed cost models in these works do not fit into cloud computing paradigm where the users only pay for the resources they use. In [12] [15], the authors deal with data management and execution aspect of MapReduce framework in a cloud setting. However, they do not include cost models for data mining processes in the top of MapReduce. Moreover, they do not consider monetary costs in the case of cloud-based data mining applications. To the best of our knowledge, cost models for MapReduce-based pattern mining applications in cloud environments have not been developed.

VII. CONCLUSION

In this paper, we presented cost models for distributed pattern mining in the cloud. It consists of two levels. The first level is novel cost models for pattern mining in the cloud. We focused the defined cost models on subgraph patterns in cloud computing. The proposed cost models consist of monetary cost components that are primordial in the cloud. The second level consists in the definition of a set of objective functions with respect to the needs and the financial capacity of customers. An experimental study was carried out in the case of cloud-based subgraph mining. It provided a first evaluation of our approach by selecting the optimal solutions that minimize our objectives such as the monetary cost, the response time and the mining quality.

In the future work, we aim to extend the experimental validation of the proposed cost models to a wider-scale experimentation. In this context, additional experiments will be carried out in which we solve the defined objective functions using more methods of solving multi-objective optimization problems. We aim also to run experiments on a variable number of cloud cloud instances, thus, experimenting the effect of primordial elasticity characteristic of the cloud on our cost models.

ACKNOWLEDGMENT

This work was supported by the University of Trento in Italy, the French-Tunisian PHC project EXQUI, and the CNRS Mastodons project PETASKY. We would like to thank the anonymous reviewers for their useful comments. We also would like to thank Manel Nasri for English proofreading.

REFERENCES

- [1] O. M. Soysal, "Association rule mining with mostly associated sequential patterns," *Expert Syst. Appl.*, vol. 42, no. 5, pp. 2582–2592, 2015.
- [2] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart, "Crowdminer: Mining association rules from the crowd," *PVLDB*, vol. 6, no. 12, pp. 1250–1253, 2013.
- [3] S. J. Suryawanshi and S. M. Kamalapur, "Algorithms for frequent subgraph mining," *International Journal of Advanced Research in Computer and Communication Engineering*, vol. 2, no. 3, pp. 1545–1548, 2013.
- [4] R. Pears, S. Pisalpanus, and Y. S. Koh, "A graph based approach to inferring item weights for pattern mining," *Expert Syst. Appl.*, vol. 42, no. 1, pp. 451–461, 2015.
- [5] J. Melendez, M. A. Garcia, D. Puig, and M. Petrou, "Unsupervised texture-based image segmentation through pattern discovery," *Comput. Vis. Image Underst.*, vol. 115, no. 8, pp. 1121–1133, Aug. 2011.
- [6] R. Ji, L. Duan, J. Chen, T. Huang, and W. Gao, "Mining compact bag-of-patterns for low bit rate mobile visual search," *IEEE Transactions on Image Processing*, vol. 23, no. 7, pp. 3099–3113, 2014.
- [7] F. Deng, L. Wang, and X. Liu, "An efficient algorithm for the blocked pattern matching problem," *Bioinformatics*, vol. 31, no. 4, pp. 532–538, 2015.
- [8] R. Saidi, S. Aridhi, E. M. Nguifo, and M. Maddouri, "Feature extraction in protein sequences classification: A new stability measure," in *Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine*, ser. BCB '12. New York, NY, USA: ACM, 2012, pp. 683–689.
- [9] S. Aridhi, L. d'Orazio, M. Maddouri, and E. M. Nguifo, "Density-based data partitioning strategy to approximate large-scale subgraph mining," *Information Systems*, vol. 48, pp. 213 – 223, 2015.
- [10] M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal, "Parma: a parallel randomized algorithm for approximate association rules mining in mapreduce," in *Proceedings of the 21st ACM international conference on Information and knowledge management*, ser. CIKM '12. New York, NY, USA: ACM, 2012, pp. 85–94.
- [11] M. M. Kashef and J. Altmann, "A cost model for hybrid clouds," in *Proceedings of the 8th international conference on Economics of Grids, Clouds, Systems, and Services*, ser. GECON'11. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 46–60.
- [12] T.-V.-A. Nguyen, S. Bimonte, L. d'Orazio, and J. Darmont, "Cost models for view materialization in the cloud," in *Proceedings of the 2012 Joint EDBT/ICDT Workshops*, ser. EDBT-ICDT '12. NY, USA: ACM, 2012, pp. 47–54.
- [13] R. Perriot, J. Pfeiffer, L. d'Orazio, B. Bachelet, S. Bimonte, and J. Darmont, "Cost models for selecting materialized views in public clouds," *IJDWM*, vol. 10, no. 4, pp. 1–25, 2014.
- [14] A. O. Ogunde, O. Folorunso, A. S. Sodiya, J. A. Oguntuase, and G. O. Ogunleye, "Improved cost models for agent-based association rule mining in distributed databases," in *Annals. Computer Science Series*, ser. 9th Tome - 1st Fasc., 2011, pp. 231–251.
- [15] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas, "MRShare: sharing across multiple queries in MapReduce," *Proc. VLDB Endow.*, vol. 3, no. 1-2, pp. 494–505, Sep. 2010.
- [16] M. Inc, "Windows azure offer," 2015. [Online]. Available: <http://www.windowsazure.com/en-us/pricing/overview/>
- [17] A. Inc, "Amazon ec2 offer," 2015. [Online]. Available: <http://aws.amazon.com/fr/ec2/pricing/>
- [18] S. Aridhi, P. Lacomme, L. Ren, and B. Vincent, "A mapreduce-based approach for shortest path problem in large-scale networks," *Engineering Applications of Artificial Intelligence*, vol. 41, no. 0, pp. 151 – 165, 2015.
- [19] A. Ghating, P. Kambadur, E. Pednault, and R. Kannan, "NIMBLE: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce," in *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, ser. KDD '11. New York, NY, USA: ACM, 2011, pp. 334–342.
- [20] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and K. Olukotun, "Map-Reduce for Machine Learning on Multicore," in *NIPS*, B. Schölkopf, J. C. Platt, and T. Hoffman, Eds. MIT Press, 2006, pp. 281–288.
- [21] A. S. Foundation, I. Drost, T. Dunning, J. Eastman, O. Gospodnetic, G. Ingersoll, J. Mannix, S. Owen, and K. Wettin, "Apache mahout," 2010.