
Cost Models for Distributed Pattern Mining in the
Cloud

Sabeur Aridhi‡∗†, Laurent d’Orazio∗†, Mondher Maddouri§¶, and Engelbert Mephu Nguifo∗†

∗Clermont University, Blaise Pascal University, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France

{dorazio, mephu}@isima.fr
†CNRS, UMR 6158, LIMOS, F-63173 Aubiere, France

‡University of Trento, Italy

sabeur.aridhi@unitn.it
§University of Tunis El Manar, LIPAH - FST, Academic Campus, Tunis 2092, Tunisia

¶Taibah University, Almadinah, Kingdom of Saudi Arabia

maddourimondher@yahoo.fr

Abstract—Recently, distributed pattern mining approaches
have become very popular, especially in certain domains such as
bioinformatics, chemoinformatics and social networks. In most
cases, the distribution of the pattern mining process generates a
loss of information in the output results. Reducing this loss may
affect the performance of the distributed approach and thus, the
monetary cost when using cloud environments. In this context,
cost models are needed to help selecting the best parameters
of the used approach in order to achieve a better performance
especially in the cloud. In this paper, we address the multi-criteria
optimization problem of tuning thresholds related to distributed
frequent pattern mining in cloud computing environment while
optimizing the global monetary cost of storing and querying data
in the cloud. To achieve this goal, we design cost models for
managing and mining graph data with large scale pattern mining
framework over a cloud architecture. Furthermore, we define four
objective functions, with respect to the needs of customers. We
present an experimental validation of the proposed cost models
in the case of distributed subgraph mining in the cloud.

Keywords—Distributed pattern mining; cost models; cloud com-
puting; optimization

I. INTRODUCTION

Frequent pattern mining is one of the most important con-
cepts in data mining, concerned with finding local structures
in the data. It has become an important topic of research
with numerous applications in several disciplines ranging from
association rule mining [1] [2] and graph mining [3] [4], to
image mining [5] [6] and bioinformatics [7] [8]. Generally,
these fields exploit the extracted patterns for characterizing and
classifying their associated data. For example, in graph mining,
patterns are subgraphs extracted from a collection of graphs
or a single large graph with a frequency no less than a user-
specified support threshold. The discovered patterns are used
lately to reveal interesting information hidden in the original
data.

Nowadays, the amount of the available data has been
exploding. Consequently, several distributed and cloud-based
solutions have been proposed for distributed pattern mining
from large-scale data. However, the distribution of the pattern
mining process generates a loss of information in the output

results [9] [10]. In [9], a cloud-based approach for distributed
frequent subgraph mining is presented. The proposed method
relies on a density-based partitioning technique that considers
data characteristics. It uses the densities of the graphs in order
to partition the input data. Such a partitioning technique allows
a balanced computational load over the distributed collection
of machines and replaces the default arbitrary partitioning
technique of MapReduce. The output of the proposed approach
is an approximation of the exact solution. In [10], PARMA, a
parallel technique for mining frequent itemsets and association
rules is proposed. The final result of PARMA is an approxi-
mation of the exact solution since it mines random subsets of
the input dataset. Reducing the loss generated by distributed
pattern mining approaches may affect the performance of the
distributed approach and thus, the monetary cost when using
cloud environments. In this context, cost models are needed to
help selecting the best parameters of distributed pattern mining
approaches in order to achieve better performance especially
in the cloud [11] [12] [13].

Several cost models have been developed for estimating
the costs of distributed data mining applications [14] [12] [15].
However, these approaches do not deal with distributed pattern
mining. In addition, they do not incorporate an optimizer to
be able to estimate the costs associated with the distributed
pattern mining.

In this paper, we address the multi-criteria optimization
problem of tuning thresholds related to distributed frequent
pattern mining in cloud computing environments while opti-
mizing the global monetary cost of storing and querying data in
the cloud. Moreover, we propose cost models for managing and
mining graph data with large scale pattern mining framework
over a cloud architecture. We also define objective functions,
with respect to the needs of cloud customers.

The contributions of this paper are as follows:

• We propose cost models for pattern mining over a
cloud architecture. We focus our work on subgraph
patterns.

• We define four objective functions, with respect to the
needs of customers. These needs can be expressed by

2015 IEEE Trustcom/BigDataSE/ISPA

978-1-4673-7952-6/15 $31.00 © 2015 IEEE

DOI 10.1109/Trustcom-BigDataSe-ISPA.2015.569

112

TABLE I. WINDOWS AZURE BANDWIDTH PRICES (OUTPUT DATA)

Data volume Price per month
First 5GB per month free

5GB-10TB per month $0.12 per GB

40TB per month $0.09 per GB

100TB per month $0.07 per GB

350TB per month $0.05 per GB

TABLE III. AMAZON EC2 COMPUTING PRICES

Type Virtual cores RAM Price per hour
Small 1 1.7GB $0.075

Medium 1 3.75GB $0.15

Large 2 7.5GB $0.30

Extra large 4 15GB $0.60

a financial budget limit, a response time limit or a
mining quality limit.

• We validate experimentally the proposed cost models
and the defined objective functions.

This paper is organized as follows. In the next section,
we present the background information and the preliminary
notions related to our work. In Section 3, we describe our cost
models for distributed pattern mining in the cloud. In Section
4, we present the optimization process and the objective
functions. In Section 5, we describe our experimental study
and we discuss the obtained results. Finally, in Section 6, we
present an overview of some related works dealing with cost
models for distributed pattern mining in the cloud.

II. BACKGROUND

In this section, we present the background information
related to pattern mining in the cloud. We first introduce a
simple use case that serves as a running example throughout
this paper. Then, we describe a typical pricing model in the
cloud, illustrated by some of Windows Azure services and
Amazon Web Services (AWS).

A. Running Example

In order to illustrate our cost models, we rely on a fre-
quent subgraph mining example. Considering a graph dataset
containing a set of community networks of a social network.
Nodes of the graph represent people and edges represent
interactions between them. Social network analysts need to
examine the community networks patterns per day, month,
and year. The analysis consists in the extraction of frequent
subgraph patterns in community networks. It includes queries
like “frequent subgraphs that occur in more than 30% of graphs
in the database”. We suppose that our dataset contains ten
million graphs and its size on disk is 100GB. The query
example consists in retrieving community networks patterns
that occur in more than 30% of graphs in the database and of
producing a query result of 10GB.

B. Cloud Pricing Policies

Cloud Service Providers (CSPs) supply a variety of re-
sources, such as hardware (CPU, storage, networks), devel-
opment platforms and services with different services and
pricing. In addition, they provide services that allow the
design of MapReduce-based applications in the cloud such as
HDInsight of Windows Azure and Amazon Elastic MapReduce

of Amazon Web Services (AWS). In order to have an overview
of CSPs pricing policy, the following examples present a
simplified version of both HDInsight service offer [16] and
Amazon Elastic MapReduce (Amazon EMR) service offer
[17]. The objective of this description is indeed not to compare
the different providers, but to provide an idea about CSPs
pricing offers.

1) HDInsight Offer: HDInsight is a MapReduce service
proposed by Windows Azure. It is based on Hadoop. A
HDInsight environment consists of a head node, a gateway
node and one or more compute nodes. The master node is
charged $0.64 per hour and compute nodes are charged $0.32
per hour. The gateway node is free.

According to the HDInsight offer, the costs of five node
hadoop cluster (one master node and four compute nodes), is
$0.64 + $0.32× 4 = $1.92 per hour.

We mention that the storage and the bandwidth consump-
tion in HDInsight are billed according to the standard Windows
Azure offer [16]. Bandwidth consumption is billed with respect
to data volume (see Table I).

In this model, input data transfers are free, whereas output
data transfer cost varies with respect to data volume, with an
earned rate when volume increases. When applying this pricing
model onto our use case, the cost of bandwidth consumption
(query result of 10GB) is (10− 5)× $0.12 = $0.60.

We mention that Windows Azure Storage provides storage
of non-relational data, including storage blob, table and disk.
It provides two options for storage: locally and geographically
redundant. The locally redundant storage option allows mul-
tiple replicas of data within a single sub-region to provide
the highest level of durability. The geographically redundant
storage option offers an extra level of durability by replicating
data between two remote sub-regions.

In this model, the price varies with respect to data volume,
with an earned rate when volume increases (see Table II). In
our running example, the monthly storage price of our data
(100GB dataset) with the locally redundant storage option is
$0.068× 100 = $6.8.

2) Amazon Elastic MapReduce Offer: Amazon Elastic
MapReduce (Amazon EMR) is a MapReduce web service
provided by Amazon Web Service (AWS). Amazon EMR uses
Hadoop to distribute and process the data across a resizable
cluster of Amazon Elastic Compute Cloud (EC2) instances.

Amazon EMR provides a variety of standard Amazon EC2
instance that can be rent (extra small, small, large and extra
large) at various prices, as illustrated in Table III. We mention
that the Amazon EMR price is included in the prices presented
in Table III.

For example, the costs of five node hadoop cluster, with
small instances, is $0.075× 5 = $0.375 per hour.

Table IV presents EC2 bandwidth prices with respect to
data volume.

In this model, input data transfers are free, whereas output
data transfer cost varies with respect to data volume, with an
earned rate when volume increases.

113

TABLE II. WINDOWS AZURE STORAGE PRICES (STORAGE BLOB)

Price per month
Data volume Geographically redundant storage Locally redundant storage

First 1TB per month $0,085 per GB $0,068 per GB

Next 49TB per month $0,075 per GB $0,006 per GB

Next 450TB per month $0,06 per GB $0,048 per GB

Next 500TB per month $0,044 per GB $0,0055 per GB

Next 4 PB per month $0,41 per GB $0,0051 per GB

TABLE IV. EC2 BANDWIDTH PRICES (OUTPUT DATA)

Data volume Price per month
First 1GB per month free

2GB-10TB per month $0.12 per GB

40TB per month $0.09 per GB

100TB per month $0.07 per GB

350TB per month $0.05 per GB

TABLE V. AMAZON S3 STORAGE PRICES

Data volume Price per month
First 1TB $0,14 per GB

Next 49TB $0,125 per GB

Next 450TB $0,11 per GB

Finally, AWS Storage provides storage capabilities. Ama-
zon Elastic Block Store (EBS) proposes a fixed price ($0.10
per GB), whereas Amazon S3 (see Table V) enables an earned
rate when volume increases.

In our running example, monthly storage price of our data
(100GB dataset) with Amazon EBS is $0,10× 100 = $10.

III. COST MODELS FOR DISTRIBUTED PATTERN MINING

IN THE CLOUD

Let Cdm be the data management cost and Cc be the cost
of computing patterns in a distributed environment. We define
the total cost C of distributed pattern mining by:

C = Cdm + Cc. (1)

Depending on the model used to distribute the compu-
tations (i.e. MapReduce or other) and the different param-
eters within each model, the factors which determine Cdm

and Cc change. In our work, we consider MapReduce-based
approaches. Two types of parameters setting are required in
this setting. The first type consists of parameters related to the
pattern mining process such as the support threshold and the
size of the database. The second type consists of parameters
related to the MapReduce framework that specify how the
MapReduce job should execute the distributed pattern mining
process. Let us define some functions that we use to express
our cost models.

• Function s(·) returns the size in GB of any dataset,
e.g., s(DS) is the size of the dataset DS and s(R) is
the size of the result data R;

• Function ts(·) returns the storage time of any dataset,
e.g., ts(DS) is the storage time of the dataset DS in
the cloud and ts(R) is the storage time of the result
data R;

• Function tmap(i, Parti(DS)) returns the runtime
taken by the map task to process the ith partition of
DS;

• Function treduce(k) returns the runtime taken by the
reduce task of the kth reducer.

A. Data Management Cost

We define the data management cost Cdm as the sum of
data transfer cost Ct and storage cost Cs. Formally, the data
management cost is:

Cdm = Ct + Cs. (2)

Data transfer cost depends on several parameters including
the size of the dataset, the size of the results and the pricing
model applied by the Cloud Service Providers (CSP). The total
data transfer cost Ct is the sum of the input data transfer and
the output data transfer costs. The input data transfer cost is
the product of the CSP’s atomic transfer cost cti of the input
data and the total size of input data. The output data transfer
cost is the product of the CSP’s atomic transfer cost cto of the
output data and the total size of result data (s(R)):

Ct = cti × s(DS) + cto × s(R). (3)

As illustrated in (3), the total data transfer cost is propor-
tional to the total size of input and output data. We notice that
most cloud providers such as Windows Azure and Amazon
Web Service (AWS) do not charge for input data transfers.
Consequently, total data transfer cost Ct become:

Ct = cto × s(R). (4)

Storage cost depends on parameters such as the size of the
dataset, the storage time, the type of data replication (locally
redundant storage or globally redundant storage) and the CSP’s
pricing policy. We assume that the storage period in the cloud
is divided into intervals. In each interval, the size of the stored
data is fixed. The total storage cost (Cs) is the CSP’s fixed
price per GB (cCSP

s) multiplied by the size of initial s(DS)
and result data s(R), multiplied by the sum of sizes of the
initial dataset and the result data, multiplied by their respective
storage time during the intervals:

Cs =
∑

Intervals

cCSP
s × (s(DS) + s(R))× (tend − tstart),

(5)
where tstart, tend are start and end point of an interval.

By combining (2), (3) and (5), the total data management
cost is:

114

Fig. 1. Minimizing response time under monetary cost and mining quality
constraints.

Fig. 2. Minimizing monetary cost under mining quality and response time
constraints.

Cdm =
∑

Intervals

cCSP
s × (s(DS) + s(R))× (tend − tstart)

+ ct × (s(DS) + s(R)). (6)

As illustrated in (6), the data management cost depends
essentially on the size of input data and result data. Indeed, it
depends on the nature of data under consideration.

Beside the data management cost, it is necessary to study
the computing cost on the data. In the context of our work,
this computing cost consists in pattern mining cost.

B. Pattern Mining Cost

In a cloud environment, mining processes are executed on
computing instances {Ii}i=1···n with different performances in
terms of number of CPUs, available RAM, etc., and thus, with
different costs. Each instance may bear different performances,
and thus different costs.

The cost for renting instance Ii is denoted by c(Ii). This
cost must be paid at each connection to the cloud. We define
the cost of computing patterns by:

Cc =
n∑

i=0

c(Ii)× Tmining, (7)

where

Tmining = (tpart +
m

max
j=0

(tmap(j, Partj(DS)))

+
r

max
k=0

(treduce(k)) + CP × tcompress), (8)

where tpart is the partitioning time, tmap(j, Partj(DS))
is the time taken by the jth Map task to process the jth
partition of DS, treduce(k) is the time taken by the kth

Reduce task, tcompress is the compression time of the result
files, m is the number of Map tasks, r is the number of
Reduce tasks and CP is a binary parameter set to 1 if the
output data should be compressed and 0 otherwise. The values
of tpart, tmap(j, Partj(DS)) and treduce(k) are estimated
experimentally.

IV. OPTIMIZATION PROCESS

In this section, we investigate how the parametrization of
the pattern mining approach and of MapReduce framework
may impact the mining process performance. In the following,
we present four objective functions with respect to the needs
and capacity of customers. Such needs include budget limit,
response time limit and mining quality limit.

Response time: The idea here is to achieve better per-
formance in terms of response time. Given a predefined
financial budget B and a predefined mining quality limit Q,
our objective in this scenario is to select the best parameters
that minimize the mining process in the cloud:

Obj1 =

⎧⎨
⎩

minimize Tmining,

C = Cdm + Cc ≤ B,

MiningQuality ≥ Q.

(9)

Fig. 1 presents the feasible solutions that minimize the
response time with respect to financial budget B and a
predefined mining quality limit Q. Each point in Fig. 1
corresponds to a feasible solution of our objective function
without considering constraints defined in (9). The red points
correspond to solutions that verify our mining quality limit (X
axis) and budget limit (Y axis) constraints.

We notice that each point in Fig. 1 corresponds to a
response time value. The optimal solution in this context is the
solution that presents the lower value of the response time.

Monetary cost: For a predefined response time limit T
and a predefined mining quality limit Q, the objective in this
scenario is to select the best parameters that minimize the
monetary cost of the mining process in the cloud:

Obj2 =

⎧⎨
⎩

minimize C = Cdm + Cc,

Tmining ≤ T,

MiningQuality ≥ Q.

(10)

Fig. 2 presents the set of feasible solutions that minimize
the monetary cost with respect to a response time limit T
and a predefined mining quality limit Q. In Fig. 2, red points
correspond to solutions that verify our mining quality limit (X
axis) and response time (Y axis) constraints.

115

Fig. 3. Maximizing mining quality under monetary cost and response time
constraints.

From the set of feasible solutions, we select the optimized
solution that presents the lower value of monetary cost.

Mining quality: The goal of this objective function is to
achieve the optimized quality of results (the mining quality).
Given a predefined response time limit T and a predefined
financial budget B, our objective in this scenario is to select
the best parameters that maximize the mining quality of the
distributed pattern mining method in the cloud:

Obj3 =

⎧⎨
⎩

maximize MiningQuality,

Tmining ≤ T,

C = Cdm + Cc ≤ B.

(11)

We show in Fig. 3, the set of feasible solutions that
maximize the mining quality with respect to a financial budget
B and a predefined response time limit T . Points represented
in Fig. 3 corresponds to feasible solutions of our objective
function without considering the constraints defined in (11).
The red points correspond to solutions that verify our mining
quality limit (X axis) and budget limit (Y axis) constraints.

The optimized solution here is the one that presents the
higher value of mining quality.

Response time vs. monetary cost vs. mining quality
tradeoff: Our objective in this scenario is to select the best pa-
rameters that offer the best tradeoff between query processing
time, mining quality of the distributed pattern mining method
and financial cost:

Obj4 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

minimize (Tmining, C),

maximize (MiningQuality),

Tmining ≤ T,

C = Cdm + Cc ≤ B,

MiningQuality ≥ Q.

(12)

The above presented objective function consists in multi-
objective function since more than one objective function to
be optimized simultaneously.

V. EXPERIMENTAL STUDY

In this section, we first describe the experimental data and
the overall setup of our preliminary experimentation effort.

Then, we present the results we have obtained. We focused our
experiments on solving the problem of distributed subgraph
mining in the cloud. We adopted the Pareto-based multi-
objective optimization solution which aim to produce all Pareto
optimal solutions. In fact, Pareto optimal solutions are very
useful for decision makers who are faced with multiple objec-
tives to make appropriate compromises, tradeoffs or choices.

A. Experimental Setup

All experiments of our approach were carried out using a
virtual cluster composed of five virtual machines. Each virtual
machine is equipped with a Quad-Core AMD Opteron(TM)
processor 6234 2.40 GHz CPU and 4 GB of RAM. All used
machines feature Hadoop (version 0.20.2) and operate on
Linux Ubuntu.

For our experiments, we have generated our data based
on the obtained results from the MapReduce-based approach
for distributed subgraph mining in the cloud presented in [9].
We used results that correspond to the distributed subgraph
mining from a dataset of 100, 000 graphs (see [9]) to form
our set of multi-objective points. For each set of parameters,
we noticed the values of our objectives such as the response
time (Tmining), the monetary cost (C) and the mining qual-
ity. The used parameters include MapReduce parameters and
distributed subgraph mining approach parameters such as the
support threshold (θ) and the tolerance rate (τ) [9]. Monetary
cost values are estimated based on the Windows Azure pricing
model [16]. We suppose that our experimental environment is
close to the large cloud instances provided by Windows Azure.
Consequently, we use the corresponding costs to compute the
values of the monetary cost C of each experiment using our
virtual cluster.

B. Experimental Results

During our experimental study, we examined the four
objective functions described in Section IV. Fig. 4 draws the
set of feasible solutions that minimize the response time of our
distributed subgraph mining approach under monetary cost and
mining quality constraints.

Each solution is represented by two points (a blue square
point and a red diamond point). The blue square point corre-
sponds to monetary cost in function of response time. The red
diamond point corresponds to the mining quality in function
of response time. Thus, the two points representing a solution
have the same value of response time. Optimal solutions are
determined by selecting solutions that present lower values of
response time. For example, with budget limit = $0.20 and
mining quality limit = 80% (see Fig. 4), we distinguish one
optimal solution (surrounded by an ellipse) which allows the
lower value of response time. We notice that we can find more
than one solution that allows a lower response time value.

In Fig. 5, we present the set of feasible solutions that
minimize the monetary cost under mining quality and response
time constraints. Feasible solutions are represented by couples
of points. Each couple consists of one blue square point and
one red diamond point. The blue square point corresponds to
response time in function of monetary cost. The red diamond

116

Fig. 4. Minimizing the response time (Budget limit = $0.20 and Mining quality limit = 80%).

Fig. 5. Minimizing the monetary cost (Response time limit = 50 s and Mining quality limit = 80%).

point corresponds to the mining quality in function of monetary
cost.

As shown in Fig. 5, we identified optimal solutions by
selecting the solutions that present lower values of monetary
cost in comparison with the set of feasible solutions. For
example, with response time limit = 50 s and mining quality
limit = 80% (see Fig. 5), we select one optimal solution
(surrounded by an ellipse) which allows the lower value of
mining quality.

Fig. 6 illustrates the set of feasible solutions that opti-
mize the mining quality under monetary cost and response
time constraints. We used the mining quality related to the
MapReduce-based approach for frequent subgraph mining in
the cloud [9]. Feasible solutions are represented by couples of
points. A couple of points contains one blue square point and
one red diamond point. The blue square point corresponds to
response time in function of mining quality. The red diamond
point corresponds to the monetary cost in function of mining
quality.

We recall that each feasible solution consists of a
parametrization of the cloud-based subgraph mining approach.
As illustrated in Fig. 6, the set of optimal solutions (surrounded
by an ellipse) contains more than one optimal solution (six

optimal solutions) that minimize the mining quality. Therefore,
we have six possible parameterizations of our cloud-based
subgraph mining approach.

In order to solve the multi-objective function defined in
Section IV, we computed all Pareto optimal solutions from
our data (a set of multi-objective points). Table VI presents
the set of Pareto optimal solutions that aim to quantify the
trade-offs in satisfying the different objectives (response time,
monetary cost and mining quality).

We notice that the presented optimal solutions in Table VI
may help the parametrization of cloud-based subgraph mining
applications. They provide suggestions for the choice of pa-
rameters (cloud parameters and mining approach parameters).
However, it is suitable to provide one suggestion instead of
many. This can be done by ranking optimal solutions based
on a user-defined parameter.

We show in Table VI, the details of the Pareto optimal
solutions. These details include cloud parameter values and
subgraph mining parameter values. The Pareto optimal so-
lutions illustrated in Table VI aim to quantify the trade-offs
in satisfying the different objectives (response time, monetary
cost and mining quality).

117

Fig. 6. Maximizing the mining quality (Budget limit = $0.17 and Response time limit = 50 s).

TABLE VI. PARETO OPTIMAL SOLUTIONS

Cloud parameters
Optimal solution Number of cloud instances Data compression (CP) Replication factor

(RF)
Pattern mining approach parameters

First solution 5 No 3 θ = 50% and τ = 60%
Second solution 5 Yes 3 θ = 30% and τ = 0%
Third solution 5 No 3 θ = 20% and τ = 0%

VI. RELATED WORKS

Several distributed data mining and graph mining systems
have been proposed [18] [19] [20] [10] [21]. However, they do
not incorporate an optimizer to be able to estimate the costs
associated with the various distributed data mining scenarios.
Consequently, several cost models have been developed for
estimating costs of distributed data mining applications [14]
[12].

In [14], the authors present an optimized model for estimat-
ing the response time of distributed association rule mining.
In this work, three estimates were defined:

• The communication cost estimates: They involve the
time needed for the computing agent to travel from
the agent zone (AZ) to the data sources.

• The local association rule mining costs: They make
reference to the time needed for mining association
rule locally at each data source.

• The results information transfer costs: They make ref-
erence to the time needed for the computing agent to
travel back to the agent zone with results information
concerning each local mining.

The overall response time for the distributed association
rule mining T would be calculated as follows:

T = tdarm + tdki,

where tdarm is the time taken to perform mining in a dis-
tributed environment and tdki is the time taken to perform
distributed knowledge integration and return the results to the
requesting server. The term tdarm is defined by:

tdarm = t1(AZ, i) +
n

max
i=1

t2(i) + t3(i, AZ),

where the first term is the time taken by the computing agent
to travel from the agent zone to data source i. The second term
is the maximum of the times taken by the computing agent to
mine at all data sources. The third term is the time taken for
the agent to travel from the data source back to the agent zone
with the results information. The authors discussed the values
of tdki according to the number of used data servers and the
number of data mining agents.

In [15], the authors propose the MRShare framework that
transforms a batch of MapReduce queries into a new batch that
will be executed more efficiently, by merging jobs into groups
and evaluating each group as a single query. The authors
define a cost model for MapReduce that provide a solution
that derives the optimal grouping of queries. The total cost
of executing a set J of n individual jobs is the sum of the
cost Tread to read the data, the cost Tsort to do the sorting
and copying at the map and reduce nodes, and the cost Ttr of
transferring data between nodes. Thus, the cost in MapReduce
is:

T (J) = Tread(J) + Tsort(J) + Ttr(J),

where the values of Tread(J), Tsort(J) and Ttr(J) with
grouping of queries are not the same without grouping.

Another attention was carried by [12] to data manage-
ment cost models in cloud environments. In their work, the
authors propose new cost models that fit into the pay-as-you-
go paradigm of cloud computing. They addressed the multi-
criteria optimization problem of selecting a set of materialized
views while optimizing the global monetary cost of storing and
querying a database in a cloud environment. The total cloud
data management cost C is defined by:

C = Cc + Cs + Ct,

where Cc is the sum of computing costs, Cs is the sum of
storage costs and Ct is the sum of data transfer costs. The

118

proposed cost models complement the existing materialized
view cost models with a monetary cost component that is
primordial in the cloud [12].

In [14], the authors deal with cost models of classic
architectural models used in the development of DDM sys-
tems namely, client-server and software agents. However, the
proposed cost models in these works do not fit into cloud
computing paradigm where the users only pay for the resources
they use. In [12] [15], the authors deal with data management
and execution aspect of MapReduce framework in a cloud
setting. However, they do not include cost models for data
mining processes in the top of MapReduce. Moreover, they
do not consider monetary costs in the case of cloud-based
data mining applications. To the best of our knowledge, cost
models for MapReduce-based pattern mining applications in
cloud environments have not been developed.

VII. CONCLUSION

In this paper, we presented cost models for distributed
pattern mining in the cloud. It consists of two levels. The first
level is novel cost models for pattern mining in the cloud. We
focused the defined cost models on subgraph patterns in cloud
computing. The proposed cost models consist of monetary cost
components that are primordial in the cloud. The second level
consists in the definition of a set of objective functions with
respect to the needs and the financial capacity of customers.
An experimental study was carried out in the case of cloud-
based subgraph mining. It provided a first evaluation of our
approach by selecting the optimal solutions that minimize our
objectives such as the monetary cost, the response time and
the mining quality.

In the future work, we aim to extend the experimental
validation of the proposed cost models to a wider-scale ex-
perimentation. In this context, additional experiments will be
carried out in which we solve the defined objective functions
using more methods of solving multi-objective optimization
problems. We aim also to run experiments on a variable
number of cloud cloud instances, thus, experimenting the effect
of primordial elasticity characteristic of the cloud on our cost
models.

ACKNOWLEDGMENT

This work was supported by the University of Trento
in Italy, the French-Tunisian PHC project EXQUI, and the
CNRS Mastodons project PETASKY. We would like to thank
the anonymous reviewers for their useful comments. We also
would like to thank Manel Nasri for English proofreading.

REFERENCES

[1] ¨

O. M. Soysal, “Association rule mining with mostly associated sequen-
tial patterns,” Expert Syst. Appl., vol. 42, no. 5, pp. 2582–2592, 2015.

[2] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart, “Crowdminer:
Mining association rules from the crowd,” PVLDB, vol. 6, no. 12, pp.
1250–1253, 2013.

[3] S. J. Suryawanshi and S. M. Kamalapur, “Algorithms for frequent
subgraph mining,” International Journal of Advanced Research in
Computer and Communication Engineering, vol. 2, no. 3, pp. 1545–
1548, 2013.

[4] R. Pears, S. Pisalpanus, and Y. S. Koh, “A graph based approach to
inferring item weights for pattern mining,” Expert Syst. Appl., vol. 42,
no. 1, pp. 451–461, 2015.

[5] J. Melendez, M. A. Garcia, D. Puig, and M. Petrou, “Unsupervised
texture-based image segmentation through pattern discovery,” Comput.
Vis. Image Underst., vol. 115, no. 8, pp. 1121–1133, Aug. 2011.

[6] R. Ji, L. Duan, J. Chen, T. Huang, and W. Gao, “Mining compact bag-
of-patterns for low bit rate mobile visual search,” IEEE Transactions
on Image Processing, vol. 23, no. 7, pp. 3099–3113, 2014.

[7] F. Deng, L. Wang, and X. Liu, “An efficient algorithm for the blocked
pattern matching problem,” Bioinformatics, vol. 31, no. 4, pp. 532–538,
2015.

[8] R. Saidi, S. Aridhi, E. M. Nguifo, and M. Maddouri, “Feature extrac-
tion in protein sequences classification: A new stability measure,” in
Proceedings of the ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, ser. BCB ’12. New York, NY, USA: ACM,
2012, pp. 683–689.

[9] S. Aridhi, L. d’Orazio, M. Maddouri, and E. M. Nguifo, “Density-based
data partitioning strategy to approximate large-scale subgraph mining,”
Information Systems, vol. 48, pp. 213 – 223, 2015.

[10] M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal, “Parma: a
parallel randomized algorithm for approximate association rules mining
in mapreduce,” in Proceedings of the 21st ACM international conference
on Information and knowledge management, ser. CIKM ’12. New York,
NY, USA: ACM, 2012, pp. 85–94.

[11] M. M. Kashef and J. Altmann, “A cost model for hybrid clouds,” in
Proceedings of the 8th international conference on Economics of Grids,
Clouds, Systems, and Services, ser. GECON’11. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 46–60.

[12] T.-V.-A. Nguyen, S. Bimonte, L. d’Orazio, and J. Darmont, “Cost
models for view materialization in the cloud,” in Proceedings of the
2012 Joint EDBT/ICDT Workshops, ser. EDBT-ICDT ’12. NY, USA:
ACM, 2012, pp. 47–54.

[13] R. Perriot, J. Pfeiffer, L. d’Orazio, B. Bachelet, S. Bimonte, and
J. Darmont, “Cost models for selecting materialized views in public
clouds,” IJDWM, vol. 10, no. 4, pp. 1–25, 2014.

[14] A. O. Ogunde, O. Folorunso, A. S. Sodiya, J. A. Oguntuase, and
G. O. Ogunleye, “Improved cost models for agent-based association rule
mining in distributed databases,” in Annals. Computer Science Series,
ser. 9th Tome - 1st Fasc., 2011, pp. 231–251.

[15] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas,
“MRShare: sharing across multiple queries in MapReduce,” Proc. VLDB
Endow., vol. 3, no. 1-2, pp. 494–505, Sep. 2010.

[16] M. Inc, “Windows azure offer,” 2015. [Online]. Available:
http://www.windowsazure.com/en-us/pricing/overview/

[17] A. Inc, “Amazon ec2 offer,” 2015. [Online]. Available:
http://aws.amazon.com/fr/ec2/pricing/

[18] S. Aridhi, P. Lacomme, L. Ren, and B. Vincent, “A mapreduce-
based approach for shortest path problem in large-scale networks,”
Engineering Applications of Artificial Intelligence, vol. 41, no. 0, pp.
151 – 165, 2015.

[19] A. Ghoting, P. Kambadur, E. Pednault, and R. Kannan, “NIMBLE:
a toolkit for the implementation of parallel data mining and machine
learning algorithms on mapreduce,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining, ser. KDD ’11. New York, NY, USA: ACM, 2011, pp. 334–
342.

[20] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng,
and K. Olukotun, “Map-Reduce for Machine Learning on Multicore,”
in NIPS, B. Schölkopf, J. C. Platt, and T. Hoffman, Eds. MIT Press,
2006, pp. 281–288.

[21] A. S. Foundation, I. Drost, T. Dunning, J. Eastman, O. Gospodnetic,
G. Ingersoll, J. Mannix, S. Owen, and K. Wettin, “Apache mahout,”
2010.

119

