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Recently, graph mining approaches have become very popular, especially in certain domains
such as bioinformatics, chemoinformatics and social networks. One of the most challenging
tasks is frequent subgraph discovery. This task has been highly motivated by the
tremendously increasing size of existing graph databases. Due to this fact, there is an
urgent need of efficient and scaling approaches for frequent subgraph discovery. In this
paper, we propose a novel approach for large-scale subgraph mining by means of a density-
based partitioning technique, using the MapReduce framework. Our partitioning aims to

balance computational load on a collection of machines. We experimentally show that our
approach decreases significantly the execution time and scales the subgraph discovery
process to large graph databases.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Graphs show up in diverse set of disciplines, ranging
from computer networks, social networks to bioinfor-
matics, chemoinformatics and others. These fields
exploit the representation power of graph format to
describe their associated data, e.g., social networks
consist of individuals and their relationships. In bioin-
formatics, the protein structure can be considered as a
graph where nodes represent the amino acids and
edges represent the interactions between them. Find-
ing recurrent and frequent substructures may give
important insights on the data under consideration.
These substructures may correspond to important func-
tional fragments in proteins such as active sites, feature
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positions, junction sites. Moreover, in a social network,
frequent substructures can help to identify the few
most likely paths of transmission for a rumor or joke
from one person to another [1]. Mining these substruc-
tures from data in a graph perspective falls in the field
of graph mining and more specifically in frequent
subgraph mining.

Frequent subgraph mining is a main task in the area of
graph mining and it has attracted much interest. Conse-
quently, several subgraph mining algorithms have been
developed, such as FSG [2], Gaston [3] and gSpan [4].
However, existing approaches are mainly used on centralized
computing systems and evaluated on relatively small data-
bases [5]. Nowadays, there is an exponential growth in both
the graph size and the number of graphs in databases, which
makes the above cited approaches face the scalability issue.
Several parallel or distributed solutions have been proposed
for frequent subgraph mining on a single large graph [6-9].
However, the problem of subgraph mining from large-scale
graph databases is still challenging.

In this paper, we propose a scalable and distributed
approach for large scale frequent subgraph mining based
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on MapReduce framework [10]. Our approach is not the
first one to use MapReduce to solve the distributed frequent
subgraph mining task, it differs from and enhances previous
works in two crucial aspects. First, previous attempts try
to construct the final set of frequent subgraphs iteratively
using MapReduce, possibly resulting in a big number of
MapReduce passes and an exponential growth of inter-
mediate data especially with large-scale datasets. On the
contrary, our approach mines the final set of frequent
subgraphs from different partitions of the original dataset
by a unique execution of a subgraph mining algorithm. In
addition, it offers the possibility to apply any of the known
subgraph mining algorithms in a distributed way. Second,
our approach differs from previous algorithms by providing
a density-based data partitioning technique of the input
data. In previous works, the default MapReduce partitioning
technique was used to partition the input data, which can
be the origin of imbalanced computational load among map
tasks [11].
The contributions of this paper are as follows:

® We propose a MapReduce-based framework for approxi-
mate large-scale frequent subgraph mining.

® We propose a density-based data partitioning techni-
que using MapReduce in order to enhance the default
data partitioning technique provided by MapReduce.

® We experimentally show that the proposed solution is
reliable and scalable in the case of huge graph datasets.

This paper is organized as follows. In the next section,
we define the problem of large-scale subgraph mining. In
Section 3, we present our approach of large-scale subgraph
mining with MapReduce. Then, we describe our experi-
mental study and we discuss the obtained results in
Section 4. Finally, in Section 5, we present an overview
of some related works dealing with the concept of large
scale subgraph mining.

2. Problem definition

In this section, we present definitions and notations
used in this paper. Then, we present the MapReduce frame-
work. Finally, we define the problem we are addressing and
specify our assumptions.

2.1. Definitions

A graph is a collection of objects denoted as G = (V,E),
where V is a set of vertices and E = V x V is a set of edges.
A graph G’ is a subgraph of another graph G, if there exists
a subgraph isomorphism from G’ to G, denoted as G’ = G.
The definitions of subgraph and subgraph isomorphism
are given as follows.

Definition 1 (Subgraph). A graph G'=(V',E’) is a sub-
graph of another graph G=(V,E) iff V"=V and E' < E.

Definition 2 (Graph and subgraph isomorphism). An iso-
morphism of graphs G and H is a bijection f : V(G)—V(H)
such that any two vertices u and v of G are adjacent in G if

and only if f{lu) and f{v) are adjacent in H. A graph G’ has a
subgraph isomorphism with G if:

® (' is a subgraph of G, and
® there exists an isomorphism between G’ and G.

A task of major interest in this setting is frequent
subgraph mining (FSM) with respect to a minimum sup-
port threshold. There are two separate problem formula-
tions for FSM: (1) graph transaction based FSM and
(2) single graph based FSM. In graph transaction based
FSM, the input data comprises a collection of medium-size
graphs called transactions. In single graph based FSM, the
input data, as the name implies, comprises one very large
graph. In this work, we are interested in large scale graph
transaction based FSM. The definitions of subgraph sup-
port and the graph transaction based FSM are given as
follows.

Definition 3 (Subgraph relative support). Given a graph
database DB = {Gy, ..., Gk}, the relative support of a sub-
graph G’ is defined by

» Ry 2i=19(G"Gi)
Support(G’,DB) = =B 1)
where
1 if G’ has a subgraph isomorphism with G;,
a(G', Gy = .
0 otherwise.

In the following, support refers to relative support.

Definition 4 (Graph transaction based FSM). Given a mini-
mum support threshold 6 e[0, 1], the frequent subgraph
mining task with respect to ¢ is finding all subgraphs
with a support greater than 6, i.e., the set SG(DB, ) = {(A,
Support(A,DB)) : A is a subgraph of DB and Support(A,
DB) > 6}.

Definition 5 (Graph density). The graph density measures
the ratio of the number of edges compared to the maximal
number of edges. A graph is said to be dense if the ratio is
close to 1, and is said to be sparse if the ratio is close to 0.
The density of a graph G=(V,E) is calculated by

|E]

density(G) =2 VI AVISTY

2.2. MapReduce

MapReduce is a framework for processing highly dis-
tributable problems across huge datasets using a large
number of computers. It was developed within Google as
a mechanism for processing large amounts of raw data,
for example, crawled documents or web request logs. This
data is so large, it must be distributed across thousands of
machines in order to be processed in a reasonable amount
of time. This distribution implies parallel computing since
the same computations are performed on each CPU, but
with a different dataset. We notice that the data distribu-
tion technique of MapReduce consists of the decomposi-
tion of the input data into equal-size partitions called
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chunks. The only criterion required in this partitioning
method is the size of the partition, which corresponds to
the size of chunk in the MapReduce configuration.

MapReduce is an abstraction that allows Google engi-
neers to perform simple computations while hiding the
details of parallelization and data distribution [10]. The
central features of the MapReduce framework are two
functions, written by a user: Map and Reduce. The Map
function processes a key/value pair to generate a set of
intermediate key/value pairs. The MapReduce library groups
together all intermediate values associated with the same
intermediate key and passes them to the Reduce function.
The Reduce function accepts an intermediate key and a set of
values for that key. It merges these values together to form a
smaller set of values.

2.3. Problem formulation

In this work, we are interested in frequent subgraph
mining in large scale graph databases.

Let DB={Gy,...,Gk} be a large-scale graph database
with K graphs, SM={My,...,My} a set of distributed
machines, 9 €[0,1] is a minimum support threshold. For
1<j <N, let Part;(DB) = DB be a non-empty subset of DB.
We define a partitioning of the database over SM by the
following: Part(DB) = {Part,(DB), ..., Party(DB)} such that

e UN_,{Part;(DB)} = DB, and
® Vi j, Party(DB) N Partj(DB) = 0.

In the context of distributed frequent subgraph mining, we
propose the following definitions.

Definition 6 (Globally frequent subgraph). For a given
minimum support threshold 6 € [0, 1], g is globally frequent
subgraph if Support(g, DB) > 6. Here, 6 is called global sup-
port threshold (GS).

Definition 7 (Locally frequent subgraph). For a given
minimum support threshold ¢ € [0, 1] and a tolerance rate
7€[0,1], g is locally frequent subgraph at site i if Support(g,
Part;(DB)) > ((1—7) - ). Here, ((1—7) - ) is called local sup-
port threshold (LS).

Definition 8 (Loss rate). Given S; and S, two sets with
S, =57 and S; # 0, we define the loss rate in S, compared
to S; by

IS1—S2|

LossRate(S4,S;) = S
1

2

We define the problem of distributed subgraph mining
by finding a good partitioning of the database over SM and
by minimizing well defined approximation of SG(DB, 6).

Definition 9 (an e-approximation of a set of subgraphs).
Given a parameter ¢ € [0, 1] and SG(DB, 6). An e-approxima-
tion of SG(DB, 0) is a subset S = SG(DB, ) such that

LossRate(SG,S) < e. 3)

We measure the cost of computing an e-approximation
of SG(DB,0) with a given partitioning method PM(DB)

by the standard deviation of the set of runtime values in
mapper machines.

Definition 10 (Cost of a partitioning method). Let R=
{Runtime(PM), ..., Runtimey(PM)} be a set of runtime
values. Runtime;(PM) represents the runtime of computing
frequent subgraphs in the partition j (Part;) of the data-
base. The operator E denotes the average or expected value
of R. Let x be the mean value of R:

u=E[R]. 4)

The cost measure of a partitioning technique is

Cost(PM) = 1/ E[(R—p)?]. (5)

A large cost value indicates that the runtime values are
far from the mean value and a small cost value indicates
that the runtime values are near the mean value. The
smaller the value of the cost is, the more efficient the
partitioning is.

3. Density-based partitioning for large-scale subgraph
mining with MapReduce

In this section, we present the proposed approach for
large scale subgraph mining with MapReduce. It first
describes the proposed framework to approximate large-
scale frequent subgraph mining. Then, it presents our
density-based partitioning technique.

Graph database
Graph partitioning
Partition 1 Partition 2 Partition N
» Mapper 1 » Mapper 2 ‘ : Mapper N‘

“Locally frequent /"Locally frequent ™ Locally frequent
subgraphs 1 subgraphs 2 subgraphs N

Reducer 1 Reducer 2‘ Reducer M

Globally frequent subgraphs

Fig. 1. A system overview of our approach. In this figure, ellipses
represent data, squares represent computations on the data and arrows
show the flow of data.
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3.1. A MapReduce-based framework to approximate
large-scale frequent subgraph mining

In this section, we present the proposed framework for
large scale subgraph mining with MapReduce (see Fig. 1).
As shown in Fig. 1, our method works as follows:

1. Input graph database is partitioned into N partitions.
Each partition will be processed by a mapper machine.

2. Mapper i reads the assigned data partition and gen-
erates the corresponding locally frequent subgraphs
according to local support. Mapper i outputs key/value
pairs of locally frequent subgraphs (subgraph, Support
(subgraph, Part;(DB))).

3. For each unique intermediate key, the reducer passes
the key and the corresponding set of intermediate
values to the defined Reduce function. According to
these key/value pairs, the reducer outputs the final list
of key/value pairs after filtering according to the global
support (subgraph, Support(subgraph, DB)).

In the following paragraphs, we give a detailed descrip-
tion of our approach.

Data partitioning. In this step, the input database is
partitioned into N partitions. The input of this step is a
graph database DB = {Gy, ..., Gk} and the output is a set of
partitions Part(DB) = {Part,(DB), ..., Party(DB)}. Our frame-
work allows two partitioning techniques for the graph
database. The first partitioning method is the default
one proposed by MapReduce framework that we called
MRGP (which stands for MapReduce Graph Partitioning).
It arbitrarly constructs the final set of partitions according
to chunk size. Though, MRGP does not consider the char-
acteristics of the input data during partitioning. Besides
the standard MRGP partitioning, we propose a different
partitioning technique taking into account the characteris-
tics of the input data during the creation of partitions.
We termed it Density-based Graph Partitioning (shortly
called DGP). More precisely, DGP tends to balance graph
density distribution in each partition (for more details, see
Section 3.2).

Distributed subgraph mining. In this phase, we use a
frequent subgraph mining technique that we run on each
partition in parallel. Algorithms 1 and 2 present our Map
and Reduce functions respectively:

Algorithm 1. Map function.

Require A partitioned graph database
DB = {Party(DB), ..., Party(DB)}, support threshold 6, tolerance
rate z, key=i, value=graph partition Part, DB)

Ensure locally frequent subgraphs in Part(DB)

1: S;«<FSMLocal(Part;(DB), 0, t)

2: for all s in S; do

3: Emitintermediate(s, Support(s, Part;(DB)))

4: end for

Algorithm 2. Reduce function.

Require support threshold ¢, key=a subgraph s, values=local
supports of s

Ensure globally frequent subgraphs in DB

1: GlobalSupportCount <0

2: for all v in values do

GlobalSupportCount<«GlobalSupportCount +v
: end for

: GlobalSupport«
. if GlobalSupport > =6 then
Emit(s, GlobalSupport)

: end if

GlobalSupportCount
N

N U AW

In the Map function, the input pair would be like (key,
Part;(DB)) where Part;(DB) is the graph partition number i.
The FSMLocal function applies the subgraph mining algo-
rithm to Part{DB) with a tolerance rate value and pro-
duces a set S; of locally frequent subgraphs. Each mapper
outputs pairs like (s,Support(s, Part;DB))) where s is a
subgraph of S; and Support(s, Part;(DB)) is the local sup-
port of s in Part;.

The Reduce function receives a set of pairs (s, Support
(s, Part;(DB))) and computes for each key (a subgraph), the
global support GlobalSupport. Only globally frequent sub-
graphs will be kept.

Analysis. The output of our approach is an e-approx-
imation of the exact solution SG(DB, ). Algorithms 1 and 2
do not offer a complete result since there are frequent
subgraphs that cannot be extracted. The decrease in the
number of ignored frequent subgraphs can be addressed
by a good choice of tolerance rate for the extraction of
locally frequent subgraphs. Theoretically, we can achieve
the exact solution with our approach (which refers to
LossRate(S,SG) =0) by adjusting the tolerance rate para-
meter to =1 which means a zero value of &(e = 0). This
means that the set of locally frequent subgraphs contains
all possible subgraphs (Local support equal to zero LS=0)
and the set of globally frequent subgraphs contains the
same set as SG(DB, #). In this case, the value of the loss rate
is zero. However, the generation of the exact solution can
cause an increase of the running time.

In the distributed subgraph mining process of our
approach, we perceive the following lemma:

Lemma 1. If a subgraph G’ is globally frequent then G’ is
locally frequent in at least one partition of the database.

Proof. Let DB = {Gy,...,Gk} be a graph database with K
graphs, let G’ be a globally frequent subgraph of DB, let
0 e[0,1] be a minimum support threshold, let Part(DB) =
{Part,(DB), ..., Party(DB)} be a partitioning of the database
and let z€[0,1] be a tolerance rate, let LS be the local
support in the different partitions, let s; be the support of
G’ in Part{DB) and let s be the support of G’ in DB.

Assume that G’ is not locally frequent in all the partitions
Part(DB) then we have s;<LS, for all ie[1,N]. Thus,

N ,si/ N<¥N |IS/N and therefore, s<LS. We have
LS=(1-7)-6 and therefore LS<@, for all z€[0,1]. Thus,
we have s <0 and so G’ is not globally frequent, contra-
dicting our condition.

3.2. The density-based graph partitioning method

3.2.1. Motivation and principle

The motivation behind dividing the input data into
partitions is to reduce effectively the computation space
by dealing with smaller graph databases that need to
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be processed in parallel. However, we need to combine
intermediate results to get the overall one. Using this
approach, we can decrease the subgraph mining complex-
ity, knowing that the time complexity of the subgraph
mining process is proportional to the size of the input data.
However, this data decomposition is the origin of a loss
of the global vision in terms of support computing. In
addition, the arbitrary partitioning method of MapReduce
that we called MRGP (which stands for MapReduce Graph
Partitioning) may be the origin of map-skew which refers
to imbalanced computational load among map tasks [11].
Considering the fact that the task of frequent subgraph
mining depends on the density of graphs [5,12], we propose
a density-based partitioning method that we called DGP
(which stands for Density-based Graph Partitioning) which
consists of constructing partitions (chunks) according to the
density of graphs in the database. The goal behind this
partitioning is to ensure load balancing and to limit the
impact of parallelism and the bias of the tolerance rate.
Fig. 2 gives an overview of the proposed partitioning
method.

The proposed partitioning technique can be
resumed into two levels: (1) dividing the graph data-
base into B buckets and (2) constructing the final list of
partitions.

The first level of our partitioning method consists of
two steps: graph densities computing and density-based
decomposition. The graph densities computing step is
performed by a MapReduce pass DensitiesComputing that
compute the densities of all instances in the database.
Algorithm 3 presents the Map function of this step. The
Reduce function is the identity function which output a
sorted list of graphs according to the densities values.
In fact, the sorting of graphs is done automatically by
the Reduce function since we used the density value as a

Graph database
Vo
Computing graph densities

Annotated graph database

v v

Density-based decomposition

Bucket 1 Bucket 2

[ dois

|

[ 12427

z dosg

Bucket B

| | |

Stratified balanced distribution

[
I

Z 124927

Partition 1 Partition 2 Partition N

Fig. 2. The DGP method. In this figure, ellipses represent data, squares
represent computations on the data and arrows show the flow of data.

Table 1
Graph database example.

Graph Size (KB) Density
Gy 1 0.25
G, 2 0.5
Gs 2 0.6
Gy 1 0.25
Gs 2 0.5
Gs 2 0.5
Gy 2 0.5
Gs 2 0.6
Go 2 0.6
Gio 2 0.7
Gn 3 0.7
(&P 3 0.8

key (see Algorithm 3). In the second step, a density-based
decomposition is applied which divides the sorted graph
database into B buckets. The output buckets contain the
same number of graphs.

Algorithm 3. Map function of DensitiesComputing.

Require A graph database DB = {Gy, ..., Gk}

Ensure Annotated graph database ADB = {{d;, G}, ..., {dk, Gk}}
1: for all G; in DB do

2:  dj<density(G;)

3:  Emitintermediate(d;, G;)

4: end for

The second level of our partitioning method is to
construct the output partitions. To do this, we first divide
each bucket into N sub-partitions B; = {P;1, ..., Pyy}. Then,
we construct the output partitions. Each one is constructed
by appending one sub-partition from each bucket.

3.2.2. lllustrative example

Here, we give an illustrative example to explain the
principle of the two partitioning techniques. Given a graph
database of 12 graphs DB = {Gy, ..., G12}. Table 1 presents the
size on disk and the density of each graph in the database.

Considering that we are running our example in a four
nodes cloud environment. Using the MRGP method, the
graph database will be divided into four partitions of six
KB each:

Part(DB) = {{G1, G2, G3, G4}, {Gs, Ge, G7}, {Gs, Go, G10},
{G11,G12}}

Using the DGP method with two buckets, we first
compute graph densities and we sort the database accord-
ing to graph densities. Then, we divide the graph database
into two buckets B1 = {Gq, G4, Gy, Gs, Gg, G7} and By, =
{G3,Gg,Gg,G]0,Gu,G12}. Bucket B4 contains the first six
graphs and bucket B, contains the last six graphs in the
database. Finally, we construct the four graph partitions
from B; and B, (see Fig. 3).
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Fig. 3. Example of DGP method.

Table 2
Experimental data.

Dataset Type Number of Size on disk Average
graphs size
DS1 Synthetic 20,000 18 MB [50-100]
DS2 Synthetic 100,000 81 MB [50-70]
DS3 Real 274,860 97 MB [40-50]
DS4 Synthetic 500,000 402 MB [60-70]
DS5 Synthetic 1,500,000 1.2GB [60-70]
DS6 Synthetic 100,000,000 69 GB [20-100]

As shown in Fig. 3, each bucket contains a balanced set
of graphs from B; and B,. The final set of partitions will be

Part(DB) = {{G1, G2, G3, Gg}, {G4, Gs, Go, G10},
{Gs, G11}, {G7, G121}

4. Experiments

This section presents an experimental study of our
approach on synthetic and real datasets. It first describes
the used datasets and the implementation details. Then, it
presents a discussion of the obtained results.

4.1. Experimental setup

4.1.1. Datasets

The datasets used in our experimental study are
described in Table 2.

The synthetic datasets are generated by the synthetic data
generator GraphGen provided by Kuramochi and Karypis [2].
For our tests, we generate various synthetic datasets according

to different parameters such as: the number of graphs in
the dataset, the average size of graphs in terms of edges and
the size on disk. Varying datasets allows us to avoid specific
outcomes to data and to have better interpretations.

The real dataset we tested is a chemical compound
dataset which is available from the Developmental Thera-
peutics Program (DTP) at National Cancer Institute (NCI).!

4.1.2. Subgraph extractors

Three existing subgraph miners were used in our experi-
ments: gSpan, FSG and Gaston.

gSpan is an algorithm for frequent graph-based pattern
mining in graph datasets based on DFS lexicographic order
and its properties [4]. gSpan discovers frequent substruc-
tures without candidate generation, which aims to avoid
the candidate generation phase and the subgraph iso-
morphism test. Based on DFS codes, a hierarchical search
tree is constructed. By pre-order traversal of the tree,
gSpan discovers all frequent subgraphs with required
support (threshold).

FSG uses the Apriori level-wise approach [13] to find
frequent subgraphs. It uses a sparse graph representation
in order to improve both storage and computation. The
subgraph mining process adopted by FSG incorporates
various optimizations for candidate generation and fre-
quency counting which enables it to scale to large graph
datasets [2].

Gaston is a substructure/subgraph-finding algorithm
that uses steps of increasing complexity to generate
frequent substructures. Gaston searches first for frequent
paths, then frequent free trees and finally cyclic graphs [3].

1 http://dtp.nci.nih.gov/branches/npb/repository.html.
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4.1.3. Implementation platform

We implemented our approach in Perl language and we
used Hadoop, (version 0.20.1), an open source version of
MapReduce. The databases files are stored in the Hadoop
Distributed File System (HDFS), an open source implemen-
tation of GFS [14].

All the experiments of our approach were carried out
using a local cluster with five nodes. The processing nodes
used in our tests are equipped with a Quad-Core AMD
Opteron(TM) Processor 6234 2.40 GHz CPU and 4 GB of
memory for each node.

4.2. Experimental results

4.2.1. Accuracy and speedup

Table 3 shows the obtained results using the sequential
version of the used subgraph extractors.

Table 4 shows the obtained results obtained using our
proposed approach with the default MapReduce partition-
ing technique and those obtained with the density-based
partitioning technique with two buckets. For each dataset
and support value, we note the results of the classic
subgraph mining algorithm and those of the proposed
method.

We mention that we could not conduct our experiment
with the sequential algorithms in the case of DS4, DS5 and
DS6 due to the lack of memory. However, with the distributed
algorithm we were able to handle those datasets.

We notice that the number of subgraphs generated by
the distributed solution is, in general, smaller than the
number generated by the sequential version of the algo-
rithm. This is related to the application of subgraph mining
process on each partition separately with a local support.
Similarly, in the reduce phase, we ignore subgraphs which
are frequent in the whole dataset but infrequent in the
partitions. This loss can be decreased by the use of a
maximal value of tolerance rate, i.e., which means a
minimal value of local support (see Table 4). For example,
in Table 4, for DS1 and with §=0.3, we generate 372
subgraphs with the sequential algorithm gSpan, but we
just generate 198 subgraphs with the distributed solution
(with the density-based graph partitioning and a tolerance
rate z = 0). By increasing the tolerance rate to r= 0.6, we
restore 173 of previously ignored subgraphs and we
practically reach the number of subgraphs generated by
the sequential algorithm.

Table 3
Experimental results of classic subgraph extractors.

As shown in Table 4, the density-based partitioning
method allows a decreasing number of lost subgraphs
compared to the default MapReduce partitioning method,
in almost all cases. We illustrate in Fig. 4 the effect of the
proposed partitioning methods on the rate of lost subgraphs.

We can easily see in Fig. 4 that the density-based graph
partitioning allows low values of loss rate especially with low
values of tolerance rate. We also notice that FSG and Gaston
present a higher loss rate than gSpan in almost all cases.

We note also that the use of the proposed density-based
partitioning method significantly improves the perfor-
mance of our approach. This improvement is expressed
by the diminution of the runtime in comparison with
results given by the default MapReduce partitioning
method. This result can be explained by the fact that
each partition of the database contains a balanced set of
graphs in terms of density. Consequently, this balanced
distribution of the data provides an effective load balancing
scheme for distributed computations over worker nodes.
Fig. 5 shows the effect of the density-based partitioning
method on the distribution of workload across the used
worker nodes in comparison with the default MapReduce
partitioning method. Fig. 6 shows the effect of the
number of buckets in the density-based partitioning
method on the distribution of workload across the used
worker nodes.

As illustrated in Figs. 5 and 6, the density-based
partitioning method allows a balanced distribution of
workload across the distributed worker nodes especially
with high number of buckets.

In order to evaluate the capability of the density-based
partitioning method to balance the computations over the
used nodes, we show in Fig. 7 the cost of this partitioning
method in comparison with the MapReduce-based parti-
tioning method. In addition, we show in Fig. 8 the effect of
the number of buckets in the density-based partitioning
method on the cost of the partitioning method. For each
partitioning method and for each dataset, we present the
mean value of the set of runtime values in the used set of
machines and the cost bar which corresponds to the error
bar. This cost bar gives a general idea of how accurate the
partitioning method is.

As shown in Figs. 7 and 8, the density-based parti-
tioning method allows minimal cost values in almost all
datasets and all thresholds setting especially with high
numbers of buckets. This can be explained by the

Dataset Support 9 (%) gSpan FSG Gaston
Number of Runtime (s) Number of Runtime (s) Number of Runtime (s)
subgraphs subgraphs subgraphs
DS1 30 372 31 352 9 352 5
50 41 6 23 5 23 7
DS2 30 156 171 136 235 136 17
50 26 9 9 165 9 4
DS3 30 98 138 93 m 94 17
50 38 106 35 61 35 9
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Table 4
Experimental results of the proposed approach.

Dataset Support 0 (%) Tolerance rate Number of subgraphs
MRGP DGP
gSpan FSG Gaston gSpan FSG Gaston
DS1 30 0 82 61 39 198 179 69
0.3 227 207 68 364 344 79
0.6 312 352 79 371 351 79
50 0 17 0 0 23 6 1
0.3 41 23 7 1 23 7
0.6 41 23 7 141 23 7
DS2 30 0 145 124 31 146 125 38
03 156 136 31 156 136 39
0.6 156 136 31 156 136 39
50 0 25 7 0 25 7 2
03 26 9 0 26 9 3
0.6 26 9 0 26 9 3
DS3 30 0 77 70 70 80 77 42
03 97 92 80 88 93 42
0.6 97 93 72 97 93 69
50 0 36 31 29 37 32 29
0.4 38 35 29 38 35 29
0.6 38 35 29 38 35 29
DS4 30 0 137 116 19 78 117 19
0.3 155 135 19 78 135 19
0.6 155 135 19 155 135 20
50 0 24 6 0 24 6 0
0.3 26 9 0 26 9 0
0.6 26 9 0 26 9 0
DS5 30 0 131 121 9 104 118 0
03 155 135 9 104 135 0
0.6 155 135 9 155 135 0
50 0 24 7 0 18 6 0
03 26 9 0 18 9 0
0.6 26 9 0 18 9 0
DS6 30 0 66 0 0 104 3 3
03 66 0 0 104 3 3
0.6 66 0 0 104 3 3
50 0 4 0 0 17 0 0
03 4 0 0 17 0 0
0.6 4 0 0 17 0 0

balanced distribution of graphs in the partitions and
thus by the balanced workload insured by a high
number of buckets. It is also clear that FSG and Gaston
present a smaller runtime than gSpan (see Fig. 7). In
order to study the scalability of our approach and to
show the impact of the number of used machines on
the large-scale subgraph mining runtime, we present in
Fig. 9 the runtime of our approach for each number of
mapper machines.

As illustrated in Fig. 9, our approach scales with the
number of machines. In fact, the execution time of our
approach is proportional to the number of nodes or machines.

4.2.2. Chunk size and replication factor

In order to evaluate the influence of some MapReduce
parameters on the performance of our implementation,
we conducted two types of experiments. Firstly, we varied
the block size and calculated the runtime of the distrib-
uted subgraph mining process of our system. In this
experiment, we used five datasets and varied the chunk

size from 10 MB to 100 MB. Secondly, we varied the
number of copies of data and calculated the runtime of
the distributed subgraph mining process.

The experimentations presented in Fig. 10 show that
with small values of chunk size and with big datasets, the
runtime of our approach is very important. Otherwise, the
other values of chunk size do not notably affect the results.

As shown in Fig. 11, the runtime of our approach is slightly
inversely proportional to the replication factor (number of
copies of data). This is explained by the high availability of
data for MapReduce tasks. Also, a high replication factor helps
ensure that the data can survive the failure of a node.

5. Related work

Subgraph mining algorithms consist of two groups,
the Apriori-based algorithms and the non-Apriori-based
algorithms (or pattern growth approaches). The Apriori
approach shares similar characteristics with the Apriori-
based itemset mining [13]. AGM [15] and FSG [2] are two
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Fig. 4. Effect of the partitioning method on the rate of lost subgraphs.
(a) DS1, (b) DS2, and (c) DS3.
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Fig. 5. Effect of the partitioning method on the distribution of computa-
tions. We used 6 =30% and z=0.3.
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Fig. 6. Effect of the number of buckets of the density-based partitioning
method on the distribution of computations. We used gSpan as a subgraph
extractor, 0 =30% and 7 =0.3.
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Fig. 7. Cost of partitioning methods. We used 6 =30% and = 0.3.
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Fig. 8. Effect of the number of buckets on the cost of the density-based
partitioning method. We used gSpan as a subgraph extractor, 6 =30%
and r=0.3.

frequent substructures mining algorithms that use the
Apriori approach. Non-Apriori-based or pattern growth
algorithms such as gSpan [4], MoFa [16], FEFSM [17], Gaston
[3] and ORIGAMI [18] have been developed to avoid the
overheads of the Apriori-based algorithms. All these algo-
rithms adopt the pattern growth methodology [19], which
intends to extend patterns from a single pattern directly.
The use of parallel and/or distributed algorithms for
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frequent subgraph mining comes from the impossibility to
handle large graph and large graph databases on single
machine. In this scope, several parallel and/or distributed
solutions have been proposed to alleviate this problem
[8,9,20-22]. In [20], the authors propose a MapReduce-
based algorithm for frequent subgraph mining. The algo-
rithm takes a large graph as input and finds all the
subgraphs that match a given motif. The input large graph
is represented as Personal Centre Network of every vertex
in the graph [20]. For each vertex in the graph, the
algorithm calculates the candidate subgraph according to

graph isomorphism algorithms. It outputs the candidate
subgraphs if they are isomorphic with the motif.

In [9], the authors propose the MRPF algorithm for
finding patterns from a complex and large network. The
algorithm is divided into four steps: distributed storage of
the graph, neighbor vertices finding and pattern initializa-
tion, pattern extension, and frequency computing. Each
step is implemented by a MapReduce pass. In each
MapReduce pass, the task is divided into a number of
sub-tasks of the same size and each sub-task is distributed
to a node of the cluster. MRPF uses an extended mode to
find the target size pattern. That is trying to add one more
vertex to the matches of i-size patterns to create patterns
of size i+1. The extension does not stop until patterns
reach the target size. The proposed algorithm is applied to
prescription network in order to find some commonly
used prescription network motifs that provide the possi-
bility to discover the law of prescription compatibility.

In [21], the authors propose an approach to subgraph
search over a graph database under the MapReduce frame-
work. The main idea of the proposed approach is first to
build inverted edge indexes for graphs in the database, and
then to retrieve data only related to the query subgraph by
using the built indexes to answer the query.

The work presented in [23] presents an iterative
MapReduce-based approach for frequent subgraph mining.
The authors propose two heterogeneous MapReduce jobs
per iteration: one for gathering subgraphs for the con-
struction of the next generation of subgraphs, and the
other for counting these structures to remove irrelevant
data.

Another attention was carried to the discovery and the
study of dense subgraphs from massive graphs. In [8], an
algorithm for finding the densest subgraph in a massive
graph is proposed. The algorithm is based on the stream-
ing model of MapReduce. In the work presented in [22],
the authors propose a statistical significance measure that
compares the structural correlation of attribute sets against
their expected values using null models. The authors define
a structural correlation pattern as a dense subgraph induced
by a particular attribute set.

Most of the above-cited solutions deal with large-scale
subgraph mining in the case of one large graph as input.
Only a few works include the subgraph mining process
from large graph databases which is the addressed issue in
this work.

6. Conclusion

In this paper, we addressed the issue of distributing the
frequent subgraph mining process. We have described our
proposed approach for large-scale subgraph mining from
large-scale graph databases. The proposed approach relies
on a density-based partitioning to build balanced parti-
tions of a graph database over a set of machines. By
running experiments on a variety of datasets, we have
shown that the proposed method is interesting in the case
of large scale databases. The performance and scalability of
our approach are satisfying for large-scale databases.

In the future work, we will study the use of other
topological graph properties instead of the density in the
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partitioning step. Also, we will study the relation between
database characteristics and the choice of the partitioning
technique.

A notable interest will be dedicated to the improve-
ment of the runtime of our approach with task and node
failures [24,25]. Furthermore, we plan to study the impact
of the chunk size on the performance and the scalability of
our approach.
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