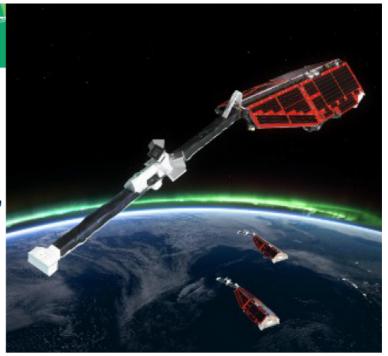

A new method for deriving ionospheric currents and conductances from Swarm data

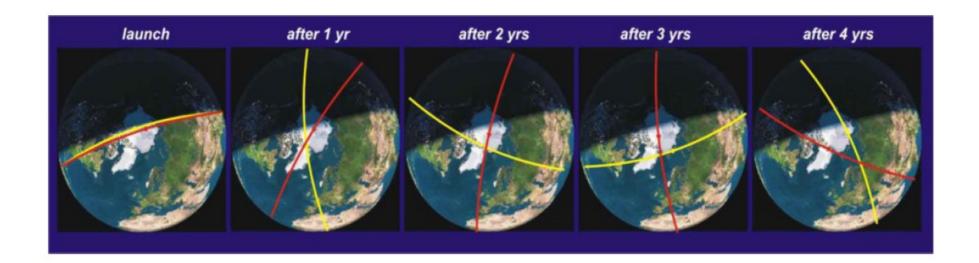
- O. Amm ¹⁾, H. Vanhamäki ^{2,1)} Liisa Juusola ¹⁾ and K. Kauristie 1)
 - 1) Finnish Meteorological Institute
 - 2) University of Oulu

Contents


- Swarm satellite mission
- SECS method for Swarm data analysis
- Results from a pilot study with synthetic data
- On Swarm E-field calibration and validation
- Prospects for future work

Swarm

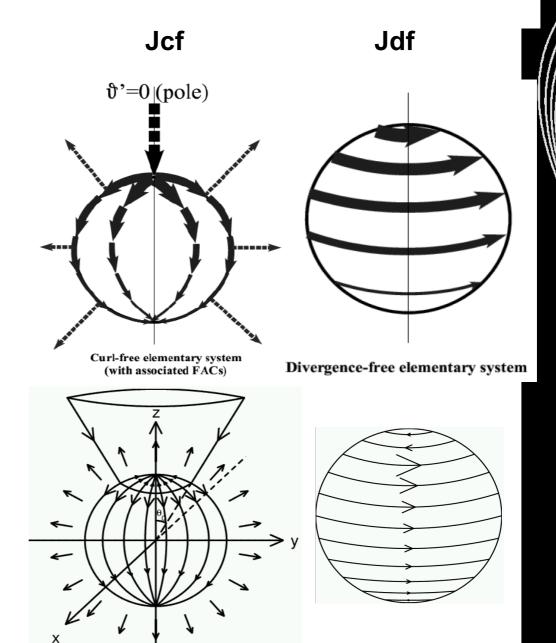
- Launched 22.11.2013
- 3 identical satellites at low-Earth, near-polar orbits
- Planned mission time 4 years

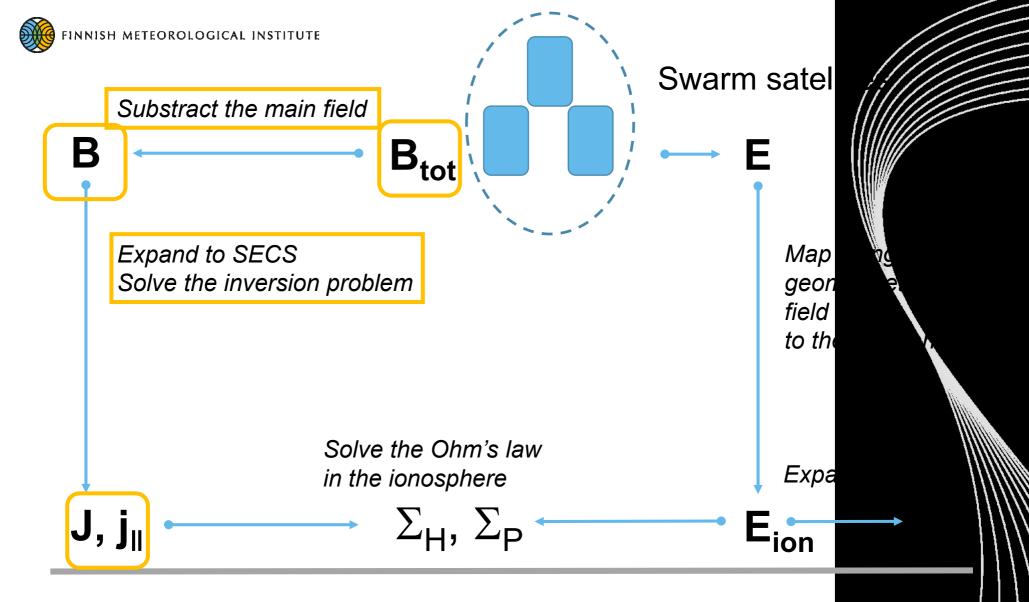


- Primary objectives: 1) Geodynamo and core dynamics
 - 2) Lithospheric magnetisation,
 - 3) Electric conductivity of the mantle,
 - 4) Ionospheric currents
- Secondary: 5) Ocean circulation,
 - 6) Magnetic forcing of the upper atmosphere
- B, E, plasma density + temperature, spacecraft acceleration 4

Orbits

- A+C side-by-side at ~450 km, 87.3° inclination, ~1.4° separation in longitude, max 10 s difference in equator crossing
- B at ~510 km, 87.8° inclination

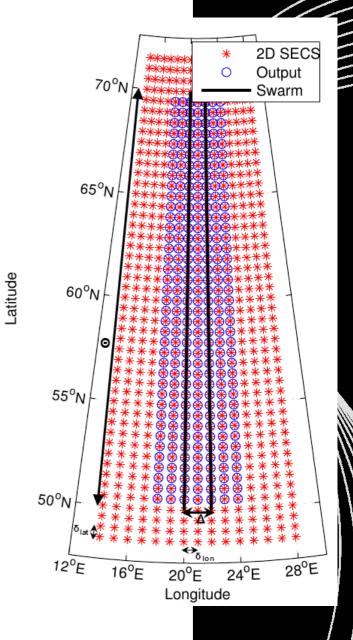



Spherical Elementary Current Systems

- 1) Build a grid of SECS To the area of your measurements
- 2) Adjust the intensities Of SECS so that they fit to the measurements

Advantage:

The resolution can be varied according to the density of observation points



Ionospheric current layer at 110 km altitude

Steps in the analysis

- 1. Fit 1D div-free systems using only B_r
- 2. Fit 2D div-free systems using the residual B_r
- 3. Fit 1D curl-free systems using Β_Φ
- 4. Fit 2D curl-free systems using the residual $B_{_{\varphi}}$ and $B_{_{\theta}}$
- 1. Fit 1D curl-free systems using only E_{θ}
- 2. Fit 2D curl-free systems using the residual E_{θ} and E_{ϕ} and

Exploiting synergies between Swarm and Cluster

Product

Three simple test cases:

- 1. 1D electrojet, no longitudinal variations in E or Σ
- 2. 2D electrojet, longitudinal variations in E and Σ exists
- 3. A 2D current vortex
- + Virtual data from MHD simulations

			1 didirecter	Troduct	1001
			Hall conductance (2D)		
			Pedersen conductance (2D)		
		lonos	oheric electric field / convection (2D)		
t^{2}	>	lon	ospheric horizontal currents (2D)		
_	—.		Field-aligned currents (2D)	-	
	Т	ν	Joule heating (2D)		
% %	1	$\frac{\Sigma_H}{1.6\%}$	Poynting flux (2D / 3D)	1	

Parameter

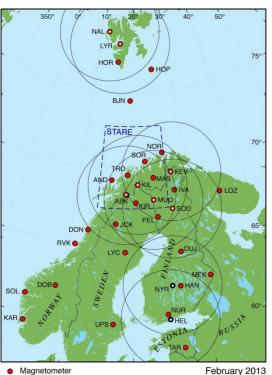
RMSerror - 100 *	$\sqrt{\langle E_{model} - E_{result} ^2 \rangle}$.
TEM DETTOT = 100 *	$\sqrt{< E_{model} ^2>}$

	$oldsymbol{J}_{\perp}$	FAC	$oldsymbol{E}$	Σ_P	Σ_H
1D Ejet	14.8%	36.0%	4.9%	26.6%	11.6%
2D Ejet	7.9%	42.1%	2.7%	16.1%	12.0%
Vortex	18.7%	155.9%	15.1%	23.0%	22.8%

Tool

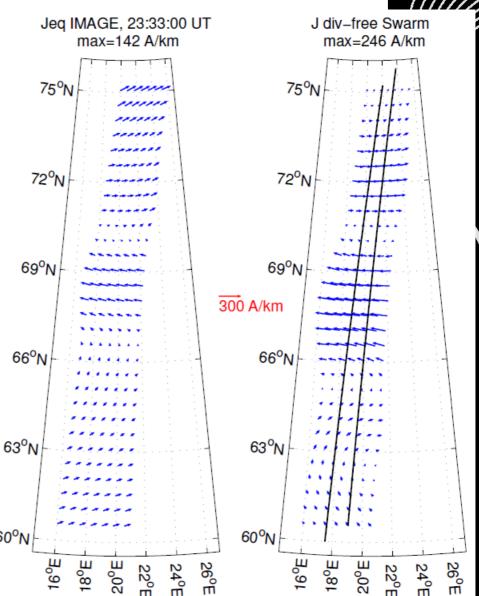
E-field calibration and validation

The challenge

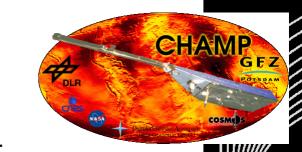

- Swarm E-field measured with a new method (High risk High Gain mission)
- Original plan: Calibration with ground-based radar measurem
- Calibration has appeared to be challenging as error in the sig depends more on the surrounding conditions than anticipated varies along the orbit)
- Ground-based radar data available only sporadically and typi only one component of E
- •Can also other ground-based data help in validation? **E**, **B**, a are anyway linked with each other.

Assumption: Swarm-SECS works OK with B

Swarm-SECS J_{df} can be validated with GB magnetometer data


Potential causes for the differences:

- Baseline selection in IMAGE data
- Gap in the network at ~72°


Assumption: α is typically <2

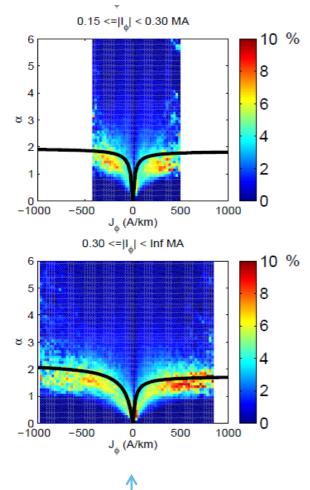
- Magnetospheric energy dissipation in the ionosphere
 - •Σ_H (Hall conductance) ↔ auroral precipitation
 - Σ_P (Pedersen conductance) ↔ Joule heating
- •Although Σ_H and Σ_P can themselves vary much, their ratio $\alpha = \Sigma_H / \Sigma$ varies typically in the range 0-2.
- •Robinson formulas (1987) relate α and Σ_P with electron precipitation energy flux and average energy:
- • α =0.45(<E>)^{0.85} • Σ_P =(40<E> Ψ_E ^{0.5})/(16+(<E>)²)
- •For example, α=4 corresponds to <E> > 10 keV, which is very energore precipitation (visible in riometer observations, but not necessary as vauroras)

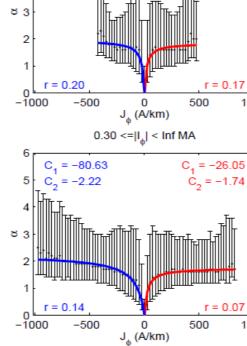
•Use the following formulas:

The alpha parameter model

• α = Σ_H / Σ_P , high in the regions where energetic precipitation and thus strong currents in the altitudes around 100 km • J_{ϕ} and J_{θ} derived from CHAMP data (2001-2002, 6112 overflights)

•Assumptions:


B radial, convection E hor


• E_{ϕ} << E_{θ} (not applicable ir discontinuity region)

$$\boldsymbol{J} = \Sigma_P \boldsymbol{E} - \Sigma_H \frac{\boldsymbol{E} \times \boldsymbol{B}}{B}$$

$$\mathbf{J} = (\underbrace{\Sigma_P E_\theta + \Sigma_H E_\phi}_{=J_\theta}) \hat{\mathbf{e}}_\theta + (\underbrace{\Sigma_P E_\phi - \Sigma_H E_\theta}_{=J_\phi}) \hat{\mathbf{e}}_\phi.$$

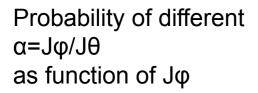
$$\alpha = \frac{\Sigma_H}{\Sigma_P} = \frac{\frac{E_\phi}{E_\theta} + \left(-\frac{J_\phi}{J_\theta}\right)}{1 - \left(-\frac{J_\phi}{J_\theta}\right) \cdot \frac{E_\phi}{E_\theta}}, \qquad \alpha = -\frac{J_\phi}{J_\theta}$$

 $C_1 = -21.68$

 $0.15 <= |I_{h}| < 0.30 \text{ MA}$

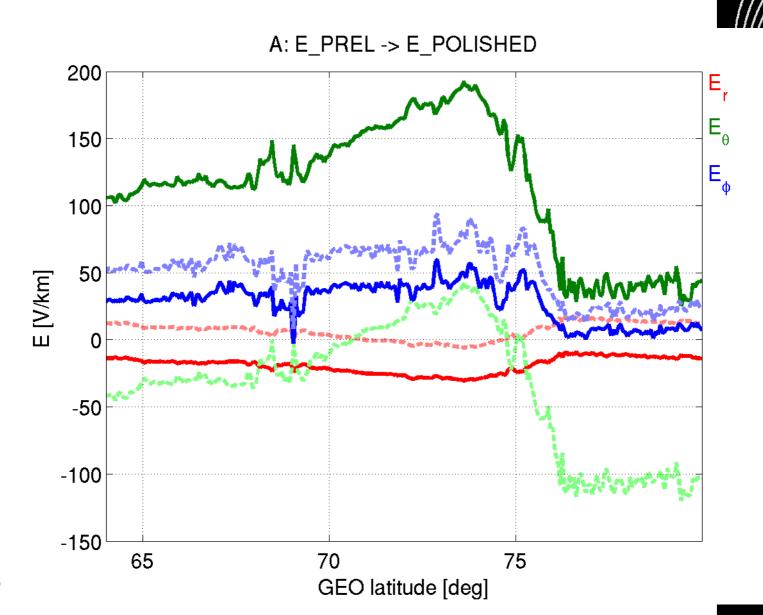
r = 0.17

1000

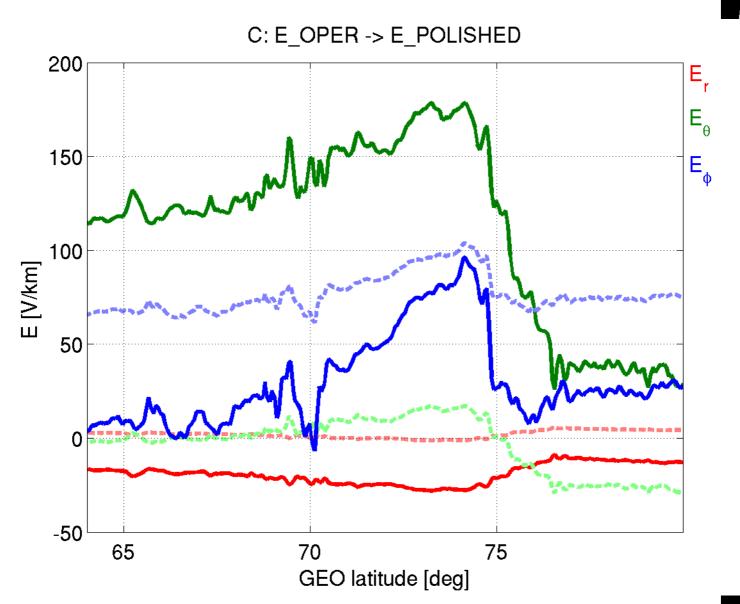

1000

500

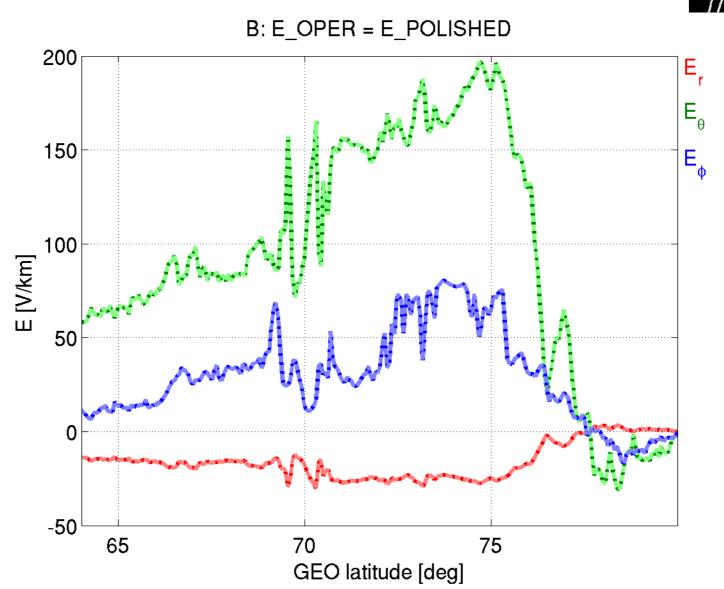
500

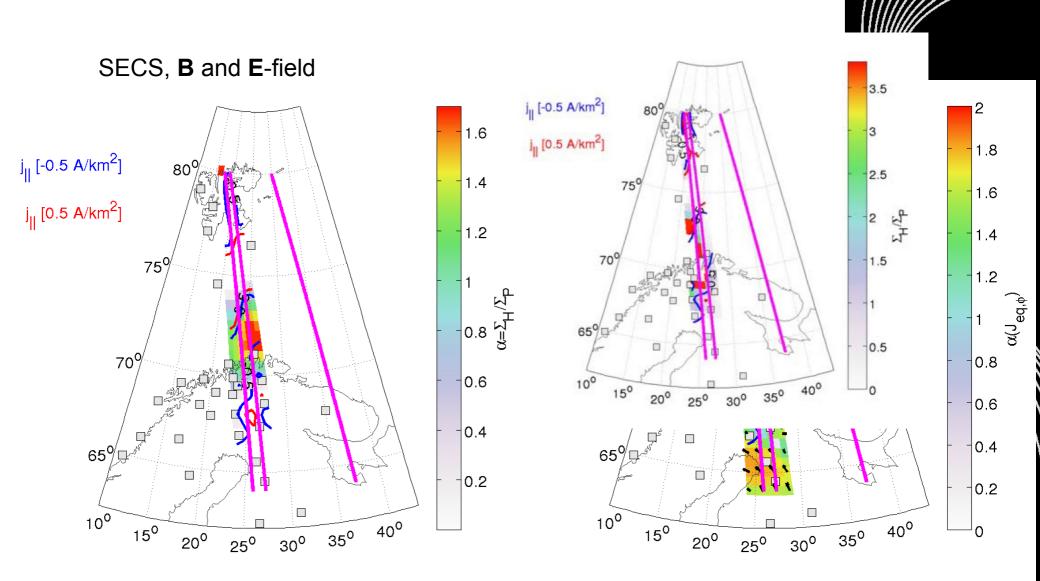

A statistical fit to Ch which can be used with GB magnetome measuring $J\phi$

$$\alpha = -\frac{J_{\phi}}{J_{\theta}} = \frac{C_2}{\frac{C_1}{|J_{\phi}|} - 1}$$


Bin	$C_1(J_{\phi} < 0)$	$C_2(J_\phi < 0)$	$C_1(J_\phi>0)$	$C_2(J_{\phi}>0)$
All	-36.54	-2.07	-14.79	-1.73
Quiet	-20.35	-2.19	-46.16	-2.53
Moderate	-21.68	-1.95	-19.35	-1.84
Active	-80.63	-2.22	-26.05	-1.74
Winter	-21.87	-1.99	-13.79	-1.42
Equinox	-49.36	-2.10	-16.55	-1.63
Summer	-18.64	-1.86	-5.88	-1.76

E-field "polishing" Swarm A (Jul 30, 2014, UT 02:10)




E-field "polishing" Swarm C

E-field "polishing" Swarm B

Checking with α-parameter

Conclusions and future work

SECS technique for Swarm:

- Input: E and B as input (no support from GB data needed)
- Output: 2D strips of
 - Horizontal currents
 - Field aligned currents
 - Conductances,
 - Electric field,
 - Poynting flux
 - Joule heating

Tests with Swarm B & E-

- Swarm-SECS with B we
- In 1D-cases α can be es
 with **B**-data alone
- α can help in **E** quality
- Issues:
 - In our example polishe too large
 - The grid used in Swar seems to have impact results

Next steps:

- Case studies with GB data (ISR, Themis and MIRACLE), α and E observations would help.
- Statistical studies (J_{df} ↔ J_{eq}) to find optimal SECS parameters for massive processing