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FIG. 2.— Time evolution of the mean toroidal magnetic fieldBφ in the convection zone for Runs I, II, III, and IV, from top to bottom. In the left column, the
radial cut is shown at r = 0.98 R, and, in the right column, the latitudinal cut at 90− θ = 25◦ . The dashed horizontal lines show the location of the equator at
θ = π/2 (left) and the radii r = R, r = 0.98 R and r = 0.85 R (right).
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FIG. 2.— Time evolution of the mean toroidal magnetic fieldBφ in the convection zone for Runs I, II, III, and IV, from top to bottom. In the left column, the
radial cut is shown at r = 0.98 R, and, in the right column, the latitudinal cut at 90− θ = 25◦ . The dashed horizontal lines show the location of the equator at
θ = π/2 (left) and the radii r = R, r = 0.98 R and r = 0.85 R (right).
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problems with real stars:
extremely different timescales, high density contrast

here simulations considered with:

spherical wedge geometry: 15◦ polar cones
fast rotation: Ω = 5Ω�
moderate density contrast: . 20
various boundary conditions: blackbody vs. fixed T

various Prandtl numbers: ν
η = 0.2 . . . 2.5, ν

χSGS
= 0.5 . . . 1

Warnecke et al.



Mean-field modeling

deals with evolution of averaged magnetic field B
for spherical bodies: azimuthal average (default)

spherical–harmonic filtering (problematic)

Objectives

descriptive level:

qualitative understanding of dynamo
by identification of crucial effects
correlation of specific effects and phenomena
axisymmetric vs. non-axisymmetric modes
equatorially symmetric vs. antisymmetric vs. hemispherical
equatorward vs. poleward migration
multiple timescales, grand minima

predictive level:

growth rates, eigenfunctions of kinematic modes (doable)
long-term simulations, producing grand extrema or random
polarity reversals by intrinsic nonlinearities (not doable now)
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Mean-field modeling

Reynolds decomposition

B = B + b, U = U + u =⇒

Mean-field induction equation

∂tB = η∇2B +∇× (U × B + E)

closure requires modeling of mean electromotive force

E = u × b

in terms of B, e.g. by ansatz

E = a · B + b ·∇B a,b functionals of U, u

analytical with approximations – strongly limited
by testfield method
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Testfield method

for determination of a,b

1 solve

∂tbk − η∇2bk −∇× (U × bk + (u × bk )′) = ∇× (u × Bk )

for given u,U and N test fields Bk , k = 1, . . . ,N

2 calculate Ek = u × bk

3 obtain aij , bij by inverting

Ek = a · Bk + b ·∇Bk

solution unique, if

N chosen appropriately
test fields independent
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Testfield method for axisymmetric mean fields

=⇒ in spherical coords (r , θ, φ):

B = Br (r , θ)er + Bθ(r , θ)eθ + Bφ(r , θ)eφ
=⇒

Eκ = ãκλBλ + b̃κλr
∂Bλ

∂ r
+ b̃κλθ

1
r
∂Bλ

∂θ
, κ, λ = r , θ, φ

27 independent coefficients !

“effect-wise"

E = α · B + γ × B − β · curl B − δ × curl B − κ · (∇B)(sym)

↑ ↑ ↑
turbulent
pumping

turbulent
diffusivity

"Ω× J"
effect

α, β – symmetric, κ – symmetric in 2nd and 3rd indices
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Testfields

simplest choice: linear, e.g.

No. 1 2 3 4 5 6 7 8 9

Br 1 0 0 r 0 0 θ 0 0
Bθ 0 1 0 0 r 0 0 θ 0
Bφ 0 0 1 0 0 r 0 0 θ

Schrinner et al. 2007

some irregular or not solenoidal
violate boundary conditions
yet suitable
within class of linear functions:
result independent of choice
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Equatorial symmetries in coefficients

∃ special solutions of full MHD problem:

U, ρ, s equatorially symmetric, B

{
symmetric
antisymmetric

=⇒

diagonal components of α, αrφ, γθ antisymmetric
all other symmetric
diagonal components of β, βrφ, δθ symmetric
all other antisymmetric
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Results
Time-averaged components of α and γ (normalized by u′

rms/3)
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Results
Time-averaged components of β and δ (normalized by τu′ 2

rms/3)

αrr dominating α

next αφφ, loosely similar to αK

βφφ dominating β, next βrr

close to pure parities
signatures of tangent cylinder
(cf. Ω profile !)
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Results

Time-averaged components of κ (normalized by τu′ 2
rms/3)

Warnecke et al.



Main drivers of B evolution

at maximum of “typical cycle”:

white – field lines of poloidal field Br , Bθ

Warnecke et al.



Cyclic modulation of transport coefficients

over “typical cycle”, α′ = α− 〈α〉t etc:

typical modulation by 2fcycle

αθθ,φφ, low latitudes: only by fcycle

conflict with quadratic Lorentz force?
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Signature of small-scale dynamo action?

consider primary magnetic turbulence, i.e. b 6→ 0 for B ≡ 0
= small-scale dynamo (u0,b0)

mean EMF:

EB = u0 ×bB + uB ×b0 + uB ×bB

consider lowest order of B in transport coefficients

fluctuating Lorentz force:

curl B × b0 + curl b0 × B −→ uB linear in B

fluctuating induction term:

u0 × B + uB × B −→ bB quadratic in B

−→ u0 × bB quadratic in B −→ coefficients linear in B
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Conclusions

plausible turbulent transport coefficients found

influence of small-scale dynamo action detected

next steps:

use in a mean-field model −→ verification (?)
investigation into role of individual mean-field effects
extension to scale-dependent coefficients
=⇒ non-local EMF

farther away:

transport coefficients for momentum & heat transport
identification of the B dependence =⇒ predictive models
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