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Abstract— In many applications of supervised learning, the
conditional average of the target variables is not sufficient for
prediction. The dependencies between the explanatory variables
and the target variables can be much more complex calling
for modelling the full conditional probability density. The
ubiquitous problem with such methods is overfitting since due
to the flexibility of the model the likelihood of any datapoint can
be made arbitrarily large. In this paper a method for predicting
uncertainty by modelling the conditional density is presented
based on conditioning the scale parameter of the noise process
on the explanatory variables. The regularisation problems are
solved by learning the model using variational EM. Results
with synthetic data show that the approach works well and
experiments with real-world environmental data are promising.

I. INTRODUCTION

When neural networks are used in solving regression
problems, the cost function being minimised is usually the
sum-of-squares. This is known to lead to modelling of the
conditional average of the target variable which, in some
cases, yields perfectly satisfactory results. However, some-
times the dependencies between the explanatory variables
and the target variables are much more complex calling for
methods beyond the sum-of-squares.

Williams [1] suggests a model where the target variables
are modelled as a conditional multivariate Gaussian and a
neural network is used to model both the mean and the
covariance of the distribution. An even more general method
is presented by Bishop [2], where the target variable has
a mixture-of-Gaussians distribution whose means, variances
and mixture weights are all conditioned on the explanatory
variables and are being modelled using the multi-layer per-
ceptron network (MLP). This combines the universal func-
tion approximation property of the MLP with the universal
density function approximation property of the mixture-of-
Gaussians to a theoretically sound framework.

The problem with the above mentioned works and indeed
with any approach where flexible modelling of the target
density is allowed, is overfitting. It is already a problem
with standard neural nets and it becomes a lot worse when
modelling densities. This is due to the fact that the model is
able to place an infinite probability density over a datapoint.
Heavy ad hoc regularisation is usually needed to circumvent
this problem.

In this paper a method for predicting uncertainty is
presented based on modelling the scale parameter of the
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target variable’s distribution. Both the location and the scale
parameter are conditioned on the input variables and pre-
dicted by MLPs. The regularisation problems are avoided
using Bayesian machinery to learn the model; namely the
variational expectation-maximisation algorithm is employed.
Since a part of the parameters have distributional estimates,
problems with infinite densities do not arise.

The model and the learning algorithm bear similarity to
the ones in [3], where variance modelling was used in
the blind source separation setting to capture higher order
dependencies in the data. However, in that paper the learning
tasks were unsupervised and linear, whereas here they are
supervised but nonlinear.

In the next section the suggested model will be presented
in detail. Section III concentrates on the learning algorithm
giving the necessary ingredients needed in the variational
EM framework. In Section IV, results both with synthetic
and real-world environmental data are reported. Finally the
paper ends with discussion.

II. MODEL

Since we are considering a supervised problem, we have
a set of explanatory variables and a set of target variables.
Without loss of generality we concentrate on the case of one
single target variable. Let us denote the explanatory variables
as xt, which is a column vector having N elements. The
subindex t signifies that it is the t:th measurement from the
range 1, ..., T . The whole N × T matrix of measurements
will be denoted as X. The target variable will be denoted as
yt and the collection of all its measurements as Y.

The model consists of two multi-layer perceptron net-
works, one for the data itself, and the other for the log-
variance of the noise. Both of the MLPs have one hid-
den layer with H and K hidden nodes respectively. The
probabilistic model is fully defined by the following set of
equations:

yt ∼ N (
aT

y tanh(Cyxt + dy) + by, e−ut
)

ayi ∼ N (
0, 102

)
by ∼ N (

0, 102
)

ut ∼ N (
aT

u tanh(Cuxt + du) + bu, τ−1
u

)
aui ∼ N (

0, 102
)

bu ∼ N (
0, 102

)
τu ∼ G (

1, 10−4
)

Above, N (
µ, σ2

)
denotes the Gaussian distribution with

mean µ and variance σ2 and G (α, β) is the Gamma dis-
tribution with shape α and inverse scale β. The first layer
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Fig. 1. Schematic illustration of the model.

parameters (Cy , dy , Cu and du) do not have priors and in
the estimation process only ML estimates are obtained for
them. Figure 1 shows a schematic illustration of the model.
For that particular case the parameters are: N = 4, H = 3
and K = 2.

The introduction of the intermediate variable ut is done
for two reasons. Firstly, it gives robustness to the model
by generating heavier tails to the target distribution and
secondly, it makes the model estimation easier.

A. Positively Constrained Observations with Model for Vari-
ance Only

In addition to the model described above, another slightly
different model will be considered for nonnegative data. Nat-
urally, in this case the Gaussian noise process is subobtimal.
Any positively supported distribution from the exponential
family of distributions could be considered in place of the
ordinary Gaussian. Here, the rectified Gaussian distribution is
used, but exponential or rectified Laplacian (which collapses
to exponential in the zero mode case) could be considered
as well. This changes the prior of the target variable to

yt ∼ NR
(
0, e−ut

)
where NR denotes the rectified Gaussian distribution i.e. a
Gaussian whose negative axis has been rectified and the right
axis scaled appropriately. For now, only the zero mode case
is considered.

III. LEARNING ALGORITHM

In this Section the learning algorithm for the proposed
model is derived.

Since the conditional density is being modelled in a
rather flexible manner, some regularisation is needed to avoid
more or less catastrophic cases of overfitting due to infinite
densities. The variational EM (V-EM) algorithm (see e.g.
[4]) is one viable alternative, since a part of the parameters
have distributional estimates. This helps a lot in avoiding the
pitfalls of maximum likelihood estimation.

A. Variational EM

Consider a model for some data Y having two sets
of parameters θ1 and θ2. Let us further assume that the
model is specified as the joint density p(Y,θ1|θ2) =

p(Y|θ1,θ2) p(θ1). If the standard EM algorithm [5] was
used to estimate the model it would alternate between the
following two steps:

E-step: Set Q(i+1)(θ1;θ
(i)
2 ) = p(θ1|Y,θ

(i)
2 )

M-step: Find θ
(i+1)
2 such that it maximises∫

Q(i+1)(θ1;θ
(i)
2 ) log p(Y,θ1|θ(i+1)

2 ) dθ1 (1)

For many models for which the EM-algorithm would oth-
erwise be preferable, the computation of the Q distribution in
the E-step is not tractable. In variational EM, the first step is
replaced by fitting a simpler distribution to p(θ1|Y,θ

(i)
2 ) by

functional minimisation of the Kullback-Leibler divergence

DKL(Q||p) =
∫

Q(θ1) log
Q(θ1)

p(θ1|Y,θ
(i)
2 )

dθ1 . (2)

This to be tractable, Q needs to have a suitably factorial
form. The variational EM algorithm can be seen as a
compromise between maximum likelihood and variational
Bayesian learning [6] (VB for short). VB is the extreme case
of V-EM having distributions for all the parameters i.e. the
parameter set θ2 is empty and there is no M-step. One of
the biggest benefits of VB is that a lower bound for the
marginal likelihood of the data is obtained, meaning that an
approximation for the posterior probabilities of competing
models can be computed. On the other hand, the learning
algorithm can get quite complex, especially for nonlinear
models, calling for precomputed lookup-tables or numerical
integration [6], [7]. In V-EM, Eq. (2) yields a lower bound
for log p(Y|θ2), but since it still depends on θ2, trustworthy
model comparison using that lower bound is not possible.

For the model of this paper the following division between
parameters is made. The second layer of parameters in
the model have distributional estimates and the first layer
point estimates only. Most importantly, the conditional log-
variance ut and the parameters ay and by belong to the
first group, but since distributional estimates can be readily
computed for the rest of the second layer variables, that
is done. This arrangement seems to regularise the problem
enough as to avoid overfitting, while retaining reasonable
computational complexity of the learning algorithm.

B. E-step

The form of the approximate distribution Q is chosen to
be fully factorial:

Q(θ1) =
T∏

t=1

Q(ut) ×
H∏

i=1

Q(ayi) × Q(by)

×
K∏

i=1

Q(aui) × Q(bu) × Q(τu)

In the E-step the factors Q(·) in the approximation are
updated one by one given the other approximations and the
rest of the parameters θ2.



Except for Q(ut), conjugate update rules are obtained. In
the following, both the distributional form of the approxima-
tion as well as the values for its parameters are given.

The update rule for the weights of the linear mapping is

Q(ayi) = N (
ayi|µ, σ2

)

σ2 =
(
10−2 +

T∑
t=1

〈eut〉 f2
yit

)−1

µ = σ2
T∑

t=1

〈eut〉 fyit

(
yt −

∑
k �=i

〈ayk〉 fykt − 〈by〉
)

,

where fyit := tanh(
∑N

j=1 cyijxjt + di) and 〈·〉 denotes the
expectation computed over Q. The bias is updated as follows

Q(by) = N (
by|µ, σ2

)

σ2 =
(
10−2 +

T∑
t=1

〈eut〉
)−1

µ = σ2
T∑

t=1

〈eut〉
(
yt −

H∑
i=1

〈ayi〉 fyit

)

The parameters au and bu are handled in a very similar
manner. The update rule for the precision parameter τu is

Q(τu) = G (τu|α, β)

α =
T

2
+ 1

β =
1
2

T∑
t=1

〈(
ut −

K∑
i=1

auifuit − bu

)2〉
+ 10−4

Updating the approximation for the log-variance ut is
somewhat more complicated. No easy conjugate update rule
is now available. Following the scheme that was used in [3],
the approximation is a priori fixed to a Gaussian i.e. Q(ut) =
N (ut|m, v). In this case the KL-divergence (2) yields the
following expression to be minimised w.r.t. m and v

F (m, v) := Mm + V (m2 + v) + Eem+v/2 − 1
2

log v , (3)

where

M = −1
2
− 〈τu〉

〈
aT

u tanh(Cuxt + du) + bu

〉

V =
1
2
〈τu〉

E =
1
2

〈(
yt − aT

y tanh(Cyxt + dy) − by

)2
〉

In [3], the potential in Eq. (3) was minimised using a hybrid
scheme of alternating fixed-point and Newton iteration. Here,
it is minimised using Newton-iteration jointly for m and
log v. The convergence is very fast, requiring only a couple
of iterations.

C. M-step

With regards to the parameters Cy and dy the integral in
Eq. (1) yields the following function to be maximised in the

M-step

F (Cy,dy) := −
T∑

t=1

〈eut〉
[( H∑

i=1

〈ayi〉 fyit + 〈by〉 − yt

)2

+
H∑

i=1

var(ayi)f2
yit

]
.

The maximisation is done by computing the gradient ∇F
and then performing a line search by solving

max
α

F
(
C(i)

y + α∇Cy
F , d(i)

y + α∇dy
F

)
.

The (approximately) optimal step size is found by increasing
(decreasing) α as long as the value of F increases. The M-
step for the parameters Cu and du is handled in a similar
manner.

D. The Predictive Density

Once the model has been learnt, it remains to compute
the predictive pdf. Let us denote the parameters having
priors but excluding the log-variances ut simply as θ i.e.
θ = θ1 \ {ut|t = 1, . . . , T}. Now the predictive pdf is
formally obtained from the integral

p(yt|xt,X,Y) =
∫

p(yt|ut,xt,θ)p(ut|xt,θ)Q(θ) dθ dut ,

where X and Y denote the training data using of which the
model has been learnt. The distribution of the parameters θ
can be collapsed to a delta distribution at 〈θ〉 without making
too big of an error. However, it is not wise to neglect the
integration over ut, but it is not tractable either. Hence the
following approximation is made

p(yt|xt,X,Y) =
L∑

l=1

πlN
(
yt|myt, e

−utl
)

,

where myt :=
〈
aT

y

〉
tanh(Cyxt + dy) + 〈by〉 and the points

utl are regularly sampled from the interval [mut−2σ,mut +
2σ] in which mut =

〈
aT

u

〉
tanh(Cuxt + du) + 〈bu〉 and

σ = 〈τu〉−1/2. The mixture probabilities πl are selected as
to reflect the original density:

πk =
N (

utk|mut, σ
2
)

∑L
l=1 N (utl|mut, σ2)

.

If the log-variance can be accurately modelled such that the
precision τu is high, the approach is nearly equivalent to
collapsing p(ut|xt,θ) to a delta distribution at mut.

The above methodology applies to the rectified Gaussian
case as well.

IV. RESULTS

In this section results both with synthetic and real-world
environmental data are presented. Both of the datasets are
a part of the predictive uncertainty competition held in
WCCI’06. The method proposed in this paper won the
competition.
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Fig. 2. Synthetic data. The input variable is plotted against the target
variable.

TABLE I

RESULTS (NLPD)

Model Data
Synthetic SO2

True 0.35
Proposed 0.39 4.37
Regression 0.94 5.15
Histogram 1.23 4.50

A. Synthetic Data

The synthetic data consists of one explanatory variable
controlling both the mean and the variance of the observa-
tions in some unknown nonlinear manner. The noise process
is Gaussian, so the method presented in this paper should
perform fairly well with this dataset.

The input variable versus the target variable is plotted in
Figure 2. From there it is clear that there are substantial
fluctuations in the variance of the noise process.

The competition organisers have split the data into train-
ing, validation, and test sets for which the targets are avail-
able only for the first two. Fifty models were learnt using
the training data by iterating the learning scheme for 5000
iterations. Since point estimates are used for some of the
parameters, the marginal likelihood bound obtained from
Eq. (2) cannot reliably be used for model selection and
hence the validation data was used to this end. The predictive
performance of the models was measured by computing the
average negative log-likelihood (NLPD for now on) for the
validation dataset. The predictive pdf for the best model in
this sense is shown in Figure 3 along with the validation
datapoints, which were not used in the learning. The solid
line shows the mean of the predictive density and the dashed
lines show the 95% confidence interval.

Table I shows the NLPD values computed for the test set
(used neither in learning nor validation). The values for the
true model as well as for two baseline approaches are shown
also. The Regression method stands for standard MLP learnt
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Fig. 3. The predictive pdf for the synthetic dataset. The solid line shows the
mean and the dashed lines bound the area containing 95% of the predictive
probability mass.

using back-propagation with early stopping. One hundred
nets were learnt in this manner with random initialisations
for the weights and the best net in the sense of validation
NLPD was selected. The Histogram method was to compute
the unconditional empirical histogram for the training targets,
which was then used as the predictive density. Clearly the
proposed model has been able to learn the structure of the
data to a large degree not loosing much to the true underlying
model and beating the baseline approaches with a clear
margin.

B. Sulfur Dioxide Concentration Data

In this real-world dataset, the target variable is the sulfur
dioxide (SO2) concentration in an urban environment. The
27 input variables consist of the same SO2 concentration as
well as other meteorological conditions measured 24 hours
earlier. Four of the input variables are plotted against the
target variable in Figure 4. It is evident from the figure that
this dataset is very atypical when it comes to regression tasks,
since no evident correlations (linear or nonlinear) can be seen
between the input and output variables. The same applies for
the rest of the variables. Looking at the variables x2 and x8

only, it is questionable whether there are any dependencies
whatsoever in the data. From the scatter plots of x19 and x25

some dependencies can be visually recognised, however. For
example, the target variable y obtains clearly larger values
when the input variable x25 obtains values between -2 and
-1 than between 1 and 2.

With this data, the alternative formulation of the model
was used with the target variable having heteroskedastic
rectified Gaussian prior. To illustrate that something can
indeed be learnt from the data, first only the variable x25

was used in the learning. The learning scheme was similar
to that with the synthetic data. The model with the best
validation data performance was chosen again. The predictive
pdf for that model is shown in Figure 5. The solid line shows
the threshold below which 95% of the probability mass of
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Fig. 4. SO2 data. Four of the 27 input variables plotted against the target
variable.
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Fig. 5. The predictive pdf for one of the variables in the SO2 dataset. 95%
of the probability mass lies below the solid line.

the predictive pdf falls and the circles show (some of) the
validation-set datapoints. Some conclusions about the SO2

levels can already be made using this one input variable only.

The runs were repeated with all the input variables in-
cluded. The results with the test set for the proposed and the
baseline methods are shown in Table I. Now the learning task
is so unsuitable for standard MLP fitting that it actually loses
to the histogram approach, which doesn’t use the inputs at
all! The performance of the proposed approach is well above
the baselines although it is probable that the margin could
be made larger still by experimenting with different priors
on the target variable.

V. DISCUSSION

In this paper, a novel method for predicting uncertainty
in the supervised learning setting was presented. The key
idea was to explicitly model the scale parameter of the
noise process, currently limited to either Gaussian or rectified
Gaussian. When modelling means and variances jointly,
point estimation methods, such as maximum likelihood or
maximum a posteriori, can lead to catastrophic results, due
to severe overfitting. This is because the likelihood can be
made infinite by decreasing the variance towards smaller and
smaller values. The necessary regularisation ingredient in the
learning algorithm of this paper was to use the variational EM
algorithm. There a part of the parameters have distributional
estimates which overcomes many of the overfitting problems.
By not putting distributions over all variables, the learning
algorithm remains computationally almost as simple as if
point estimation was used.

The results with the synthetic dataset were very good,
mostly due to the fact that the used model very well matches
the true one. With the real-world environmental dataset, the
performance was rather good as well, but could be made
better yet. It is clear, that there is a lot to be gained by
choosing the most accurate prior for the target variable.
The zero-mode rectified Gaussian used in the experiments is
probably not the optimal choice. The obvious way to improve
upon this would be to relax the zero-mode assumption. This
however poses some serious technical difficulties, since the
E-step of the algorithm would be much more complicated.
Other rectified distributions could be appropriate too such as
the rectified Laplacian having heavier tail than the Gaussian
counterpart.
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