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Abstract

Linear factor models with non-negativity constraints have received a great deal of
interest in a number of problem domains. In existing approaches, positivity has of-
ten been associated with sparsity. In this paper we argue that sparsity of the factors
is not always a desirable option, but certainly a technical limitation of the currently
existing solutions. We then reformulate the problem in order to relax the sparsity
constraint while retaining positivity. This is achieved by employing a rectification
nonlinearity rather than a positively supported prior directly on the latent space.
A variational learning procedure is derived for the proposed model and this is con-
trasted to existing related approaches. Both i.i.d. and first-order AR variants of
the proposed model are provided and they are experimentally demonstrated with
artificial data. Application to the analysis of galaxy spectra show the benefits of the
method in a real world astrophysical problem, where the existing approach is not a
viable alternative.

Keywords: positive factor analysis; variational Bayes; source separation

1 Introduction

Factor analysis is a widespread statistical technique, which seeks to relate mul-
tivariate observations to typically smaller dimensional vectors of unobserved
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variables. These unobserved (latent) variables, termed as factors, are hoped
to explain the systematic structure inherent in the data. In standard fac-
tor analysis [2], the factors may contain both positive and negative elements.
However, in many applications negative values are difficult to interpret. Hence,
non-negativity often is a desirable constraint, that has received considerable
interest in recent years.

Positive matrix factorisation [3|, non-negative matrix factorisation [4] and
non-negative independent component analysis [5] are methods that perform a
factorisation into positively constrained components. These methods are rela-
tively fast and stable under reasonably mild assumptions, however, they lack a
clear probabilistic generative semantics. Bayesian formulations of similar ideas
have also been studied [6-8] in order to enable a series of advantages such as
inference from previously unseen observations and principled model compari-
son. In these works, positivity of the factors is achieved by formulating a prior
that has zero probability mass on the negative axis, such as the exponential,
the rectified Gaussian, or mixtures of these. The rectified Gaussian distribu-
tion is particularly convenient, as it is conjugate to the Gaussian likelihood
and hence it yields a rectified Gaussian posterior distribution.

Unfortunately, all these existing solutions have a serious technical limitation:
they hard-wire the assumption that the latent factors are sparse, meaning that
the probability mass is concentrated near zero. This is because the likelihood
for the location parameter of the latent prior is very awkward and makes it
technically impossible to handle a hierarchical prior over it. While in some
applications both sparsity and positivity are desirable, in others, as will be
seen, sparsity is inappropriate.

In this paper we provide a different formulation of the positivity constraint
in linear factor analysis, which gets round of the mentioned problems. This is
achieved by employing a rectification nonlinearity as part of the model. An
ordinary Gaussian prior is then employed for the argument of the rectifica-
tion function, which can further have hierarchical priors for both its location
and scale parameter. In this setup, obtaining the so called free-form poste-
rior approximation is not immediate, consequently the inference procedure is
not as simple as with conjugate priors. However, we show that the free-form
variational approximation for the model is still tractable.

Our proposed setup is related to the one by Frey and Hinton [9], where a
rectification nonlinearity has been used in connection with nonlinear belief
networks. However, our solution differs substantially from that of [9], where a
fixed-form Gaussian posterior approximation has been used and the required
optimisation has been solved by gradient descent. Our free-form variational
algorithm, in addition to being more accurate, does not require any numerical
optimisation.



The remainder of the paper is organised as follows: Section 2 reviews existing
solutions to the problem of Bayesian positively constrained factor analysis.
Section 3 presents the proposed formulation and provides the associated infer-
ence procedure. The advantages of the proposed method are first illustrated
using artificial data in Section 4. Section 5 demonstrates a real-world ap-
plication of the proposed method to astrophysical data analysis. Finally we
conclude and discuss further directions.

2 Positively Constrained Generative Factor Analysis

Consider a set of N observed variables, each measured across 1" different in-
stances. We denote by x;, € RY the t-th instance. The N x T matrix formed
by these vectors is referred to as X and single elements of this matrix will be
denoted by x;;. Similar notational convention will also apply to other variables.

As in linear factor analysis, the modelling hypothesis made is that the NV ob-
servations can be explained as a superposition of M underlying positive latent
components s; € RM (factors or hidden causes) through a linear mapping
A € RVM

xX; = As; + 1, . (1)
The noise term n; is assumed to be zero-mean i.i.d. Gaussian, to account for
the notion that all dependencies that exist in x; should be explained by the
underlying hidden components.

2.1 Imposing Positivity as a Distributional Assumption

A straightforward approach to constraining the factors to be non-negative is
to formulate a non-negatively supported prior distribution. In doing so, the
computationally most convenient alternative is to employ a rectified Gaussian
distribution as considered by several authors [6,10,7]. This is defined as

2
erfc(—m/+v/2v)

where u(-) is the standard step function, and m and v are the location and
scale parameters respectively. It is easy to see that the rectified Gaussian prior
is conjugate to a Gaussian likelihood and the posterior can be computed in
exactly same manner as with an ordinary Gaussian distribution.

N (s|m,v) =

u($)N (s|m,v),

However, as also noted in these works, the computations with the rectified
Gaussian prior are only possible if the location parameter m is fixed to zero,
effectively making the erfc term vanish. Otherwise, the computations needed



to solve the variational problem are intractable. One option is to resort to an
empirical Bayes estimation of the parameters of the rectified Gaussian — which
of course would be tractable [8]. However this would lead to over-confident
estimates and one would lose a number of further benefits of the more stringent
Bayesian approach, e.g. that of making principled model comparisons. Another
option is to work with fixed parameters. A common choice in the literature has
been to fix the location parameter to zero [6,10,7]. Consequently, due to the
use of a zero-location rectified Gaussian prior on the latent variable, sparse
positive factors are induced. While this may be desirable in some applications,
it is clearly inappropriate in others as will be shown in Section 5.

2.2 Imposing Positivity Through a Rectification Nonlinearity

Let us make the following substitution in (1),
S = Cut(rt) s (2)

where cut is the component-wise rectification (or cut) function [cut(0)]; =
cut(6;) = max(6;,0). This guarantees that the factors s; are positive, no matter
what the distribution of r; is. We employ a Gaussian prior: rj; ~ N (mrj, TT_jl).
The distribution of s = cut(r) shall be denoted as RY (m,v). This is a mix-
ture of a Dirac delta distribution at zero and a rectified Gaussian distribu-
tion. Hence, it is genuinely different from the rectified Gaussian distribution

NE(m,v).3

The resulting model is still linear w.r.t. s;, it satisfies the required positivity
constraint due to the cut function and also offers flexibility regarding the
location of the probability mass in the latent space. The probabilistic model

2 In the context of this paper, the term sparse refers to bias towards zero.

3 Naturally the terminology is a matter of convention — either of these two distri-
butions N'® or RN could be termed as the ‘rectified Gaussian’. Indeed, differently
from the initial use of this term [11] (where it meant a multivariate distribution over
the positive domain), in [12], RY has been termed as rectified Gaussian, whereas
other, more recent works [6,7], including this paper, refer to N/ B by the same term.
In order to avoid confusion, we shall explicitly use two different symbols, N and
RN to refer to these two distinct distributions.



definition is fully summarised by the following set of equations:

xig ~ N (aiTcut(rt), Tx_il)
rie ~N (mrj,T,r._jl)

my; ~ N (O, aﬁw,)
Tui ~ G (Qa, Be)

Try ™~ g (ar>ﬁr)
Q5 ~ NF (O> 1)

In the above, G (a, 3) denotes the Gamma distribution® and the symbols o2,

g, Bz, oy, B, are constants, whose values should be chosen to match the prior
beliefs about the problem in question. In the experiments of this paper we
used o2, =100, a, = o, = 1 and 3, = 3, = 10~ in order to express vague
(but proper) priors for the variables at the top of the hierarchical specifica-
tion. The prior for the weights a;; of the linear mapping A was specified as
a zero-location rectified Gaussian in order to express a positively constrained
mapping. Finally, the rationale behind having chosen the inverse parametri-
sation for the variances is to enjoy the computational convenience of working
with conjugate priors [13] when possible. We refer to the model specified above
as Rectified Factor Analysis (RFA).

There is earlier work on the use of rectification nonlinearities. In [14], the rec-
tification nonlinearity for multiple-cause modelling has been considered from
the biological plausibility starting point. The authors propose a constrained
PCA network which can learn sparsely distributed representations of data
sets. However, the model is non-probabilistic and doesn’t include flexibility
for modelling non-sparse factors. In [15], the rectification is used to refine
the expectation maximisation approach to subspace analysis, and obtain an
algorithm more suitable for non-negative data.

In the variational setting, the rectification has previously been used within
nonlinear belief networks in [9]. However, their variational approximation dif-
fers from ours in that they employ a fixed-form Gaussian approximation to
the true posterior. In contrast, we develop a free-form approximation, the
advantages of which will be detailed in the sequel.

4 The parametrisation of the Gamma-distribution varies in the literature. In this

paper the following is used: G (0|« 5) = rﬁ(:{) g1 ep0




3 Variational Inference for Rectified Factor Analysis

In this section we derive a variational Bayesian (VB) learning procedure for
the model proposed in Section 2.2. Before proceeding, a brief review is given
on the variational Bayesian methodology employed.

3.1 Variational Bayes

In Bayesian data modelling, all information is encoded in probability distri-
butions [13]. The exact Bayesian approach starts from constructing a model
expressed as the joint probability density function (pdf) p(X, @) of the data
X and the parameters 6. Once the model has been specified, the inference
simply consists of computing the posterior pdf of the parameters p(6|X) i.e.
the pdf of the parameters of the model given the observed data. This is done
by an invocation of the Bayes’ rule. The obtained posterior distribution can
be used for making decisions and predictions. The marginal likelihood of the
data (called also the model evidence) can be used to compute posterior prob-
abilities of competing models, and therefore it is a tool for comparing different
models.

However, although the principle is simple, the required computations are rarely
feasible, for one or several of the following reasons.

(1) The normalisation constant of the posterior is intractable. This implies
that also the marginal likelihood is intractable.

(2) The marginal densities of the parameters are intractable.

(3) Due to symmetries in the model, the marginal densities computed from
the exact posterior are of little interest. This is especially true in factor
models since the model is symmetrical w.r.t. permutations of the factors
making the posterior pdf have M! equivalent modes (where M was the
number of factors).

Hence, often approximations of some form are necessary in practise for Bayesian
inference, both due to intractability issues and due to difficulties in interpret-
ing the exact posterior.

Variational Bayesian learning (known also as variational Bayes, variational
learning, ensemble learning, and VB for short) (see e.g. [16-18]) is one viable
approach where an approximate distribution ¢(8) is fitted to the true posterior.
This is done by constructing a lower bound for the log evidence, based on



Jensen’s inequality:

p(X, 0)
q(0) 10 (3)

6 = log / p(X,8) d8 = log p(X)

B(q) := (log p(X., 8))4(6) — (log q(8))4(6) = / q(0) log

p(X, 0)
q(0)

where (-), denotes expectation w.r.t. ¢. The approximate distribution ¢ is
found by functional maximisation of the bound B(q) w.r.t. g. To make the in-
tegral tractable, the distribution ¢ needs to have a suitably factorial form. Here
a fully-factorial posterior will be employed, meaning that the approximation
has the form

¢(6) = JTa(6:). (4)

The model estimation algorithm consists of iteratively updating each vari-
able’s posterior approximation ¢(6;) in turn, while keeping all other posterior
approximations fixed. Due to the chosen form (4), all updates are local, re-
quiring posterior statistics of the so called Markov blanket only. That is, for
updating any of the variable nodes, the posterior statistics of its children,
parents and co-parents are needed only.

Since all variables are integrated over (at least approximately), VB is robust
against overfitting — a reoccurring problem when using point estimates. Also,
due to the form of the posterior approximation, it will approximate only one of
the prominent modes of the exact posterior, therefore the obtained approxima-
tion can be hoped to be more easily interpretable. For example, reporting the
means of the posterior approximation is perfectly sensible even in cases when
it would be completely meaningless with the true posterior. Finally, the bound
in (3) can be turned into an approximation of the posterior probabilities over
competing models. Thus, the VB methodology equips us with an immediate
tool for making inferences, model selections and model comparisons.

The practical utility of employing a fully-factorial approximate posterior is
that it leads to a computationally economic learning algorithm. It has em-
pirically been found to work well for a number of models in the literature.
However, the rigorous study of the implications of this approximation and
how much the obtained estimates differ from those of exact methods is in its
infancy, and represents an active topic of research in statistics. There are some
general results for the exponential family of models, regarding the asymptotic
properties [19] of such approximations. There is also some evidence [20] that
the approximate model probabilities provided by VB compare very well even
with the best sampling based methods.



3.2 Free-form Posterior Approximation for RFA

If the form of the factors ¢(6;) in the approximation is not further restricted,
by requiring them to belong to a certain family of distributions such as Gaus-
sians, the approximation is said to be free form. If the opposite holds — that
assumptions beyond Eq. (4) are made — the approximation is called fixed
form.

A free-form variational posterior is not always tractable to compute, which
is the very reason why fixed-form approximations are sometimes necessary.
In this subsection we show that although the free-form approximation for
the RFA model has a non-standard form, it can be handled analytically, it
is more accurate compared to the fixed-form approximation and it is also
computationally more convenient.

The problematic part in the posterior approximation are the factors, since for
the other variables in the model, there exist conjugate update rules. Hence,
here we will be concentrating on the part of the algorithm that deals with the
factors rj;. The computation of the posterior approximation for the rest of the
variables in the model is given in Appendix C.

The relevant term in the evidence bound (3) when updating any given factor
Tt is

{1 q(rj1)
<1 g]\/(a‘ CU.t(Tjt)ub)N(Tjt‘C, d)> ? (5>

where a, b, ¢, and d are constants w.r.t. ¢(r;;) and can be computed from the
Markov blanket of ;. The exact formulae for them are given in Appendix C
(Egs. (C.5) - (C.8)). Because of the rectification, the likelihood part in the
denominator of (5) is no longer Gaussian, and hence no easy conjugate update
rule for ¢(r;;) exists.

We now proceed to derive the learning procedure for our model. Tractability of
the variational posterior means that analytical expressions can be derived for
the following: (i) the relevant part of the evidence bound:® (logp(r|m,,7.)) —
(logq(r)), (ii) the posterior mean (r) and the variance var(r) and (iii) the
mean (cut(r)) and the variance var(cut(r)). Here and throughout, (-) denote
expectations over q(r).

> The sub-indices of r are dropped at this point for convenience.



3.2.1 The Form of the Posterior

From (5), an invocation of Gibbs’ inequality provides the following free-form
solution:

ofr) = 5 N (el cat(r), ) A (rle, d), ()

where Z is the normalising constant, that will be computed shortly. After
some manipulations, (6) can be written as ¢(r) = g,(r) + ¢,(r), where

w

0(r) = 2N (rlip 02) u(r) and qu(r) = N (rln, o2) u(=r),

and for which

wy, =N (ale,b+d) , w, =N (al|0,d)
= (b_l —l-d_l)_l . pp=0.(a/b+c/d),

Thus, it turns out that the free-form approximation is a mixture of two recti-
fied Gaussians. One of them has all its probability mass on the positive real
axis whereas the other on the negative axis. The normalising constant Z of
the posterior is then the following:

7 = /N(a|cut(r),b)/\/(r|c, d) dr
= % erfc[,un/@] + % erfc[—,up/\/?cf,].

3.2.2  Relating the Free-Form Approzimation to the Fized-Form Gaussian
Approximation

As already mentioned in Section 2.2, a fixed-form variational solution exists
for the linear model with rectification nonlinearity, as developed in [9] for
nonlinear belief networks. It is therefore interesting to compare this to our
free-form approximation. With the fixed-form approximation, the evidence
bound can be written analytically [9]. However, the stable points cannot be
analytically solved, but require numerical optimisation. Note that finding the
global optimum is not trivial due to the existence of multiple stable points.

Consider fitting a fixed-form Gaussian approximation to the true posterior in
an example case when the quantities in (5) are a = 1.1, b = 0.17, ¢ = —1.5
and d = 1.2. The free-form posterior is shown in Figure 1. Looking at its form
it should not be surprising that the log-evidence bound has two stable points.
These are shown in Figure 1 in dashed and dot-dashed lines. The dot-dashed
line represents the global minimum whereas the dashed line is just a local
minimum. The log-evidence bound as the function of the parameters of the
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Fig. 1. An example of the true posterior for a factor in RFA and two Gaussian
approximations that are locally optimal. The dot-dashed line represents the better
optimum.
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Fig. 2. The negative of the log-evidence bound as a function of the mean m and
the log-variance logv of the Gaussian approximation when it is fitted to the true
posterior of Figure 1. The two local optima are marked with crosses.
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approximation is shown in Figure 2, where the crosses mark the stable points.
This is to demonstrate the complications that can rise when the posterior
approximation is further restricted.

3.2.8 Posterior Statistics

In the computation of the required variational posterior statistics and the
evidence bound, we can make use of certain moments computed over the
approximation.

Define the positive and negative ith order moments as
M; = /ri ¢(r) dr and M} = /ri Gn(r) dr. (7)

It turns out, that we can express the required expectations and the evidence
bound using the moments of order 0, 1, and 2. The evaluation of these can be
cast back to the evaluation of the equivalent moments of the rectified Gaus-
sian distribution. The expressions are lengthy and hence their presentation is
postponed to Appendix B.

The required posterior statistics are now easily obtained using the moments

(1) = [ralr) dr = [rayr) dr+ [ran(r) dr = M} + 0}
(%) = [12a0r) dr = [12a,(r) dr+ [ 12qu(r) dr = M2+ M
(eut(r)) = [ cut(ra(r) dr = [ra,(r) dr = M}
)= [eutt(r)a(r) dr = [12q,(r) dr = M2

3.2.4 The Evidence Bound

The log-evidence bound (3), can be used both for monitoring the convergence
of the algorithm and more importantly, for comparing different solutions and
models.

The term (log p(r|m,., 7)) appearing in the bound is computed as in the case of
an ordinary Gaussian variable. See Appendix E for details. The term (log ¢(7))
in turn is completely different due to the complex form of the posterior:

(108 4(r)) ) = [ alr)loga(r) dr
= [ 1ogq(r) dr+ [ a,(r)loga(r) dr
= /qp(r) log g, (7) dr+/qn(7’) log gn(r) dr. (8)

11



The two terms in (8) can be expressed using the moments derived above. The
first term yields

P
_/qp(r) {logZ U;I;T(ﬂ 2'?2 Z—g — 2—§T2} dr
= (logZ u;;mg 2/22’%) MO U:Ml _QT‘I%Mz 9)
Similarly
/qn(r) log g (r) dr = (log P l;jmg - ;j%) M, + “ZM}L - 2—2M2 (10)

3.3 Extending the Model to the AR(1) Case

Making the factors follow an AR(1) process can be accomplished by changing
their prior to
ri ~N (0,031)
Tjp ™~ N (b?rt_l + Cj,Tr_jl) (t > 1) .
This extension doesn’t complicate matters terribly, since the form of the pos-
terior approximation does not change. Indeed, since now the likelihood term
at index t + 1 can be combined with the prior at index ¢ (due to the Gaus-
sianity of the prior on r;), an expression that has exactly the same form as
(5) is obtained. The exact update rules are given in Appendix D. The new
parameters B and c¢ have the priors
bij ~N (07 1)
cj~N (0, af) .

4 Experiments on Artificial Data

In this section experiments with artificial data are presented. We will consider
three models. Positive Factor Analysis (PFA) will refer to the method reviewed

12
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Fig. 3. Histograms of the factors.

in Section 2.1. Rectified Factor Analysis (RFA) and Dynamic Rectified Factor
Analysis (DRFA) refer to the model proposed in this paper and its AR variant
respectively.

4.1 Static Factors

4.1.1  Factor Distributions

First we demonstrate the flexibility of the proposed model in recovering both
sparse and non-sparse positive factor distributions, as opposed to the existing
alternative approach (PFA), which is restricted to sparse factors.

Let us consider a dataset which is a linear mixture of three underlying factors
distributed as N7 (0,1), RY (0,1) and R" (1,0.2%). The histograms of the
1000 samples obtained from these distributions are shown in Figure 3. From
the three factors, ten observations were generated by a linear mapping whose
weights were sampled from RY (0,1). Finally zero mean Gaussian noise with
standard deviation (std) 0.01 was added to each observation.

The factors were estimated from the observations using PFA and RFA. For
each model the factors were randomly initialised and the learning algorithm
was iterated 2000 times. This procedure was repeated ten times and the result
with the highest evidence for each of the models was then selected. Figure 4
shows the separation results as scatter plots between the true and the (ap-
propriately permuted) estimated factors. The leftmost three figures are the
samples of the PFA factors vs. the ground truth, whereas the rightmost three
figures are the RFA factors vs. the same ground truth. The goodness of each
can be seen visually by the departure from a straight line. In particular, we
see considerable mismatch in the third factor of PFA. In addition, we evaluate
the performance as the signal to noise ratio (SNR), defined as

® N

SNR := 10log;; — , (11)

mqw| Q
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(a) PFA (b) RFA

Fig. 4. Separation results as correlation plots with SNRs printed above. Here both
the original and the estimated signals are normalised to the same scale and they are
plotted against each other. Hence the optimal result would be a straight thin line.
The third factor poses serious difficulties for PFA whereas RFA can model it very
well.

x 10"

Log-Evidence Bound

0.2 ; ;

1 2 3 4
Number of Factors

Fig. 5. Log-evidence bounds for PFA and RFA with different number of factors.
Clearly, RFA achieves better values than PFA. The maximum for both models is at
three factors, which is also the true model order.

where o2 is the variance of the true factor and o2 the variance of the error
signal e = s — §, § being the estimated factor. The corresponding SNR values
are shown in the title lines of the plots. It is the third, non-sparse factor
that creates problems for PFA, the SNR being as low as 6.8 dB. The poor
estimation of the third factor also affects the estimation of the first factor.
With RFA, no such problems occur.

It is also interesting to know whether we could have told that RFA is superior
to PFA at modelling this data, just from comparing the model evidences.
Figure 5 shows the evidence bounds of the two models with the number of
factors varying between one and four. Indeed, the evidence comparison is

14



clearly in favour of RFA. In addition, Figure 5 shows that both models are
able to infer the model order correctly.

4.1.2  Noise Structure

One of the advantages of factor analysis over standard dimensionality reduc-
tion methods such as principal component analysis is that the observation
noise is not restricted to be isotropic i.e. it is allowed to have different variances
for each dimension of the observation. The benefit of RFA over the conceptu-
ally simple and therefore popular NMF [21] algorithm stems straightforwardly
from the ability of RFA to handle additive noise that is not isotropic.

To test this proposition, we generated 100 different datasets from the following
model:

sip~RYN(0,1), j=1,2 t=1,...,250
aij ~RN(0,1), i=1,...,10
Tt NN(aZTSt,lo_mji)

where diverse anisotropic noise was generated by using:
v; ~0.78(2)+0.26(1) +0.15(0)

The learning procedure with RFA was similar to that in the previous section.
The scheme with NMF was the following. We initialised the factors and their
loadings randomly with positive numbers and then iterated the multiplicative
update rules of NMF for 1000 iterations. Further, from ten repeats of this
procedure we have chosen the model with the best value of the objective
function, in order to avoid getting trapped into local optima.

We measured the separation results as the SNR computed between (the ap-
propriately permuted) estimated factors and the original ones. The average
SNR values for RFA and NMF were 36.5 and 13.0, respectively. The whole
sample is shown in Figure 6. These results clearly show that anisotropic noise
poses serious difficulties for NMF, whereas RFA can handle it very well.

4.2 Autoregressive Factors

To demonstrate the auto-regressive (AR) extension of the proposed method,
we report experiments with an artificial dataset where the factors have time-
structure. A four-dimensional state sequence r; was generated according to
the first-order AR model below

ry = Brt_l .

15
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Fig. 6. Separation results for data with anisotropic additive noise. The SNR value
obtained with NMF is plotted against that obtained with RFA. The diagonal line
marks the points of equal performance. It is evident that RFA achieves better per-
formance than NMF in the vast majority of cases.

The weights of the linear mapping B were sampled from N (0, 1) after which
the matrix was orthogonalised to produce a well behaved dynamics. The state
sequences were shifted by an amount of 0.5 to each direction to make the
subsequent rectification preserve a little more of the original process.

Figure 7 shows the pairwise scatter-trajectories of the 4 underlying generator
AR sequences r;. With a total number of 4 sources there are 6 possible pair-
wise combinations, and these are shown on the plots. The actual AR dynamics
is traced with continuous lines. The factors s; were obtained by rectification
as shown in the figure by the dashed lines. The observations x; were then gen-
erated in the same way as in the previous experiment, detailed in Section 4.1.
Again, the std used for the additive noise was 0.01.

Estimates for the factors were obtained using all the three models: PFA, RFA
and DRFA. The learning scheme was the same as in the previous section. Fig-
ure 8 shows the SNRs between the estimated and original factors s;. From the
three models RFA and DRFA perform better than PFA and DRFA is slightly
better than RFA. The true benefits of DRFA become obvious when examining
the SNRs of the underlying state-space sequence r;, which are shown in Fig-
ure 9. Clearly, the DRFA model has been able to learn the dynamics and hence
it predicts the state r; also in the rectification region. This is confirmed by the
Hinton diagrams of the original dynamical mapping versus the (appropriately

16



Fig. 7. Pairwise scatter-trajectory-plots of the state sequences following a first order
AR model. The actual factors were rectified versions of these. The dashed lines show
the rectification thresholds.
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Fig. 8. SNRs of the four estimated factors s; for the three models considered. PFA
again has difficulties to separate the original factors whereas RFA and DRFA per-
form very well. DRFA is slightly superior to RFA.
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Fig. 9. SNRs of the estimated states r;. The rectification looses a lot of information
from the original states so RFA, having no notion of time structure incorporated,
cannot find the original states whereas DRFA provides very good estimates for them
meaning that it has been able to learn the underlying dynamical model.

] ]
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(a) Original (b) Estimated

Fig. 10. The original versus the estimated dynamics mappings B. The similarity is
evident.

permuted) estimated mapping which are shown in Figure 10.

In Section 5, the flexible modeling capabilities of RFA and DRFA will further
be demonstrated in the context of an astrophysical application. It will also be
seen that DRFA is desirable over RFA when it comes to predictive tasks.
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5 An Astrophysical Application

In this section we present an application of the proposed model to astrophysi-
cal data analysis. Experiments have been conducted on both real and synthetic
stellar population spectra of elliptical galaxies, addressing both the physical
interpretability of the representations created and the predictive capabilities
of the models. Ellipticals are the oldest galactic systems in the local Universe
and are well studied in physics. The hypothesis that some of these old galactic
systems may actually contain young components is relatively new [22,23]. It
is therefore of great practical interest to investigate whether a set of stellar
population spectra can be decomposed and explained in terms of a small set
of unobserved spectral prototypes in a data driven but physically meaningful
manner. If so, that would allow the development of automated tools to aid
more specialised physical analysis for research on galaxy formation and evolu-
tion. The positivity constraint is important in this modelling application, as
negative values of flux would not be physically interpretable.

5.1 Missing Values and Measurements Errors

Classical non-probabilistic approaches do not offer the flexibility for taking
known measurement errors into account. It is an important practical advantage
of the probabilistic framework, that it allows us to handle these in a principled
manner. This is achieved simply by making the ’clean’ vectors x; become
hidden variables of the additional error model below

Yit = Tyt + €t -
Here ¢;; are zero-mean Gaussian noise terms with variances o7, fixed to values
that are known from instrumental characteristics and uncertainty in calibra-
tion, for each individual measurement ¢ = 1,...,N,t = 1,...,7T. Handling

missing values [24] can also be conveniently implemented in this framework

by setting agit to a large value when the actual measurement is missing.

5.2  Results on Real Data

A number of N = 21 real stellar population spectra will be analysed in this
subsection. The data [25] was collected from real elliptical galaxies, along with
known measurement uncertainties, given as individual standard deviations on
each spectrum & wavelength pair. The data also contains missing entries.

Each of these 21 spectra is characterised by flux values (measured in arbitrary
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Fig. 11. A sample from the real data of spectral measurements. The dashed lines
show the standard deviations of the errors in the data. The blank entries stand for
missing values.

units [22,25]) given at a number of 7' = 339 different wavelength bins, ranging
between 2005-8000 Angstroms. A part of this data set is shown in Figure 11.

In this section we demonstrate three models in terms of the interpretability
of their factor representation created. We have fixed the number of factors to
two, as inferring subsequent factors turns out to have no physical interpreta-
tion. Also the log-evidence bounds computed for different model orders (see
Figure 12) support this decision. We repeated each run ten times with random
initialisations drawn from A% (0, 1). The model with highest log evidence was
then selected. The two factors® for each of the models are shown in Figure 13.
The shape of the first estimated factor is very similar for all three methods
considered. This factor can visually be recognised to correspond to an old and
high metallicity stellar population. This kind of component in elliptical stellar
populations has been known to physicists for a long time. In turn, the existence
of a second component is a relatively recent finding in astrophysics [25].

Interestingly, the second factor inferred from the data differs more across the
models considered. The RFA second component turned out to be physically
interpretable, as it exhibits many of the characteristic features of a young
and low metallicity stellar population spectrum. The second component from
DRFA is similar in its main shape, providing an indication for the age of
this stellar population component. However, it lacks some of the wiggles that

6 The order of the factors is of course arbitrary, we have manually grouped them
for the ease of visual inspection.
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Fig. 12. The log-evidence bound with different models and model orders. With all
three models, two factors seem to be the optimal choice although some improvement
is gained with DRFA with additional ones.

encode metallicity characteristics of the stellar population.

From astrophysical point of view, the second PFA-component has no clear
physical interpretation, as it is too noisy and its distribution is biased toward
zero. This is most likely due the fact that the location parameter for the
rectified Gaussian distribution is required to be zero and hence small values
are favoured. This results in a poor match with any known physical model.
The sparsity constraint of PFA is clearly inappropriate in this application.

The evidence bound that the variational procedure yields can also be inter-
preted as a kind of description length [26]. From this perspective it becomes
interesting to examine the contribution of the different parts of the models
to the overall coding length. These are visualised in Figure 14. The coding
length for the data is approximately same for all of the models. The differ-
ences arise in the ability of the models to represent the factors. In this sense,
RFA is somewhat better than PFA, due to its more flexible prior, and DRFA
is even better since it is able to model the correlations between neighbouring
wavelengths and hence code the factors most compactly.

5.3  Prediction Results on Synthetic Stellar Population Spectra

Here we employ synthetic spectra in order to assess the predictive performance
of the proposed methods in an objective and controlled manner. A random
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Fig. 13. The first (above) and second (below) factor estimated by the different
models. The first factor is similar for all models. The second factor estimated with
PFA is distorted towards zero and has no physical interpretation. The second factor
estimated using RFA is in turn the most relevant from the physical interpretability
point of view. DRFA smooths the second factor excessively.

selection of 100 synthetic composite spectra produced from the stellar popu-
lation evolutionary synthesis model of Jimenez [25] is utilised. Each of these
may contain the superposition of two stellar population spectra with vary-
ing parameters (age, metallicity and proportion). The wavelength coverage as
well as the binning of these spectra is identical to those described for the real
data. The mixing proportions depend on the masses of the component stel-
lar populations in a physically realistic manner. There are no missing entries
or measurement errors in this data set, making it suitable for a controlled
assessment.
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Fig. 14. The coding cost (divided by the number of samples) of the various models
considered. Individual parts of the models are highlighted.

We consider an inference task where 50 of the flux values at a random selection
of wavelength bins are held out as a test set and used for evaluation purpose
only. Missing values are artificially created at random in the test set and the
percentage of them is varied. The RFA and DRFA models were trained on the
same training set and asked to predict the artificially created missing entries
in the previously unseen test set. The mean of the predictive distribution can
be obtained simply as (As;). This scheme was repeated ten times. Finally, the
mean and std of the SNR between the predictions and the true values, for each
percentage of missing values in the test set, were computed. The results are
shown in Figure 15. As expected, DRFA outperforms RFA in this prediction
task when the amount of missing values gets large. The reason for the success
of DRFA is that it includes the modelling of the correlations between fluxes
at neighbouring wavelength bins. Clearly, this information is very useful when
not too many observations are available. With moderate amounts of missing
values, RFA is slightly better than DRFA, since no smoothing over wavelengths
occurs in its inference.

6 Conclusions

We presented a method for non-negative factor analysis, based on variational
Bayesian learning. The proposed solution gets round of the shortcomings of
approaches that impose a positively supported prior directly on the latent
space. We derived a learning algorithm for the model, using a factorial free-
form posterior approximation. We demonstrated the proposed approach on
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Fig. 15. Prediction of missing entries in out-of-sample wavelength bins with the num-
ber of factors being three. DRFA is able to use the information from neighbouring
wavelengths and hence continues to perform well even with very high percentage of
missing values.

both generated data and an actual application to astrophysical data analy-
sis, for which the existing methods that induce sparse representations were
found to be inappropriate. The utility of these results from the astrophysical
perspective are detailed elsewhere [27]. The presented approach is applicable
in any situation where flexible latent densities over the positive domain are
required.

We note that the methodology developed here can straightforwardly be ex-
tended, for example, to include multiple rectification. Also, Gaussian mixture
priors could be employed in place of the single Gaussian utilised here, in order
to further enhance flexibility.

Other extensions may also be of interest: In RFA, we used independent priors,
i.e. no dependencies between the sources are explicitly modelled. In particular,
in the context of our astrophysical application, there is no physical interaction
between the galaxy populations that we analyse, therefore the independent
prior assumption has been justified. However, where a dependency model is
desirable or available from the application domain, it is in principle possible to
incorporate it into the prior using a graphical model, as in [28]. Investigating
such extensions would constitute valuable further research.

24



Acknowledgements

This research has been funded by the Finnish Centre of Excellence Programme
(2000-2005) under the project ‘New Information Processing Principles’” and a
Paul & Yuanbi Ramsay research award from the School of Computer Science
of The University of Birmingham, on ‘Blind Separation of Information from
Galaxy Spectra’. Many thanks to Louisa Nolan and Somak Raychaudhury for
sharing their astrophysical expertise and supplying the data.

A Sufficient Statistics of the Rectified Gaussian and Gamma Dis-
tributions

The statistics of rectified Gaussian and Gamma distributions that are needed
in the learning algorithm are given in this section.

The mean and the mean square suffice for rectified Gaussian distribution

NE(Om,v):

[2v 1
@ * @ exp((m/\/20)2) erfc(—m/\/Qv) (A1)
2v m
0*) =m* +v \|— Al
< > e 7T exp((m/\/2v)2) erfc(—m/\/Qv) (4.2)

The variance is computed applying the familiar formula var(6) = (62) — (0)*.

From Gamma distribution G (0|, ) the mean and the mean of the logarithm
are required:

(0) = a/p (A.3)

o1
(log§) = —log § + %@ (A.4)

B Posterior Moments for the (D)RFA Model

Here, the expressions for the moments computed over the posterior approxima-
tion of the factors are presented. In deriving them, the properties of rectified
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Gaussian distribution have been used.

MI? = —erfc [—pp/\/202] (B.1)

207 1
1 e _P — 2 _—
M, 57 {erfc[ tp/ /202 pp + exp(,up/2a2) } (B.2)

202 7
R PR N £ R T B.
: 2Z{er c[—pip/ 205} (1, + 0) + exp(up/%z)} )

M =L erfc [tn/1/202] (B.4)

202 1
1 — n 2 - n
M, —2Z{erfc[,un/\/20n],un \/ - exp(u%/2a%)} (B.5)

202 M
M2 _ & f . 202 2 2\ n n B.
n 27 {er C['U’ / an] (lu’n + J”> ™ eXp(u%/2O_72l) } ( 6)

C Update Rules for RFA

In this section, the update rules for RFA are given. For each variable, first the
form of the approximation is shown and then the expressions for its parameters
are listed.

alaiy) = N (aylp, 0°) (C.1)
<1 + (Tui Z;<cut Tjt) >)_1 (C.2)
(T ;( zi2) k# (@ <cut(rjt))) (cut(r))  (C.3)
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D Update Rules for DRFA

The update rules for the dynamic extension of RFA are given in this section.
The rules that do not differ from RFA are not repeated here.

q(rj¢) = as with RFA, but with (D.1)
oy = <; (i) (b3) + <w>)_1 (D.2)
pn = 02|32 (1) () () = X2 (o) () = ) (D3)

i=1 k+#j
+ (75) <b§-p1“t—1 + Cj>} (D.4)

The above holds for the cases 1 < ¢t < T'. The boundaries t =1 and ¢t = T are
slight modifications of that. For ¢ = 1 the quantities o2 and pu,, are

o2 = (é (rvs) (B) + a;l2> o (D.5)
= 723 ) ) (1) - S utn) - (@))] - ©9)

and for t = T they are

02 = (ry) ! (D.7)

n

Mtn = <b]Trt_1 + Cj> (Dg)

abys) = N (b, 0

SN—
—~
o
o
~—

p= 0?5 3 () = 30 ) (i) = (@) () (DL1)
t=2 k#j

g(ci) = N (eiln, 0*) (D.12)

o? = <a;2 L (T=1) <m>)_ (D.13)

=0 (1) 2((@ —(blri1)) (D.14)



q(7ri) = G (Tril, B) (D.15)
o= T— + a; (D16>

2
T
8= 53 ((ra — by — c)?) + 5, (D.17)

E Evaluating the Evidence Bound

Since a factorial posterior approximation is used, the evidence bound (3) fac-
tors correspondingly into terms of the form

(log p(6i pa.6;)) () - (E.1)

where paf; stands for the parents of ¢; in the model. Additionally, for latent
variables there are terms of the form

(10g 4(60:)) 4, - (E.2)

The first type of terms (E.1) in the bound are called prior terms and the
second (E.2) the approximation terms or P-terms and A-terms for short.

Since we have three types of variables in the models — Gaussian, Gamma and
Rectified Gaussian — there are three different types of P-terms:

<log/\f (G\m, 7'_1)> = %[— log(27) + (log 7)
— (7) ((6%) = 2.(0) (m) + <m2>)] (E.3)
(log G (0], B)) = alog f —logI'(a) + (o — 1) (log ) — B {0)  (E.4)
(log N (0]0, 1)) = %[log(?) — log(2m) + (log 7) — (1) (67)] (E.5)

As can be seen from the update rules in the previous sections, the factors
q(6;) in the free-form approximation are of four different forms. Hence the
evidence bound has four different A-terms. The computation of the A-term
for the factors rj; was detailed in Equations (8)-(10). The rest of the A-terms
are given below:
1
2\\ _ 2
<log/\f(9\,u,a )> =3 log(27rea ) (E.6)
(log G (0], B)) = coincides with (E.4) (E.7)
1
R 2\\ _ 2
(log A" (Bl 0%) ) = —5— (var(6) + ({6) — n)?)

1 2
“log 2 — /252
+3 log — log erfc( w/ V2o ) (E.8)
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Note that in (E.8) u # (0) and var(6) # o2.
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