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ABSTRACT

We show that the choice of posterior approximation
of sources affects the solution found in Bayesian varia-
tional learning of linear independent component anal-
ysis models. Assuming the sources to be independent
a posteriori favours a solution which has an orthog-
onal mixing matrix. A linear dynamic model which
uses second-order statistics is considered but the anal-
ysis extends to nonlinear mixtures and non-Gaussian
source models as well.

1. INTRODUCTION

Recently several methods for variational Bayesian
learning of linear ICA models and their extensions have
been reported in the literature [1, 2, 3, 4, 5, 6, 7, 8].
The basic idea in these approaches is to approximate
the true posterior probability density of the unknown
variables by a function which has a restricted form.
Typically some type of factorisation is assumed.
In this paper, we study how the choice of the form

of posterior approximation affects the solution which
is found by variational Bayesian learning of linear ICA
models. We investigate two common cases: 1) sources
are approximated to be independent a posteriori; and
2) the posterior correlations of the sources are mod-
elled. Note that although ICA models assume sources
to be independent a priori, the sources still typically
have posterior correlations.
We show that neglecting the posterior correlations

of the sources introduces a bias in favour of principal
component analysis (PCA) solution. By the PCA so-
lution we mean the solution which has an orthogonal
mixing matrix.
The rest of the paper is organised as follows. In

Section 2, we briefly introduce variational Bayesian
learning. Section 3 discusses the linear dynamic model
whose learning we analyse theoretically in Section 4
and experimentally in Section 5. The implications of
the analysis are discussed in Section 6.
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2. VARIATIONAL BAYESIAN LEARNING

Variational Bayesian learning techniques are based on
approximating the true posterior probability density
of the unknown variables of the model by a function
with a restricted form. Currently the most common
technique is ensemble learning where Kullback-Leibler
divergence measures the misfit between the approxima-
tion and the true posterior. It has been applied to ICA
and its extensions as well as to several other types of
models (e.g. [9, 10]).
In ensemble learning, the posterior approximation

q(θ) of the unknown variables θ is required to have a
suitably factorial form

q(θ) =
∏

i

q(θi) , (1)

where θi are the subsets of unknown variables. In ICA,
at least the sources S are assumed independent a pos-
teriori of the mixing matrix A and other parameters:

q(θ) = q(S)q(A)q(θrest) . (2)

The misfit between the true posterior p(θ | X) and its
approximation q(θ) is measured by Kullback-Leibler
divergence which yields a cost function of the form

C = D(q(θ) ‖ p(θ|X))− log p(X) ≥ − log p(X) .

The extra term − log p(X) is included to the cost func-
tion in order to avoid calculation of the model constant
p(X) =

∫
p(X,θ)dθ. Thus, the minimised expression

can be written in the following form:

C =

〈
log

q(S,A,θrest)

p(X,S,A,θrest)

〉
(3)

= 〈log q(S,A,θrest)〉 − 〈log p(X,S,A,θrest)〉 ,

where 〈·〉 denotes the expectation over distribution
q(θ).
During learning, the factors are typically updated

one at a time while keeping others fixed. For
each update of the posterior approximation q(θi),
the set of variable θi requires the prior distribution
p(θi | parents) given by its parents and the likelihood



p(children | θi) obtained from its children. The rele-
vant part of the Kullback-Leibler divergence to be min-
imised is

C(q(θi)) =

〈
ln

q(θ)

p(θ | parents)p(children | θ)

〉
. (4)

In ensemble learning, conjugate priors are commonly
used because they make it very easy to solve the vari-
ational minimisation problem of finding the optimal
q(θi) which minimises (4).

3. SECOND ORDER ICA MODEL

Linear source models assume the observations to have
been generated by sources which are mapped linearly
to the observations. The model is

x(t) = As(t) + n(t) , (5)

where n(t) is additive Gaussian noise (sometimes omit-
ted). It is well known that this model has rotational
degeneracy if the sources s(t) have a static Gaussian
model (see e.g. [11] for introduction). We can choose
any invertible C and generate a new solution A′ = AC
and s′(t) = C−1s(t). The sources still remain Gaus-
sian.
In PCA the degeneracy is removed by requiring

the mixing matrix A to be orthogonal. In ICA,
the degeneracy can be removed—up to scaling and
permutation—by assuming non-Gaussian sources or by
introducing a diagonal matrix B to model the dynam-
ics:

s(t) = Bs(t− 1) +m(t) , (6)

where m(t) is Gaussian noise. In the latter case, only
second-order statistics of the observations are needed
[12, 13, 14]. The rotation is identifiable if no two ele-
ments of the diagonal of B are equal. A set of equal
elements results in rotational degeneracy among the
corresponding set of sources.
In our analysis, we use the linear dynamic model

whose learning is based on second-order statistics. The
posterior distribution of the sources given a fixed mix-
ing matrix is Gaussian which makes the analysis sim-
ple. The overall behaviour will be the same in more
complicated cases as well.

4. EFFECT OF POSTERIOR
APPROXIMATION: THEORY

In this section we analyse theoretically how the choice
of the form of the posterior approximation q(S) of the
sources affects the solution which optimises the cost
function (4).
First, recall that the idea of the variational ap-

proach is to approximate the very complex posterior
p(θ|X) by a simpler and thus tractable parametrised
distribution q(θ).
Due to its simplicity, the posterior approximation

cannot represent all the different solutions of the model.

In order to represent all the degeneracies and permuta-
tions, all (nonlinear) correlations of the variables would
need to be modelled but this would not be feasible com-
putationally. Instead, the approximation captures a
neighbourhood of one particular solution. Each term
q(θi) captures the correlations between the variables in
the set θi while all posterior correlations with the vari-
ables in other sets θj are neglected. In ICA this means
that the rotational dependency between the mixing ma-
trix A and the sources S is neglected. Only the neigh-
bourhood of one particular mixing matrix is modelled
but not the fact that rotating A could be compensated
by rotating S correspondingly. Consequently, the un-
certainty in the mixing matrix and sources is under-
estimated. This holds true for all the variational ICA
methods cited in this paper.

4.1. Trade-off between posterior mass and pos-
terior misfit

The topic of this paper is the effect which the form of
q(S) has on the solution. Ideally the solution should
correspond to a model whose neighbourhood contains
a large portion of the posterior probability mass. In
our case this is fulfilled if 1) the sources and the mix-
ing matrix together explain the observations well and
2) the source dynamics explains the sources well. In
other words, the noise covariances of n(t) and m(t)
should be small. In addition, 3) the solution should be
robust. Requirements 1 and 2 imply a high posterior
density and 3 guarantees that the solution corresponds
to a wide peak in the posterior density. Together these
indicate a high probability mass in the neighbourhood
of the solution.
Ensemble learning has gained popularity because

it is able to find a solution which meets these three
requirements. However, the restricted form of the pos-
terior approximation q(θ) results in two additional re-
quirements: 4) the posterior approximation q(S) of the
sources and 5) the posterior approximation q(A) of the
mixing matrix should match the posterior around the
solution. In our case the posterior misfit of the rest of
the parameters θrest is not significant in practice but
the choice of the functional form of q(S) in particular
and q(A) to a lesser extent affects the optimal solution.
In general, there is a trade-off between the amount

of posterior mass in the neighbourhood of the solu-
tion (requirements 1–3) and the misfit between the ap-
proximation and true local probability distribution (re-
quirements 4 and 5). Usually it is desirable that the
requirements 4 and 5 affect the solution as little as pos-
sible although sometimes it is possible to use them to
select an appropriate solution among otherwise degen-
erate solutions (in [8], source separation is achieved by
means of requirement 4 and a proper choice of q(S)).

4.2. Factorial q(S) favours orthogonal A

Majority of the applications of ensemble learning to
ICA models reported in the literature have assumed a



fully factorised q(S):

q(S) =
∏

i,t

q(si(t)) . (7)

This results in a computationally efficient learning al-
gorithm but we will now show that it favours an or-
thogonal A, a characteristic of the PCA solution.
First, we note that with the static ICA model (5)

under the restriction (2), the optimal q(S) which min-
imises (4) can be shown (see, e.g. [7]) to factor into

q(S) =
∏

t

q(s(t)) . (8)

Further, the optimal q(s(t)) can be shown [15] to be
Gaussian distributions. Except for the first q(s(1)) and
last q(s(T )), each of them has the same covariance

Σs,opt =
〈
ATΣ−1

n A+Σ−1
m +BTΣ−1

m B
〉−1

, (9)

where Σn and Σm are the noise covariances of n(t)
andm(t), respectively. Note that the optimal posterior
covariance of the sources does not depend directly on
the data. This is a characteristic of linear Gaussian
models.
The misfit between the factorial approximation (7)

and the optimal unrestricted q(S) is minimised when
the optimal q(S) agrees with (7). This is the case when
the optimal covariance matrix Σs,opt is diagonal. This,
in turn, happens if and only ifA is orthogonal w.r.t. the
inverse noise covariance Σ−1

n . Since ensemble learning
is trying to minimise the misfit, it favours orthogonal
solutions for A.
Figure 1 illustrates the trade-off between the misfit

of the posterior approximation of the sources and the
accuracy of the model. Let us assume that the data
were generated by a process which can be accurately
modelled by (5) and (6). Further assume that there are
two sources and the mixing matrixA is not orthogonal.
The optimal posterior covariance of the sources could
then look like the ones in upper plot of Fig. 1. In the
PCA solution, the posterior covariance would be diag-
onal and the assumption (7) would be valid. The cost
of inaccurate assumption would increase towards the
ICA solution as shown with dashed line on the second
plot of Fig. 1.
According to our assumption, the sources can be

accurately modelled in the ICA solution. If the source
space is rotated by S′ = CS and this is compensated
by

B′ = CBC−1 , (10)

a model with diagonal B may no longer be able to
capture resulting new dynamics B′. In our two-
dimensional case b2 = b1 yields a diagonal B

′ = B but
b2 6= b1 will in general result in off-diagonal terms in
B′. The further b2 is away from b1, the stronger these
off-diagonal terms are and the worse the diagonal ma-
trix B can model the dynamics. This is depicted with
solid lines in Fig. 1.

ICA PCA

The form of the true posterior p(s(t) | A, x(t))

ICA PCA

The cost of the posterior and source model misfit
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Fig. 1. Schematic illustration of the trade-offs between
the ICA and PCA solutions. In the PCA solution, the
posterior covariance of the sources is diagonal. This
minimises the misfit between the optimal posterior and
its approximation. However, the sources are explained
better in the ICA solution.

This analysis suggests that the optimal solution is
a result of a trade-off between the ICA solution where
the explanation of the sources is best and the PCA so-
lution where the posterior approximation of the sources
is most accurate. If the mixing matrix is close to or-
thogonal and the source model is strongly in favour
of the ICA solution, the optimal solution can be ex-
pected to be close to the ICA solution and vice versa.
If the observation noise is not very high, we can expect
that the explanation of the observations is not compro-
mised. In other words, linear transformations of A are
appropriately compensated by linear transformations
of S.

4.3. Factorial approximation for q(A)

The matrices A and S appear symmetrically in (5).
Consequently, the optimal posterior under the assump-
tion q(A) =

∏
i q(Ai,:) is achieved by Gaussian densi-

ties whose covariance resembles (9):

ΣAi,:,opt =

〈
N∑

t=1

s(t)sT (t)/Σn,i,i +Σ
−1
A

〉−1

(11)

where Σ−1
A
is the covariance of the Gaussian prior of

Ai,:.
Often the dimension of the data vectors is much

smaller than the number of them. This means that
there are far fewer elements in A than in S and conse-
quently the posterior approximation q(A) does not play
a significant role. However, if the evidence in support
of the ICA solution is weak (b1 ≈ b2) and the posterior
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Fig. 2. The two sources with the linear dynamic model
(b1 = 0.8 and b2 = −0.8) and their noisy mixture plot-
ted in the subspace spanned by the columns of the
mixing matrix. The PCA and ICA directions are also
shown on the last plot.

of the sources is allowed to have full covariance, a facto-
rial posterior approximation q(Ai,:) =

∏
j q(Ai,j) can

change the balance in favour of the PCA solution. This

is because (11) has the term
〈∑N

t=1 s(t)s
T (t)

〉
which is

non-diagonal if the posterior covariance of the sources
is non-diagonal. This in turn is the case when the mix-
ing matrix A is non-orthogonal as discussed earlier.

5. EFFECT OF POSTERIOR
APPROXIMATION: EXPERIMENTS

In this section, the trade-off between the ICA and PCA
solutions is studied experimentally. We use the linear
dynamic model defined by (5) and (6). The model and
learning rules are summarised in Appendices A and B,
respectively. The data set consists of 10-dimensional
observation vectors which were generated by a linear
mapping from two sources. The number of samples
was 1000.

The element of the diagonal of the matrix B corre-
sponding to the first source was chosen to be b1 = 0.8
while the other element b2 was varied in the range
[−0.8, 0.8]. This controls the strength of evidence in
favour of the ICA solution present in the data.

Figure 2 shows the original sources and their linear
mixture in the subspace defined by the 10 × 2 mixing
matrix A. Note that the ICA directions corresponding
to the columns of the mixing matrix are chosen to be
non-orthogonal and for clarity they differ very much
from the PCA directions plotted in the same figure.
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Fig. 3. The results for the diagonal approximation.
Four data sets with b2 ∈ {0.8, 0.6,−0.2,−0.8} are
tested. The solution is presented by the estimated
columns of A projected onto the subspace of the true
A. The model was initialised with PCA. The dotted
lines represent the solution after every 100 iterations.
The final solution is plotted with the solid line.

5.1. Factorial approximation q(s(t))

We first use the generated artificial data to test the
learning procedure with the maximally factorial poste-
rior approximation q(S) defined by (7).
The model was implemented using the building

blocks and learning rules presented in [16]. Then it
was learned using 2000 iterations of alternate updates
of the parameters of the approximate posterior q(θ).
Figure 3 shows the results of learning for four

different data sets with b1 = 0.8 and b2 ∈
{0.8, 0.6,−0.2,−0.8}. The solution is presented by the
estimated columns of the mixing matrix projected onto
the subspace spanned by the true ICA directions. In
the experiments, we tried different initialisations of A
including the PCA and ICA solutions but the simula-
tions converged to the same solutions for all initialisa-
tions.
Analysing the results, we see that 1) when the

sources have the same dynamics (b2 = 0.8), the PCA
solution is found; 2) when the dynamics of the sources
differs a lot (b2 = −0.8), the solution is very close to
the ICA directions; and 3) when the difference in dy-
namics is somewhere in between the two extreme cases
(e.g., b2 = 0.6 or b2 = −0.2), the found solution lies
between PCA and ICA: The more different the source
dynamics, the closer the solution is to ICA. The results
show that the quality of the solution found with the
maximally factorial approximation depends very much
on the training data and how well they support the
assumed ICA model.
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Fig. 4. The results for the unrestricted q(s(t)). The
same data sets as in Fig. 3 are tested. The cur-
rent solution is plotted after every 100 iterations for
b2 = −0.2,−0.8, every 1000 iterations for b2 = 0.6 and
every 5000 iterations for b2 = 0.8. The rotation of the
solution is much slower in the case when the souce dy-
namics is just slightly different (b1 = 0.8, b2 = 0.6).

5.2. Unrestricted approximation q(s(t))

We then tested the same simulations with unrestricted
q(s(t)) which yields Gaussian distributions with full co-
variance matrix. The rest of the model parameters θ
are modelled with the maximally factorial approxima-
tion as previously. The learning rules for the model are
presented in Appendix B.
Figure 4 presents the solutions obtained with the

full covariance of the source posterior. The results
clearly show that the performance of the learning pro-
cedure was significantly improved as compared with the
case of diagonal approximation: The ICA solution is
found except in the case where b1 = b2 in which case the
model converged to the PCA solution despite initiali-
sation to the ICA solution as predicted in Section 4.3.
Note that the similarity of the source dynamics

makes the separation problem more difficult. If the au-
tocorrelation coefficients are just slightly different, it is
possible to find the ICA directions but the rotation of
the solution is much slower.
If the dynamics of the sources are equal, the sepa-

ration problem becomes ill-posed: Any direction in the
observation space has similar dynamic properties and
none of them is preferred unless some extra assump-
tions are made.

6. DISCUSSION

As we have seen, the form of the posterior approxima-
tion can strongly affect the result found by ensemble

learning. We based the analysis on a linear dynamic
Gaussian model for the sake of simplicity. The situ-
ation is slightly more complicated with non-Gaussian
source models or nonlinear mixtures because then the
optimal posterior form is not Gaussian and even if it is
restricted to be Gaussian, the posterior covariance of
the sources depends on the data and is not the same
for all q(s(t)).
However, the overall results of the analysis apply to

non-Gaussian and nonlinear cases. With linear models,
the expectations

〈
ATΣ−1

n A
〉
and

〈
s(t)sT (t)

〉
appear

just as in our analysis. In nonlinear models, the situ-
ation can be approximated by a time-dependent A(t)
if the nonlinear mixture is smooth. Moreover, nonlin-
ear models which are based on multi-layer linear feed-
forward mappings with elementwise nonlinearities have
similar properties as linear models since the first linear
mapping from sources to nonlinear nodes can compen-
sate linear transformations of the source space.
To conclude, we do not claim that fully factorised

posterior approximations are not useful. After all, we
have applied them successfully ourselves. However, one
has to be careful. If the mixing matrix cannot be made
more orthogonal e.g. by pre-whitening, it is possible
to end up close to the PCA solution even though the
model should be able to judge the ICA solution to
be better. Improving the posterior approximation will
help in those situations but the price to pay is increased
computational cost.
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A. THE DENSITY MODEL

The simple ICA model considered in Section 5:

p(X,θ) = p(X|S,A,θrest)p(S|θrest)p(A)p(θrest)

Here, we use the following notation: m is the number
of sources; n is the number of observations; N is the
number of samples in the data set; αj , βj , γ, σ are
some constants; D(σ) denotes a diagonal matrix with
the elements of vector σ on its main diagonal.
The prior model of the sources and the likelihood:

p(S|θrest) = N (s(1)|0,Σm1
)

N∏

t=2

N (s(t)|Bs(t− 1),Σm)

p(X|S,A,θrest) =
N∏

t=1

N (x(t)|As(t),Σn)

where Σm1
= D(σ), Σm = D(e−vs), Σn = D(e−vx).

The prior for the (hyper)parameters:

p(A) =

n∏

i=1

m∏

j=1

N
(
aij |0, α

−1
j

)

p(B) =

m∏

j=1

N
(
bj |0, β

−1
j

)

p(vx|mvx
, vvx

) =
n∏

i=1

N
(
vx,i|mvx

, e−vvx

)

p(vs|mvs
, vvs

) =

m∏

j=1

N
(
vs,j |mvs

, e−vvs

)

mvx
, vvx

,mvs
, vvs

∼ N (0, γ)

B. LEARNING RULES

The following recursive learning rules are obtained as
a result of using conjugate priors for st, A, B. The
rest of the parameters (vx, vs, mvx

, vvx
, mvs

, vvs
) are

updated using the rules presented in [16].

B.1. Update rules for q(st)

q(st) = N (st|st,Σst
)

Σst
=

〈
ATΣ−1

n A+Σ−1
m +BTΣ−1

m B
〉−1

st = Σst

〈
ATΣ−1

n xt +Σ
−1
m Bst−1 +B

TΣ−1
m st+1

〉

with the following exceptions: when t = 1, the term
+Σ−1

m + is replaced by +Σ
−1
m1
+ and the term with st−1

is omitted; and when t = N , the terms BT . . . are
omitted.

B.2. Update rules for q(A)

q(A) =

n∏

i=1

m∏

j=1

N (aij |aij , ãij)

ã−1
ij = 〈αj〉+ 〈e

vx,i〉
N∑

t=1

〈
s2

t,j

〉

aij = ãij 〈e
vx,i〉

N∑

t=1

[xt,i 〈st,j〉 −
∑

k 6=j

〈aik〉 〈st,kst,j〉]

B.3. Update rules for q(B)

q(B) =

m∏

j=1

N
(
bj |bj , b̃j

)

b̃−1
j = 〈βj〉+ 〈e

vs,j 〉
N∑

t=2

〈
s2

t−1,j

〉

bj = b̃j 〈e
vs,j 〉

N∑

t=2

〈st,jst−1,j〉


