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2.7 Automated segmentation of brain MR images

Many studies in basis neuroscience and neurological and psychiatric diseases benefit from
fully-automated techniques that are able to reliably assign a neuroanatomical label to each
voxel in magnetic resonance (MR) images of the brain. In order to cope with the com-
plex anatomy of the human brain, the large overlap in intensity characteristics between
structures of interest, and the dependency of MR intensities on the acquisition sequence
used, state-of-the-art brain MR labeling techniques rely on prior information extracted
from a collection of manually labeled training datasets. Typically, this prior information
is represented in the form of probabilistic atlases, constructed by first aligning the training
datasets together using linear spatial transformations, and then calculating the probabil-
ity of each voxel being occupied by a particular structure as the relative frequency that
structure occurred at that voxel across the training datasets.

While these “average” atlases are intuitive and straightforward to compute, they are
not necessarily the best way to extract population-wise statistics from the training data.
Atlases built from a limited number of training images tend to generalize poorly to subjects
not included in the training database, necessitating heuristic approaches such as spatially
blurring atlases used in automated segmentation algorithms. Another problem is that such
atlases do not include non-linear deformations aligning corresponding structures across
subjects, although this would be a natural way to model anatomical variations.

In [31], we took a critical look at the generative model implicitly underlying proba-
bilistic brain atlases, and proposed to generalize it using tetrahedral mesh-based repre-
sentations endowed with explicit deformation models. We demonstrated how Bayesian
inference can be used to automatically learn the optimal properties of the resulting atlases
from a set of manual example segmentations in MR images of training subjects. The
learning involves maximizing the probability with which an atlas model would generate
the example segmentations, or, equivalently, minimizing the number of bits needed to
encode them. This procedure automatically yields sparse atlas representations that ex-
plicitly avoid overfitting to the training data, and are therefore better at predicting the
neuroanatomy in new subjects than conventional probabilistic atlases [31]. An example
of an optimal mesh-based atlas, built from manual annotations of 36 neuroanatomical
structures in four individuals, is shown in figure 2.11.

In subsequent work aiming at automatically delineating the subregions of the hip-
pocampus from very high resolution MR images [32, 36, 35], we supplemented the prior
distribution provided by a mesh-based atlas, which models the generation of images where
each voxel is assigned a unique neuroanatomical label, with a parametric likelihood dis-
tribution that predicts how such label images translate into MR images, where each voxel
has an intensity. Together these distributions form a complete generative model of MR
images that we then used to obtain fully automated structural measurements in a Bayesian
fashion, using concepts from our earlier work [28, 29]. In particular, we estimated how the
position of the nodes of the atlas mesh are optimally warped onto an image under study,
while simultaneously inferring the parameters of the likelihood distribution. Figure 2.12
shows an example of a fully-automated segmentation of the subregions of the hippocampus
computed using this approach.

Additional joint work in brain MR analysis we contributed to during the years 2008-
2009 include group-wise segmentation of collections of images for which no manual training
data is available [38, 41], non-parametric Bayesian whole-brain parcellation [39, 40] and
information theoretical image alignment [37], as well as a number of clinical research
papers [30, 33, 34].
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Figure 2.11: Optimal tetrahedral mesh-
based atlas built from manual annotations
of 36 neuroanatomical structures in 4 sub-
jects. The prior probabilities for the dif-
ferent structures have been color-coded
for visualization purposes.

Figure 2.12: Fully
automated seg-
mentation of hip-
pocampal subfields
from ultra-high res-
olution MR scans.
From left to right:
MR data, man-
ual delineations,
and correspond-
ing automated
segmentations.
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