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Abstract—Changes in a dynamical process are often detected
by monitoring selected indicators directly obtained from the
process observations, such as the mean values or variances.
Standard change detection algorithms such as the Shewhart
control charts or the cumulative sum (CUSUM) algorithm are
often based on such first- and second-order statistics. Much
better results can be obtained if the dynamical process is properly
modeled, for example by a nonlinear state-space model, and then
the accuracy of the model is monitored over time. The success of
the latter approach depends largely on the quality of the model. In
practical applications like industrial processes, the state variables,
dynamics, and observation mapping are rarely known accurately.
Learning from data must be used; however, methods for the
simultaneous estimation of the state and the unknown nonlinear
mappings are very limited. We use a novel method of learning a
nonlinear state-space model, the nonlinear dynamical factor anal-
ysis (NDFA) algorithm. It takes a set of multivariate observations
over time and fits blindly a generative dynamical latent variable
model, resembling nonlinear independent component analysis.
We compare the performance of the model in process change
detection to various traditional methods. It is shown that NDFA
outperforms the classical methods by a wide margin in a variety
of cases where the underlying process dynamics changes.

Index Terms—Change detection, independent component anal-
ysis, nonlinear state-space model, variational Bayesian learning.

I. INTRODUCTION

PROCESS change detection is an important problem in
many fields of engineering. An abrupt change in the

process usually indicates a fault, and the goal of change
detection is to pinpoint the exact occurrence of the fault and
to give an alarm. It would also be very desirable to be able to
analyze exactly where in the process the original reason for
the fault is. This may be quite difficult because a fault in some
underlying subsystems or parameters may manifest itself in
complicated ways in the observables, or sometimes be hardly
observable at all.

Many current methods monitor some direct indicators of the
process observables and respond to changes in the indicators,
such as the mean or variance of a process measurement [7]. For
example, the Shewhart control charts or the geometric moving
average charts smooth a simple statistic over a sliding window
and compare it to a given threshold [4]. Another example is the
cumulative sum (CUSUM) method [4], [15] which is related
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to the traditional sequential probability ratio test. As applied to
monitoring the process mean or variance, all these algorithms
are based on the first- and second-order statistics of the obser-
vations. Such indicator-based approaches do not take all the rel-
evant information about the process into account which usually
means a delayed response to a change or neglect of the change
in the worst case.

A better solution to the change detection problem is to model
the process and then use the goodness-of-fit of the new obser-
vations to the previously established model as the change indi-
cator. A popular modeling tool is the autoregressive (AR) model
in which traditional supervised learning algorithms can be used
to learn the required linear or nonlinear mapping from past ob-
servations to the current observation vector

(1)

For simplicity we omit here and in the following the external
inputs to the process, using an AR model instead of ARMAX.
The inputs can easily be added and will not change the picture
[15]. For learning nonlinear mappings , neural networks have
been widely used, for example, feedforward multilayer percep-
tron (MLP) networks, radial basis function (RBF) networks, and
recurrent MLP networks [16], [10].

A much more powerful process model can be built using
physical knowledge, however. Then the process is usually de-
scribed by a state-space model. Especially, the nonlinear state-
space model (NSSM) is a very natural, general, and flexible
model for multivariate time series data. The observation vec-
tors are assumed to be generated from hidden multivariate
sources, or states of the dynamical system, through a non-
linear mapping according to (2)

(2)

(3)

The states follow the nonlinear dynamics defined by (3). The
terms and account for modeling errors and noise. The
model assumes an underlying state which has dynamics and is
reflected in the observations through an observation mapping.
Note that one step delay suffices in (3), since the state vari-
able is a vector that can include velocities, accelerations
and other quantities which summarize the physical state of the
system. For continuous time systems, differential equations re-
place the difference equation of the dynamics used here.

The problem is considerably simplified if we can assume that
the system is deterministic, with unknown disturbances. Then
the noise terms are not included, and the faults are modeled as
extra terms in the dynamic (3). The general methods are based
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on decoupling the faults from the unknown disturbances and
monitoring the residuals of a fully deterministic dynamic system
[6]. The residuals should be close to zero in a fault-free state and
depart from zero when a change in the process occurs. A survey
on the fault detection methods for nonlinear deterministic sys-
tems can be found in [12].

Usually, however, we have to assume that modeling errors or
external noise occur, and then the noise terms are included in
the NSSM. In this case, the change detection problem has been
well studied for linear systems, in which the functions and

are assumed linear. The most common technique is testing
statistical properties of the innovations generated by a Kalman
filter [4], [15]. The case of extra unknown disturbances has also
been studied for linear systems [6].

The results on detecting changes in nonlinear stochastic sys-
tems have been quite limited. The main tool for this problem is
linearization like in the extended Kalman filter, and change de-
tection methods for linear systems. Nevertheless some nonlinear
techniques for static and dynamic stochastic systems have been
presented recently. See for example [45], [3].

Although state-space models are often able to capture the es-
sential properties of a complex dynamical system, and despite
their theoretical appeal, they are not in extensive use, as it is
usually difficult to find a sufficiently accurate model. In real
industrial processes, the state variables, dynamics and obser-
vation mapping are rarely known accurately enough to allow
model-based approaches without estimating the process from
the data.

Estimating an NSSM-like (2), (3) with unknown nonlinear-
ities and from the observations is much more difficult than
the estimation of an AR type model (1). Dual estimation tech-
niques for simultaneous learning of the unknown mappings and
the state have been limited. Methods have been proposed for
learning linear state-space models [42], but estimating a non-
linear state-space model is inherently more difficult.

First, there are far more unknown parameters than in AR
models, since the state of the system is usually unknown and
cannot be completely determined from the observations in a
simple way. Thus the main obstacle is overfitting, and some reg-
ularization is necessary. Second, there are infinitely many solu-
tions. Any invertible nonlinear transformation of the state-space
can be compensated by a suitable transformation of the dy-
namics and the observation mapping. Note that this does not
pose a problem for change detection, though, since all these
models give similar predictions of the observations and thus per-
form identically in change detection.

In the following, we apply a recently developed unsupervised
method called nonlinear dynamical factor analysis (NDFA) [37]
for off-line learning of the NSSM (2)–(3) of the process. The
learned model can then be used efficiently for on-line change
detection. With linear but unknown , unknown Gaussian , and
without , the model would be the linear factor analysis model
(see for example [22, Section 6.3 ]). The model (2)–(3) can thus
be seen as a nonlinear dynamical extension of factor analysis.

NDFA is based on variational Bayesian learning, which im-
poses a natural regularization on the estimation problem. It can
also be phrased in information theoretic terms as finding the
model with minimum description length. Benefits are robust-
ness to overfitting and ability to do model selection. MLP net-

works [16] are used to model the unknown nonlinear mappings
and , and the noise terms are assumed to be Gaussian. The

MLP network provides an efficient parameterization for map-
pings in high dimensional spaces, and it is a universal approxi-
mator for smooth functions. Similar models using a radial-basis
function network [16] as nonlinearity have been proposed in
[13], [31] and using an MLP network in [5]. Some preliminary
results on applying NDFA to change detection were given by us
in [24], [38].

As aforementioned, the nonlinear dynamical reconstruction
problem addressed in this paper is severely ill-posed [18]. In
this paper, we apply variational Bayesian learning to estimate
the parameters and hidden sources or states of the nonlinear
state-space model. Variational Bayesian learning is a recently
developed practical method for fitting a parametric approxima-
tion to the exact posterior probability density function [19], [26].
We describe how it can be used to regularize the dynamical re-
construction problem by restricting the complexity of the pos-
terior structure of the solution.

The proposed method can also be seen as a nonlinear dynam-
ical generalization of standard linear blind source separation
(BSS) and independent component analysis (ICA) [22]. Sev-
eral authors have recently applied variational Bayesian learning
or closely related Bayesian methods to the linear ICA problem
[2], [29], [8], [20]. One of the present authors has previously
also used variational Bayesian learning for nonlinear ICA [25],
and shown how the approach can be extended for nonlinear dy-
namical models using nonlinear state-space models [34], [36].
A general discussion of nonlinear ICA and BSS with many ref-
erences can be found in [22, Ch. 17].

Even though the NDFA method presented in this paper can
be regarded as a generalization of ICA, the recovered sources
need not be independent. Our method tries to find the simplest
possible explanation for the data, and hence avoids unneces-
sary dependencies between the recovered sources. If the process
being studied cannot be described as a composition of one-di-
mensional (1-D) independent processes, the method tries to split
it to as small pieces as possible, as will be seen in the experi-
mental results.

The NDFA model and its off-line learning were covered in
detail in the recent article [37]. Here we present a modification
which results in an efficient on-line filtering algorithm for state
estimation. We demonstrate that NDFA has been able to learn a
model which performs very well in change detection.

The rest of this paper is organized as follows. In Section II,
our NDFA model and the variational Bayesian estimation prin-
ciple are reviewed, largely based on [37]. It is described how
the parameters of the model as well as the hidden source sig-
nals can be learned from observation data in an unsupervised
manner. Section III introduces the basics of change detection,
details how NDFA is used for change detection and discusses
the relation of the approach to Kalman filtering and smoothing.
Section IV presents an extensive set of experiments of change
detection using a fairly demanding simulated setting for a mul-
tivariate process involving both oscillatory and chaotic sources.
Varying degrees of abrupt changes in the process dynamics are
simulated and the abilities of several change detection methods
are compared. Very good results for the NDFA method in de-
tecting changes of the difficult nonlinear process are shown. The
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method clearly outperforms even such indicator based methods
which are taylormade to the change. Finally, in Section V some
conclusions are drawn.

II. VARIATIONAL BAYESIAN LEARNING OF NONLINEAR

STATE-SPACE MODELS

This section briefly outlines the NDFA model and learning
algorithm. A thorough presentation can be found in [37].

The NDFA model is a dynamical extension of the static non-
linear model used in the recently developed nonlinear factor
analysis (NFA) [25]. It assumes the nonlinear observation model
given by (2) and Gaussianity of the hidden sources (or factors)

, but does not include the dynamics (3) as NDFA. The NFA
algorithm estimates both the nonlinear mapping and the fac-
tors from the set of observations

only. By looking for a good non-
linear representation of the data (usually of a smaller dimen-
sion), NFA represents a nonlinear counterpart of the well-known
principal component analysis (PCA) [22].

The NDFA method makes a further assumption that the
hidden factors have a certain dynamical model that is well
described by (3). In this way, NDFA is an algorithm for finding
dynamic factors which give a good nonlinear explanation
for the data. Combining the basic assumptions of NFA and
the factor dynamics assumption (3), NDFA represents a new
method for NSSM identification.

A. Model Structure

In the NDFA method, the unknown nonlinear mappings
and in (2) and (3) are modeled by MLP networks having one
hidden layer of sigmoidal nonlinearities. The function
realized by the network for can be written in vector notation
as

(4)

where the nonlinearity is applied componentwise. and
are the weight matrices of the hidden and output layers, re-

spectively, and and are the bias vectors. They are unknown
parameters, to be determined. The function has a similar struc-
ture except that the MLP network is used to model only the
change in the state values

(5)

When implementing the Bayesian approach, all the assump-
tions made in the model must be expressed in the form of the
joint distribution of the observations , states and parame-
ters of the model

(6)

The parameters include the parameters of the MLPs (4)–(5),
the variance parameters of the noise terms and as well
as hyperparameters. Due to the definition of the NSSM model,
(6) can be written as a product of univariate Gaussian densities.
First, the components of the noise vector are assumed to

be independent and Gaussian; then the NSSM observation (2)
yields the likelihood

(7)

where denotes a Gaussian distribution over with
mean and variance denotes the th component of
the output of computable from (4), and is a hyperparameter
specifying the noise variance. The means depend on the
parameters of the MLP (4). Second, the assumption of indepen-
dent and Gaussian components of and the state update (3)
give the prior model of the states

(8)

The parameters of the prior distributions such as the variance pa-
rameters are further assigned Gaussian priors making
the prior of the parameters hierarchical. For example, the
noise parameters of different components of the data share a
common prior [25], [37].

B. Posterior Approximation and Regularization

Following the Bayesian approach, once the joint distribution
(6) is defined and the set of observations is obtained, all the
relevant information about the unknown parameters is con-
tained in the posterior

(9)

The conventional approach would be to find point estimates of
the unknowns, for example, by maximizing the posterior (9),
which yields the well-known maximum a posteriori (MAP) es-
timate. However, this strategy would easily lead to overfitting
problems especially in this highly ill-posed estimation problem
[26].

Instead of using point estimates, NDFA is based on vari-
ational Bayesian learning whose goal is to approximate the
actual posterior (9) by an approximating distribution over

where are the parameters of .
The advantage of this strategy is that more information about
the full posterior can be preserved in its estimate than
in some point estimates only. Also, selecting a suitable form
for the approximation corresponds to a regularization of the
estimation problem and helps avoid overfitting.

By estimating the density , we reduce all the posterior infor-
mation about the states and parameters to the pdf .
Then, different kinds of parameter and state estimates can be
obtained from the estimated pdf . For example, the mean

can be taken as a point estimate of the state
. Similarly, the variance can define

a confidence region for the point estimate . The complexity
of these calculations largely depends on the chosen parametric
form of .
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In the type of variational learning which is called ensemble
learning, the goodness of fit between the two probability density
functions and is measured by the Kullback-
Leibler divergence

(10)

where the expectation is taken over the distribution .
The Kullback-Leibler divergence is a standard dissimilarity
measure for probability densities. It is always nonnegative
and attains the value zero if and only if the two distributions
are equal. Therefore, the parameters of the pdf are
optimized to get the approximation as close to the true posterior
as possible. Interpreted in information-geometric terms [1],
minimizing the KL divergence means finding the projection of
the true pdf on the manifold of the approximating
densities .

The posterior in (10) includes the term
which cannot be evaluated. However, as it is constant w.r.t. the
parameters of the model, it can be removed and the actual cost
function minimized in ensemble learning is

(11)

As can be seen from (11), the cost function yields a lower
bound for the model evidence.1

As follows from (7)–(8), the joint probability density
is a product of simple terms and the cost func-

tion (11) can be minimized efficiently if a suitably simple
factorial form for the approximation is chosen. We use

, where

is a product of univariate Gaussian distributions. Hence the dis-
tribution for each parameter is parameterized by its mean
and variance . These are part of the variational parameters
to be optimized.

The posterior approximation is somewhat more com-
plex. It takes into account the posterior dependences between
the values of states at consecutive time instants imposed by the
state equation (3)

The distribution is a Gaussian with mean that
depends linearly on the previous value as in

, and variance . Thus all
the variational parameters of the distribution to be
optimized are

1The model evidence p(X jmodel) is here denoted by p(X) for simplicity.

A positive side effect of the restrictions on the approximating
distribution is that the nonlinear dynamical reconstruc-
tion problem is regularized and becomes well posed. With linear

and , the true posterior distribution of the states would
be Gaussian, while nonlinear and result in a non-Gaussian
posterior distribution. Restricting the approximation to be
Gaussian even in the nonlinear model therefore favors smooth
mappings and regularizes the problem. This still leaves a rota-
tional ambiguity which is resolved by discouraging the posterior
dependences between and with .

This kind of posterior regularization has not been emphasized
in the earlier work on Bayesian variational learning, probably
because the method has not been previously applied to problems
which would be as severely ill-posed as the nonlinear dynamic
reconstruction problem that we are discussing here.

C. Evaluating the Cost Function

Using the above form and parameterizations for the approxi-
mating pdf, the cost function (11) becomes a function of all the
parameters , as well as all the observation vectors in . Due
to the simple form of the approximating pdf, the cost function
splits into a sum of simple terms. Most of the terms can be eval-
uated analytically. Only the terms involving the outputs of the
MLP networks cannot be computed exactly because of the non-
linearity involved. To evaluate those terms, the distributions of
the outputs of the MLPs are calculated using a truncated Taylor
series approximation for the MLPs. This procedure is explained
in detail in [25] and [37].

Let us denote the two parts of the cost function (11)
arising from the denominator and numerator of the log-

arithm, respectively, by , and
. The term is simply a sum of negative en-

tropies of Gaussians, and has the form

The terms in the corresponding sum for are somewhat more
complicated but they are also relatively simple expectations over
Gaussian distributions [25], [34]. For a detailed exposition, see
[37].

Finally, collecting all terms, the cost function of the model
with observations can be presented in the following form

(12)

where includes the terms originating from
and includes the terms from

, and includes the rest of the terms originating
from the parameters. This decomposition will be used later
when an on-line filtering version of the method is presented.
Note that we will refer to the quantities and
as the cost of the model and the cost of the observation at time
, respectively.

D. Learning the Parameters

The parameters of the approximating distribution are
now optimized by minimizing (11), or in practice all the terms in
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(12) with gradient based iterative algorithms. The exact update
equations for the off-line learning algorithm are given in [37,
Appendices A.5 and A.6.],

During one sweep of the algorithm all the parameters are up-
dated once, using all the available data vectors .
One sweep consists of two different phases. The order of the
computations in these two phases is the same as in standard su-
pervised backpropagation [16] but otherwise the algorithm is
different. In the forward phase, the distributions of the outputs
of the MLP networks are computed from the current values of
the inputs, and the value of the cost function is evaluated. In the
backward phase, the partial derivatives of the cost function with
respect to all the parameters are fed back through the MLPs and
the parameters are updated using this information. At the begin-
ning, the posterior means of most of the parameters are initial-
ized to random values. The posterior variances are initialized to
small constant values.

A more detailed description of the algorithm is given in [37],
and a software implementation for the method is available at
[35].

III. CHANGE DETECTION

The general problem faced in process fault detection is that
faults are rare and it is usually difficult to enumerate all possible
faults that might occur. The standard approach is therefore to
record data from normal operation of the process, build a model
based on this data and then monitor the accuracy of the model
in order to detect changes. Deviations from the behavior during
the recorded normal operation are candidate faulty conditions.

Here, we explain how the NDFA approach can be applied
to the problem of detecting changes in a nonlinear stochastic
system. We start by reviewing the basics of change detection
in stochastic systems. Then, the NDFA-based technique is pro-
posed. Finally, some alternative nonlinear techniques based on
estimation from data are discussed.

A. Basic Principles of Change Detection

The on-line detection of abrupt changes is a well studied
problem for linear stochastic systems [4], [15]. Conventional
change detection algorithms implement a sequential test by cal-
culating at each time instant a test statistic and raising
alarms when exceeds a chosen threshold

(13)

Thus is an indicator of the model consistency; it should be
close to zero in fault-free conditions and depart from zero when
a change in the system occurs.

A classical example of such a statistic is the well known
CUSUM algorithm applied to detecting increase of the mean of
a random independent sequence [15]. For scalar samples ,
the CUSUM one-sided test recursively calculates as

(14)

where is the mean of before change, the parameter
preventing a drift yielding false alarms and .
Although the statistic (14) is justified as a sequential probability

ratio test for an independent Gaussian sequence [4], it can be
used as a general algorithm for detecting changes in the mean
of a random scalar variable .

Detecting changes in the mean value of a multivariate inde-
pendent Gaussian sequence is the basic problem considered for
linear systems. The main techniques are the standard CUSUM
and the generalized likelihood ratio (GLR) algorithms, respec-
tively, for the case of known and unknown parameters after
change.

The basic principle of detecting additive changes in more
complex linear models such as AR or state-space models is
transformation from observations to innovations

(15)

where is the system output (observation) and is the
output estimate given by the AR-model or the Kalman filter.
Then the relevant basic problem is solved [4], [15].

The case of nonadditive changes (for example, changes in the
covariance matrix of a Gaussian sequence) is more complex.
However as stated in [4], the same approach can be tried for
detecting this type of changes as well. Among other proposed
methods are monitoring shifted log-likelihood function [33], the
GLR algorithm and the local approach [4].

B. Change Detection With NDFA

In change detection based on models estimated from data,
there is always a tradeoff between overfitting and flexibility of
the process model. Test statistics based on simple underlying
models are insensitive to a large number of changes which af-
fect those aspects of the process that are not captured by the
model. Complex models easily overfit to the learning data which
leads to false alarms for new data from normal operation of the
process. To avoid a large number of false alarms, the threshold

needs to be set much higher than would be expected based on
the performance of the model for the learning data. An accept-
able false-alarm rate can be obtained by tuning based on test
data but the high value of will then result in missed detections
of real faults.

NDFA is particularly well suited to model-based change de-
tection because the underlying nonlinear dynamic model is very
flexible, making the model sensitive to changes, and the learning
algorithm based on variational Bayesian learning is very robust
against overfitting.

1) Estimation of States for New Observations: The
model learned off-line by the method presented in Section II
can be used for change detection by estimating the states

on-line and monitoring the prediction
accuracy. The underlying assumption is that as long as the
process characteristics stay constant, prediction accuracy is
good and it deteriorates when a change occurs. The constant
characteristics of the process are represented in the nonlinear
mappings and and the statistics of the additive noise terms

and .
On-line state estimation for NSSM could be implemented by

standard extended Kalman filters (EKF) [14], [17], but here we
present a method based on the same variational Bayesian ap-
proach as was used for model estimation. The main benefits are
that very little extra coding is needed and the cost function used
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in NDFA can be directly used for devising the test statistic mon-
itored for change detection.

The idea of the NDFA filtering lies in the augmentation of
sets and with the new measurement and the predicted
state value and performing a few iterations of
the NDFA algorithm to estimate the states . The new measure-
ment at time will have an effect on all the estimates of the states

but in practice the effect is usually restricted to the im-
mediate past. Therefore, only a small subset of corresponding
to the recent history of size is updated. The algorithm is as
follows:

1) Begin the state estimation at time . Assume that ob-
servations and state estimates already exist for time

.
2) When a new measurement is obtained, new vector

sets and are constructed from the last data points:

Here, the mean of the last state is initialized with
the predicted value while the state
variances are set to some small values.

3) Run the NDFA iterations for the last states at most
times, updating the values and . Note that only
the last terms of and need to be taken into
account in the cost function (12).

4) Increment by one and return to step 2) for a new obser-
vation .

The parameter in step 3) defines how persistent we are in
optimizing the cost function and hence in searching for good
estimates of new states. A larger number of iterations always
provides better estimates and the main restriction on the choice
of is the allotted time for calculations.

In practice we have seen that the number of iterations needed
for arriving at a good estimate can vary greatly. In nonlinear
models the true posterior distribution of the state can be multi-
modal but in practice we only represent one mode. There seem
to be some cases where the estimate is trapped in a mode which
later turns out to be the wrong one in light of the new observa-
tions. Usually the initial guess is very good
and a couple of iterations suffice but in the cases where the mode
needs to be switched for past state estimates, far more iterations
may be needed to minimize the cost function and to obtain a
consistent estimate of the past states.

Thus, we need a rule which assesses the convergence of the
NDFA procedure and stops the optimization process when an
accurate enough estimate is found. Such a heuristic rule is to
stop the iterations when the difference in the value of the cost
function before and after adding the new obser-
vation and running new iterations decreases below a given
threshold

(16)

It would also be possible to couple the stopping criterion with
change detection algorithm. The state estimates would then be
iterated until the threshold for alarm is no longer exceeded or the
predefined maximum number of iterations would be reached.

We decided to decouple state estimation from change detection
in order to be able to run a large number of change detection sim-
ulations without the need to reestimate the states. The present
implementation of on-line state estimation could also be used
for other applications besides change detection.

2) NDFA-Based Test Statistic for Change Detection: We
now present the on-line NDFA-based approach for change
detection. First we note that the value of the cost function (11)
can be used as an estimate of the probability of the observed
sequence : From the assumption that
the approximation is close to the true posterior and therefore

, we get .
Then, the difference of two values of is

(17)

which is the conditional log-likelihood function of the last
observations. In practice the difference can be computed by
summing the cost for the last observations:

(18)

Dividing (18) by gives the estimate of the conditional expec-
tation of the log-likelihood or the entropy rate [9]:

(19)

Following the idea of monitoring the shifted log-likelihood [33],
we propose to monitor the deviation of the quantity (19) from
its expected value which can be calculated from the training
sequence of size

Using the standard one-sided CUSUM test (14), we get the test
statistic:

(20)

This is the statistic on which the standard decision rule (13) is
applied in NDFA-based change detection. Similarly, a comple-
mentary one-sided CUSUM test can be constructed to detect the
decrease of .

The proposed statistic (20) is similar to the one proposed in
[33] where the cumulative sum is constructed over the shifted
log-likelihood function. However, it is not the same: Firstly, cal-
culation of the test statistic is done over a sliding window of size

. Secondly, a two-sided CUSUM test in the form (20) makes
it possible to detect changes which lead both to decrease and
increase of the entropy (19) (see discussion in [4, p. 311]).
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3) Relation to Kalman Filtering and Smoothing: The stan-
dard technique for on-line state estimation in linear state-space
models is Kalman filtering. This procedure recursively cal-
culates the posterior of the states based on the
information from the past only. Kalman smoothing extends
the filtering procedure by the backward phase on which the
information from future observations is propagated backward
in time to give the updated posterior .

These calculations can be done in two phases because of the
essential properties of linear systems:

• The posteriors of the states are all Gaussian distributions
and can be modeled as .

• The effect of an observation on the mean of any
state posterior is linear.

• The covariance matrices do not depend on observa-
tions and can be calculated beforehand.

For nonlinear state-space models, the standard on-line state
estimation is done by the extended Kalman filter (EKF). Since
none of the above properties hold for nonlinear systems, EKF
uses the Gaussian approximation for the
state posterior. The parameters are estimated based
on the first-order linearization of the mappings and at the
current state estimates . In the EKF, these nonlinearities
are assumed to be known, contrary to NDFA, which provides a
disciplined method to estimate the nonlinearities from the data.

In EKF, the smoothed posterior can be es-
timated by propagating the information from future observa-
tion backward in time using linearized Kalman smoothing. This
gives new state estimates and therefore a new linearized
version of the original system.

Therefore, several extended Kalman filtering-smoothing it-
erations are required to find a good approximation of the state
posterior. It is also possible that the iterations become unstable.

The NDFA on-line state estimation we proposed resembles
extended Kalman smoothing. The posterior state distribution is
approximated by a Gaussian distribution and several iterations
may be needed. The main difference is in the criterion for
obtaining the Gaussian posterior approximation of the states.
In NDFA, the true posterior is implicitly estimated based on
a second-order Taylor series approximation of the nonlinear
functions as opposed to the first-order approximation typically
used in EKF. The Gaussian approximation is reached by
minimizing the Kullback-Leibler divergence between the
approximation and the implicitly estimated true non-Gaussian
posterior.

Unlike EKF, NDFA does not need matrix inversions. This
is possible since the Gaussian approximation uses a diagonal
covariance matrix for each state. This makes the computa-
tions simpler but can deteriorate the estimation accuracy as
explained in [23]. On the other hand, the NSSM has an infinite
number of alternative state representations and learning the
model by NDFA automatically selects the representation which
minimizes the posterior dependences of states. The posterior
dependencies between and are taken into
account.

This having been said, it should be stressed that the impor-
tant feature which makes NDFA useful for change detection is
robustness against overfitting during learning. The method used

for on-line estimation is probably not crucial and EKF or ad-
vanced methods such as particle filters could be used instead of
the NDFA-based method we used here.

C. Alternative Change Detection Methods Based on Learning
From Data

The change detection methods based on model estimation
have not yet entered the mainstream of change detection; a few
different approaches are discussed in [6], [7]. Here, we describe
several possible alternative change detection techniques which
can be used when the process model is estimated from data.
We emphasize the nonlinear multivariate estimation methods
starting however from the simplest Gaussian model.

1) Monitoring the Mean of a Multivariate Gaussian: As we
discussed in the introduction, the simplest approach to modeling
a multivariate sequence is to use some simple indicators such
as the first moment and the second moment and monitor
changes in these parameters.

Shewhart control chart is one of the simplest algorithms for
detecting changes in the mean of a multivariate Gaussian.
Using a sliding window of samples, it calculates the sample
mean which is distributed ac-
cording to in a change-free situation if are
known exactly. Therefore the -statistic [7] can be calculated

(21)

and then thresholded by (13). The mean and covariance matrix
before change can easily be estimated from training data.

2) Monitoring the Mean and Covariance of a Multivariate
Gaussian: For -dimensional Gaussian observations , de-
tecting changes both in the mean and the covariance matrix
is possible by considering the squared normalized innovations
([15], p. 324):

(22)

In the case of known , the quantity (22) is dis-
tributed and, therefore, the standard CUSUM algorithm (14)
can be used to monitor its mean (the approximation

can be used if are estimated from data). Note that
this approach uses the same idea of monitoring the expectation
of the log-likelihood proposed to use with NDFA-based change
detection in Section III-B.

3) Nonlinear AR-Models: The nonlinear function in the
AR-model (1) can be learned from data using MLP or RBF net-
works [16], [10]. Another popular tool for modeling dynamics is
recurrent neural networks (RNN). For example, the Elman net-
work [10] assumes the following dynamical model of the obser-
vations using the hidden states

(23)

(24)

where the logistic function is a scaled
version of the nonlinearity used in MLPs (4)–(5). This
model can be trained using the standard learning techniques
such as the backpropagation algorithm. Then, the parameters of
the observation noise can be estimated from the prediction
error calculated on the training data.
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After training, the neural network is used to estimate the
system output and the difference between actual and estimated
output gives the innovations (15). In order to detect changes, the
statistical properties of innovations can be tested for example
by the Shewhart test (21). Using the neural network innovations
for change detection has also been considered in [30] and [6].

MLP, RBF, and recurrent MLP networks are the
state-of-the-art techniques for nonlinear dynamical mod-
eling, and the optimal change detection techniques are based on
the conditional probability of the observations [4]. Therefore,
if point estimates of the network parameters are used and
the driving noise in the AR-model (1) and the RNN-model
(23)–(24) is assumed Gaussian, the optimal detection of addi-
tive changes is based on the transformation from observations
to innovations. Moreover, as we already mentioned, the same
approach can be tried for detecting other types of changes as
well.

4) Nonlinear State-Space Approaches: Recently, Bayesian
techniques have been introduced for the identification of non-
linear state-space models (2)–(3). However, they are not appli-
cable to very complex problems due to the drawbacks mentioned
in [37]: In [13] and [31] the nonlinear mappings are modeled
by RBF networks and the required number of RBFs increases
exponentially with the dimension of the internal state .
Briegel and Tresp [5] model the nonlinearities using MLP
networks with sampling. In [43], [44], the unknown state and
dynamics are estimated using the extended Kalman filtering
while the known mapping is assumed to be the identity
mapping. It is unclear whether the approach is suitable for
the general NSSM model.

IV. EXPERIMENTS

To test the properties of the NDFA change detection algo-
rithm, we used the artificial data from [37]. The process states
were simulated using eight time series representing three inde-
pendent dynamical processes, two of which were Lorenz pro-
cesses and one a simple harmonic. A Lorenz process with three
state variables is described by the nonlinear dynamic
equation

where are three parameters. This system has
three-dimensional chaotic dynamics. The three-dimensional
vector-valued function from to the updates

is now the nonlinear part of the mapping
in (3). The additive noise in (3) was omitted. In our

simulated data, the source processes were:

• three time series describing a Lorenz process with param-
eters ;

• three time series describing another Lorenz process with
parameters ;

• two time series of a harmonic oscillator with angular ve-
locity .

Similarly to [37], one dimension of each underlying process
was hidden and therefore only five linear projections of the eight

states were present in the observed nonlinear mixtures. An arbi-
trary nonlinear mapping producing ten observed signals from
the five states was implemented using a random MLP network
with the inverse hyperbolic sine activation function. Finally, the
observations were corrupted by a zero-mean Gaussian noise

with the standard deviation 0.1 while the standard devi-
ation of the signal was normalized to unity.

First, the training sequence of samples was gen-
erated and the NDFA off-line procedure described in Section II
was applied to estimate the NSSM model (2)–(3). The structure
of the model and the learning scheme were optimized based on
the value of the cost function. All data were used for learning
and there was no validation set. The prediction performance
was observed to correlate well with the attained value of the
cost function. The MLP networks (4), (5) in the optimal NDFA
model had 30 neurons in the hidden layer and the number of
states was 9. The cost function continued to improve very long,
and the learning was stopped after half a million iterations when
the cost no longer seemed to decrease. See [37] for details.

We also trained the nonlinear AR (NAR) model (1) using an
MLP network and the standard backpropagation algorithm. The
data set was split to training and validation set. The criterion for
optimizing the model structure and learning scheme was pre-
diction accuracy for the validation set. The best model had 20
inputs and one hidden layer of 30 neurons. The number of de-
lays was , and the dimension of the inputs to the MLP
was compressed from 100 to 20 using standard PCA. These re-
sults have also been presented in [37].

In the present paper, we also tested the RNN approach dis-
cussed in Section III-C. The Elman network (23)–(24) with 30
neurons in the hidden layer was trained with the standard back-
propagation algorithm. The structure of the model was again
optimized to minimize the prediction error for the validation
set. The best RNN used delayed inputs with

in the state (24).
Finally, we tested a Bayesian learning method [27], [28], [11]

for learning the NAR model (1). The structure of the MLP which
modeled the nonlinearity was optimized to achieve the best
prediction accuracy on the validation set. The best model had
20 inputs and one hidden layer of 20 neurons. The number of
delays was , and the dimension of the inputs to the MLP
was compressed from 100 to 20 using standard PCA.

After training, the fitted NDFA model was tested on new
simulated measurements by applying the NDFA on-line state
estimation and change detection procedures described in
Section III-B. The NAR and RNN-based change detection
discussed in Section III-C were also tested on the same change
detection problems. In the following, we present the results of
these experiments.

A. Experiments Without Changes

In the first experiment, we apply the proposed NDFA on-line
state estimation technique from Section III-B1 to the long run
continuation of the training data without simulating any changes
in the data model. The sequence of 10 000 new observations
was tested. The parameters of the NDFA state estimation pro-
cedure were: the size of the sliding window , the dif-
ferent values of the maximum number of NDFA iterations were
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Fig. 1. Above: The cost functionC(t) estimated for the new 10 000 measurements without changes in the model. The jumps in the cost function correspond to false
alarms. Below: The dynamics of an underlying Lorenz process on three intervals difficult for state estimation: 3039 . . . 3046; 6257 . . . 6266, and 7814 . . . 7822.
The dotted line shows the training sequence. The starting points of the trajectories are circled.

, and the heuristic NDFA convergence rule
(16) with was used. The value of should be compared
with the average cost of the observations for training data which
was per sample.

The sequence of the cost function values obtained for the
new 10 000 observations is presented in Fig. 1. The figure shows
that the cost function is mostly decreasing with a constant slope
except for the points where abrupt jumps occur. This behavior
means that the conditional probability of new data is mostly
constant and abruptly decreases at some points when the false
alarms are raised.

As Fig. 1 indicates, many of the false alarms can be avoided
by performing a larger number of NDFA iterations, which
means that we spend more time for calculations at each time
instant, improving the accuracy of the state estimation. Some of
the jumps can be eliminated by a slight increase of . However
on some intervals, significantly more iterations are required.

Let us take a closer look at the dynamics of an underlying
Lorenz process on the difficult intervals (see Fig. 1). One can
see that the difficulty of the state estimation on these intervals
is caused by the fact that the Lorenz process enters a state space
region that was not presented in the training data. The algorithm
cannot find an accurate estimate for the new states if a small
number of iterations is accomplished, which causes the growth
of the cost function and raising the false alarm about the model
change.

Thus, raising the false alarms on the difficult intervals is
somewhat reasonable as, even though the data model stays
constant, the algorithm reacts to some new features of the
monitored process: it enters a new region in the state space.

TABLE I
THE NUMBER OF NDFA ITERATIONS ACCOMPLISHED FOR THE

10 000 NEW OBSERVATIONS

However, these alarms are still undesirable and should be
avoided if possible.

Increasing the number of NDFA iterations solves this
problem, which means that the NDFA on-line algorithm has
been able to recognize the data even from the regions that have
not been presented in the training sequence. It should also be
noted that using a larger does not dramatically increase
the average number of NDFA iterations if a stopping rule like
(16) is used: Only difficult intervals require a large number of
iterations whereas most observations are processed with a few
iterations only (see Table I).

B. Experiments With Pronounced Changes in the Process
Dynamics

A change in a real process can take place in a variety of
ways. In the NSSM model, it is reflected in a change either in
the mapping from the states to the observations, in the un-
derlying state dynamics determined by the mapping , or in
the noise levels. Different types of changes can be detected by
monitoring the cost function. In this paper, we concentrate on
the most demanding case where the nonlinearity undergoes
some change. The nonlinear mapping can make this change
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Fig. 2. Above: The Lorenz process with a pronounced change in the
dynamics. The dotted line shows the 1000 points of the training sequence
and the subsequent 500 points with the same model. The 500 points after the
change are plotted with the solid line. Below: Five out of ten observations are
presented. The simulated change at t = 1500 clearly affects the mean and
covariance of the observed process.

hardly discernible in the observations, making the change de-
tection problem very challenging.

In the following experiment, we simulate a pronounced
abrupt change in the process dynamics: As Fig. 2 shows,
changing the parameters of the first Lorenz process from

to significantly affects the character of the
underlying process and the changes are clearly visible from the
observations.

The different techniques discussed in Section III were applied
to this change detection problem. We test the NDFA algorithm
proposed in Section III-B as well as other nonlinear methods
and simple algorithms based on monitoring process indicators.
The set of the compared methods is as follows:

1) The NDFA algorithm with the following parameters:
last points accounted in the statistic calculations

(20), the drift parameter . The parameters of the
NDFA on-line state estimation were the same as in the
previous experiment.

2) Nonlinear autoregression (NAR) approach. The predic-
tion error of the trained NAR-model was tested with the
Shewhart chart test (21). Both the standard backpropaga-
tion and the Bayesian approach were tested.

3) Recurrent neural network (RNN) approach. The predic-
tion error of the trained RNN-model was tested with the
Shewhart chart test (21).

4) CUSUM algorithm which monitors the mean and the
covariance matrix of the observations using the squared
innovation approach described is Section III-C-2.

5) Shewhart charts (21) for monitoring changes in the mean.
We first tested all the alternative methods on the change de-

tection problem shown in Fig. 2. All the methods successfully
detected the change simulated at (see Fig. 3).

Then, the comparison of the NDFA change detection proce-
dure with the alternative methods was performed by assessing

two performance measures of the algorithms: the probability of
false alarms and the average time to detection . The per-
formance was assessed by simulating 100 changes at different
time instances and estimating the two mentioned measures. The
parameters of the all algorithms were optimized to achieve the
best change detection performance.

The -measure indicates how often an algorithm produces
alarms when a monitored process does not undergo any changes.
Denoting the time instant of the change by and the time instant
of the alarm as , the probability of false alarms can be defined
as

(25)

In practice, this can be estimated from the trials by counting the
relative frequency of false detections.

The other chosen performance measure shows how long
time we have to wait after a change until we get the alarm:

(26)

It can practically be estimated by taking the average time be-
tween the true change and the detected change over all the
100 simulated changes.

Both measures (25) and (26) of course depend on the decision
threshold , which was varied in the simulations over a suitable
range. Note that taking too high a threshold gives rise to sit-
uations where some changes are not detected at all and so
for these cases would be infinitely large. Such large values of
leading to missed detections are not shown in the experiments.

Fig. 4 shows the simulation results. The -measure (26) is
plotted against the false alarm probability of (25). Each in-
dicated point on the curves gives one pair for a given
value of the decision threshold in the rule (13). Thus, one
curve corresponds to one of the algorithms with different values
of threshold . The closer a curve is to the origin, the faster the
algorithm can detect the change with low false alarm rate.

The NDFA method with the maximum of itera-
tions clearly outperforms all the other algorithms. It detected the
simulated changes very fast with a low rate of false alarms. The
NDFA with performed very well too but only for high
values of the -measure corresponding to small thresholds .
In this case, increasing the threshold, as usual, provided smaller

values which however could not be made smaller than a cer-
tain limit: After this limit, larger values of caused situations
with missed detections.

This result can be explained based on the experiments in Sec-
tion IV.A. As Fig. 1 shows, a small maximum number of NDFA
iterations does not permit to get rid of many unjustified jumps
in the cost function. These jumps have the same influence to the
NDFA test statistic as the jumps caused by real changes in the
process dynamics. Thus, taking a larger threshold leads to ig-
noring both the difficult points and the points of real changes,
which causes the missed detection situations.

One can see from Fig. 4 that the NAR and RNN-based
approaches learned by standard backpropagation work in this
problem even worse than simpler indicator-based algorithms.
To understand this, consider two very simple change detec-
tion algorithms. One monitors the mean of the observations
and the other monitors the mean of the innovation process
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Fig. 3. The test statistics g(t) of six alternative methods calculated for the 1000 new observations with the pronounced change of the dynamical model at t = 1500
(see Fig. 2). Using the decision rule (13), all the methods successfully detect the change.

Fig. 4. Performance comparison of various change detection methods for the problem with the pronounced changes in the Lorenz process dynamics.

. The problem of the latter approach is
that the mean of the innovation process remains zero even
if the mean of the observations changes. Adding a model
of the dynamics thus first makes change detection more diffi-
cult. Only after the model of the dynamics is sufficiently good,
monitoring the innovation process performs better. The NAR
and RNN models started suffering from overfitting before they
were able to find sufficiently good models for the dynamics.

C. Experiments With Slight Changes in the Process Dynamics

We now test the NDFA change detection algorithm in a case
when the model change is less severe than above. The change of
the dynamical model is simulated by changing the parameters
of the first Lorenz process from to at time
instant . This change is quite clear when looking at the
underlying Lorenz process dynamics but hardly visible from the
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Fig. 5. Above: The Lorenz process with slight changes in the dynamics. The dotted line shows the 1000 points of the training sequence and the subsequent 500
points with the same model. The 500 points after the change are plotted with the solid line. Below: Five out of ten observations are presented. The simulated change
at t = 1500 is hardly visible.

Fig. 6. Left: The cost function C(t) calculated for the 1000 new observations with the slight change of the dynamical model at t = 1500 (see Fig. 5). The slope
of the curve changes after the time instant of change. Right: The corresponding NDFA statistic.

observations (see Fig. 5) as it has been hidden by the nonlinear
mixing model and the additive noise.

Let us apply the NDFA state estimation procedure to the de-
scribed data. Fig. 6 presents the cost function calculated for the
new 1000 measurements consisted of 500 points with the un-
changed model and 500 points with the
changed dynamical parameters . One can
easily see that the slope of the cost function curve decreases

after the time instant of change, which is identified as a change
in the process model.

The NDFA statistic (20) applied to the cost function in Fig. 6
is shown in the same figure. The following parameters were used
here: last points accounted in the statistic calculations,
the drift parameter and the threshold .

In spite of the fact that the NDFA method can readily detect
the simulated change, the described change detection problem
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Fig. 7. The test statistics g(t) of three alternative nonlinear methods calculated for the training data (first 1000 samples) and the 1000 new observations with the
slight change of the dynamical model at t = 1500 (see Fig. 5).

turned out to be very hard for the alternative methods consid-
ered in the work such as the NAR and RNN-based approaches.
Neither of these algorithms gave any significant rise of their test
statistic after the time instant of change , which means
that they failed in this particular change detection problem.
Fig. 7 shows the test statistics for NAR and RNN-based
methods for training data and test data before and after the
change. It is obvious that the prediction errors are significantly
higher for the test data than for the training data. This seems to
be partly due to overfitting and the Bayesian learning technique
[27], [28], [11] alleviates the problem.

The model estimated by NDFA is much more accurate than
the models estimated with the alternative approaches. Although
the simulated changes are hardly visible to the eye directly from
the observations, they are demonstrated well enough for the
NDFA model to detect them. We believe that this is because
NDFA has been able to find a state representation which makes
the prediction task easier. As Fig. 8 shows, the states estimated
by NDFA closely correspond to the states of the underlying
process. The physically meaningful state representation leads
to good prediction accuracy and allows one to analyze in which
states the changes took place. Fig. 8 also presents the contribu-
tions of different states to the cost function (12). The plot
shows that the estimated time series reproduce well the char-
acter of the original underlying processes. Only eight out of
nine estimated states are actually used: Two states model the
harmonic oscillator dynamics, three states describe the Lorenz
process with constant parameters, and the other three states cor-
respond to the Lorenz process with changing parameters. Notice
the increasing cost contributions for the states with changing
dynamics: analyzing the structure of the cost function helps in
localizing detected changes.

D. Experiments With Oscillator Changes

In the following experiments, we test the universality of the
NDFA method by simulating another type of changes affecting

other features of the observed mixtures. For instance, elimi-
nating the harmonic oscillator in the state space (see Fig. 9)
changes the frequency content of the observed signals, which
can be used to design a specific change detector monitoring
these particular observation features. Such a taylored change de-
tector can be compared with the generic NDFA.

Let us test how the power spectrum of the observations
changes after eliminating the two sinusoidal signals. This will
be done in a practical way leading to the change detector based
on the frequency features we are going to estimate. Taking a
sliding window of 64 last observations we perform the discrete
cosine transform calculating the 64 components of the power
spectrum. Summing the corresponding components of all the
observed signals we get 64 time series comprised of the spectral
components estimated at different time instants. Taking the
mean of the 64 signals, we can see how the power spectrum
changes after the oscillator change takes place (see Fig. 10).

Fig. 10 indicates that in spite of the high nonlinearity of the
mixing function , the power spectrum of the original signal
contains a large peak corresponding to the harmonic oscillator
frequency. As expected, the peak disappears after eliminating
the oscillator from the mixture and this can be used to construct
a change detection algorithm.

Thus, the alternative change detector designed for this partic-
ular type of changes can perform as follows:

1) Take 64 last observations at each time instant and calcu-
late the discrete cosine transform (DCT);

2) Summing the spectral components corresponding to the
peak of the oscillator frequency (we take the seventh
and eighth components that undergo the most significant
changes), one obtains the test sequence ;

3) Apply the standard one-sided CUSUM test like (17) for
detecting decrease of the mean of the test sequence .

The described DCT-based algorithm was first tested on the
single change detection problem and it gave a significant rise



572 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 3, MAY 2004

Fig. 8. The states estimated on-line by NDFA with N = 100 (left) and their contribution to the cost function (right) in the experiment with slight changes (see
Fig. 5). The states which undergo changes increase their contribution.

Fig. 9. The changes in the hidden oscillator dynamics at t = 1500 (two time series above) are not clearly visible in the observations (five time series below).
Only five out of ten observations are presented here.

of its test statistic after the time instant of change. The NDFA
method was applied to the same data and it also produced a
short-term jump in the cost function after the change.

The test with repeatedly simulated changes assessing the per-
formance of the two alternative methods was carried out as well.

The results are presented in Fig. 11. One can easily see that the
NDFA in general outperforms the DCT-approach but it again
encounters the problems discussed in Section IV-B: Increasing
the threshold does not give very small values of the -mea-
sure before the problem of missed detections is faced.
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Fig. 10. The power spectrum of the observations explained in Fig. 9. The plot shows the mean of the first 30 (out of 64) time series obtained by calculating the
discrete cosine transform on the sliding window of 64 last observations at each time instant. The corresponding angular velocities are shown at the top.

Fig. 11. Performance comparison of various change detection methods for the problem with the oscillator changes. The circled points correspond to the threshold
values for which there were missed detection situations.
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V. DISCUSSION

We applied here the recently introduced nonlinear dynamical
factor analysis algorithm for the problem of state change de-
tection. The algorithm was reviewed and then extended to the
change detection problem by introducing an on-line version,
computing the cost of a fixed window of the most recent ob-
servations. When this cost is compared to the average model
cost, departures from the learned model can be detected. We
showed that with NDFA, change detection is considerably more
accurate than with standard CUSUM and Shewhart charts. The
main reason is that NDFA is building a full nonlinear state-space
model. It can therefore detect a large variety of changes in a
process, while most ad hoc methods have been developed for
and are sensitive to a particular type of change only. Yet, NDFA
seems to be able to outperform even such taylor-made algo-
rithms. Another advantage of the model-based approach is that
NDFA is able not only to pinpoint the time of the change, but
also to show which of the underlying states were the reason for
the change.

Model-based approaches using NAR and RNN were found to
perform worse than the much simpler approaches which moni-
tored the mean and variance of the observations. We argued that
a model of dynamics can actually make detecting changes more
difficult and only after the model is accurate enough, improve-
ments over the simpler methods are possible. We used standard
techniques from neural networks literature for learning the NAR
and RNN models, including optimization of model structure and
early stopping of learning based on prediction performance on
a validation set.

The variational Bayesian learning used in NDFA can do
without a validation set because it is very robust against
overfitting and overlearning. Model structure can be optimized
based on the cost function and there is no need for early
stopping of learning. This property is shared by the Bayesian
learning technique [27], [28], [11] which we tested for NAR.
It suffered less from overfitting than NAR learned by standard
backpropagation and yielded the best performance in change
detection among the alternative methods we tested, but the
performance was still far from that obtained by NDFA. This
difference probably stems from the physically meaningful state
representation which NDFA is able to find.

We assumed a completely unknown process without any prior
information. The learning is fully unsupervised. In practice, the
situation would not be as difficult. The method would readily
allow to incorporate partial knowledge, as well as any external
process inputs which were now omitted. Since many processes
have nonstationary noise variances, it may also be useful to
use the methods described in [40]. There, models of nonsta-
tionary variance that are estimated by variational learning were
developed.

The main drawback in NDFA is the large number of iterations
needed for off-line learning of the process model, although the
actual change detection can then be done on-line. Finding ways
to speed up the learning algorithm is an important next step.
The building-blocks approach presented in [39] has smaller
computational complexity and its application to learning

NSSMs should help to reduce the learning time. An additional
improvement was a different nonlinearity for hidden neurons
which makes the cost function analytic, obviating the need for
Taylor-series expansions. The NDFA method can in practice
learn fairly large processes, up to 15-dimensional state spaces.
Beyond that, learning may become unstable which seems to be
due to the Taylor-series approximation. The building-blocks
based approach does not suffer from this limitation. Since
there exists a cost function which is guaranteed to decrease
on each update, iterations are inherently stable in contrast to
EKF and the present implementation of NDFA which resort to
Taylor-series approximations.

A hierarchical nonlinear factor analysis model based on the
building-blocks approach was presented in [41]. We are cur-
rently extending the model to include the dynamics of the states.
Another speed-up which can be used in combination with both
the NDFA learning algorithm and the hierarchical extension was
presented in [21].

The proposed method has several potential applications. In
addition to the simulated experiments reported here, essentially
the same method has already been successfully applied by the
authors to analysing magnetoencephalographic (MEG) signals
measured from the human brain [32].
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