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ABSTRACT
This paper presents a framework for image captioning by ex-
ploiting the scene context. To date, most of the captioning
models have been relying on the combination of Convolu-
tional Neural Networks (CNN) and the Long-Short Term
Memory (LSTM) model, trained in an end-to-end fashion.
Recently, there has been extensive research towards improv-
ing the language model and the CNN architecture, utiliz-
ing attention mechanisms, and improving the learning tech-
niques in such systems. A less studied area is the contribu-
tion of the scene context in the captioning. In this work, we
study the role of the scene context, consisting of the scene
type and objects. To this end, we augment the CNN features
with scene context features, including scene detectors, ob-
jects and their localization, and their combinations. We use
the scene context features as an initialization feature at the
zeroth time step in a LSTM model with deep residual con-
nections. In subsequent time steps, the model, however, uses
the original CNN features. The proposed language model,
contrary to more conventional ones, thus has access to visual
features through the whole process of sentence generation.
We demonstrate that the scene context features affect the
language formation and improve the captioning results in
the proposed framework. We also report results from the
Microsoft COCO benchmark, where our model achieves the
state-of-the-art performance on the test set.

1. INTRODUCTION
Automatic image captioning is an interesting problem

that aims to integrate computer vision and natural language
modeling. Recently, it has been in the center of attention
and is experiencing a rapid growth with the advent of large
annotated datasets and the availability of the computational
power required to handle such large amounts of visual and
textual data. The recent approaches to image captioning of-
ten rely on deep Convolutional Neural Networks (CNN) and
Long-Short Term Memory (LSTM) models as key ingredi-
ents of their pipeline. The CNN compresses an image into

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

iV&L-MM’16, October 16 2016, Amsterdam, Netherlands
c© 2016 ACM. ISBN 978-1-4503-4519-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983563.2983571

a feature vector to be inputted to an LSTM network that
acts as a generative language model. There exist, however,
various modifications in the pipeline, such as using different
CNN architectures and attention mechanisms for regional
feature extraction [43, 44].

A common consensus of belief is that the CNN features
encode hierarchical properties that are reflecting the scene
context, including objects, the scene type, etc. Even if this
is true, it is hard for the language models to learn to uti-
lize this hidden implicit information. Hence, there could
be benefits from using explicit contextual features in con-
junction with the CNN feature vectors. To prevent very
high-dimensional feature vectors adversely influencing the
training of the LSTM module, we present an architecture
that permits exploiting both CNN features and contextual
features, consisting of the scene type, object localizations
and segments.

Our language model is based on a deep LSTM network
with residual connections where, motivated by the influence
of the scene context on human sentence formation, the con-
textual features are used to initialize the hidden state of the
caption generating LSTM network. This initialization then
guides the recurrent caption generation process and leads to
better captions. We show that the captions generated with
such a strategy are better than those generated with pure
CNN features, signifying the role of the scene context.

2. RELATED WORK
Image caption generation (or, more generally, image de-

scription generation) techniques include a wide range of
methods and models. They are categorized into three
groups [2], including retrieval-based [13, 29, 17, 20], sentence
generation [25, 10] and mixture models, which combine the
two paradigms [40, 12, 9].

A recurrent neural network (RNN) language model and
CNN features are used in [19], where a technique for align-
ing the part of caption to image regions is also proposed.
Vinyals et al. [40] use CNN image features with an LSTM
network as the language model. They propose to use the
CNN features only at the zeroth time step of the language
model. We, however, let the language model access the CNN
features throughout the generation process and find it im-
proving the performance.

In [23], instead of a recurrent network, a feed-forward net-
work is employed to predict a word given previous words
and CNN features. In a more novel approach, [22] proposes
a two-stage encoder–decoder model. First, both the image
feature vector and the word sequence are embedded into a
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Figure 1: Block diagram showing our image captioning pipeline from an input image to the generated caption.

common multimodal space, where the image–caption pairs
have similar representations. Then, given such an encoding,
a decoder network generates the candidate caption. These
models are trained end-to-end.

Contrary to the end-to-end paradigm, [12] takes a mod-
ular approach. It initially trains a set of object or concept
detectors using multiple instance learning. Next, a maxi-
mum entropy language model utilizes the detector responses
for captioning. Our proposed framework is trained end-to-
end but shares some commonality with the aforementioned
models such as using the CNN features. However, we exploit
detector responses, akin to [12], as a part of the contextual
features to boost the performance of the language model.

The image captioning models are evaluated on corpora
of data consisting of image–description pairs, where the de-
scriptions are provided by human annotators. One of the
earliest well-recognized data sets is UIUC PASCAL sen-
tences [32]. It consists of 1,000 images selected from the
PASCAL–VOC data set [11] and five human-written sen-
tences for each image. Recently, the same image set is used
in PASCAL–50S [39], where 50 human-written sentences are
provided. Flickr8k [17] and Flickr30k [45] are two large data
sets, consisting of 8,000 images and 30,000 images, respec-
tively. They have five human-written captions for each im-
age. Currently, the most popular and largest dataset for
image captioning, is the Microsoft Common Objects in Con-
text (COCO) [27] with over 200,000 images and at least five
human-written captions per image. There exists also an as-
sociated MS-COCO evaluation server, where researchers can
upload their captions on the blind test dataset and compare
the performance of their system to the state-of-the-art meth-
ods on a public leaderboard. Due to its size and availability
of standardized benchmark, we choose to conduct all our
experiments on the MS-COCO dataset.

There exists several evaluation metrics for caption assess-
ment. Most of the the metrics are borrowed from machine
translation. The three popular ones are the BLEU [30],
ROUGE-L [26] and METEOR [6] scores. Another metric
specifically designed for image captioning tasks called CIDEr
was proposed in [39]. According to the COCO Image Cap-
tioning Challenge 2015 evaluations, the automatic evalua-
tion metrics and the human assessments of caption quality
do not yet match well, though METEOR and CIDEr were
found to have the highest correlations with human judg-
ments [4]. We, thus, put more weight on the performance of

our models based on METEOR and CIDEr in the analysis.
In this paper, we will explore two less-studied aspects of

image caption generation: 1) explicit scene context features
for LSTM language models, and 2) caption picking tech-
niques from an ensemble of caption generator models. To
this end, we setup a baseline model and compare it with the
proposed framework that augments the CNN features with
contextual features. After that, we propose and evaluate
a caption picking network. We report the benchmark re-
sults on the MS-COCO dataset and show that the proposed
framework outperforms the state-of-the-art results.

3. METHOD
The overall pipeline of the proposed framework is illus-

trated in Figure 1. It consists of three stages: image encod-
ing and feature extraction, language model and ensemble
evaluator. We will elaborate on the details of our model in
the rest of this section.

3.1 Image Feature Extraction
Good image representation is a key factor for success-

ful image captioning. A representation should be compact
and complete to encode the relevant information. Thinking
about how humans construct a sentence, we can hypoth-
esize the features should reflect the scene context, i.e., the
information about objects and their attributes such as color,
absolute and relative positions along with the scene type.

CNN Features. The activations of fully-connected layers
of a pre-trained CNN have been shown to be useful features
for image captioning [8, 34]. We use the GoogLeNet [37] ar-
chitecture to extract CNN-based features. In the proposed
framework, we utilize the CNN features for two different pur-
poses. Features from a network pre-trained on ImageNet [5]
are used as direct input to the language model, whereas fea-
tures from a network pre-trained on MIT Places [47] are
used to train our scene detector.

To extract features from the GoogLeNet pre-trained on
ImageNet, we employ a reverse spatial pyramid pooling [14]
unit on top of the 5th Inception module. The pooling has two
scales, where the second scale consists of 26 regions obtained
from a 3× 3 overlapping grid and its horizontal flipping. To
extract the feature vector, we compute the response of each
of the 26 regions and employ the combinations of center-
crop, average- and maximum-pooling. The feature vector,
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(a) Baseline (b) Proposed

Figure 2: The language model architectures. The LSTMs are unrolled in time. Specifically, a two-layer LSTM with residual
connections is shown.

denoted as “gCNN”, has the dimensionality 2048 and is used
as a direct input to the language model as shown in Figure 1.

Features from the GoogLeNet pre-trained on MIT Places
are extracted similarly, but this time the responses of the 3rd
classification branch are fed to the reverse spatial pyramid
pooling unit. These features will be denoted as “pCNN” in
the rest of the paper.

Scene Type. We use the scene type cue as a feature to the
language model. To determine the scene type, we created a
bank of specialized visual scene detectors by training a clas-
sifier on pCNN features extracted for the SUN Scene Cate-
gorization Benchmark database [41, 42]. For the classifica-
tion purpose, akin to [24], we employ Radial Basis Function
(RBF) Support Vector Machines (SVMs).

We use three variants each of pCNN and gCNN features,
obtained with different pooling strategies, and train a sepa-
rate classifier for each variant. Each classifier determines the
degree of association of the image to the 397 scene types of
the SUN database. The final scene type score is determined
by the average fusion of the six classifiers. Thus, for an input
image, we form a 397-dimensional feature vector consisting
of these raw scene type scores in the range of [0, 1], denoted
as “SUN397”. This feature vector is used as an input to the
language model.

Object Type and Location. The type of objects and their
locations affect sentence formation and influence adjectives
used in human sentence constructs. To extract such infor-
mation, we use an object detector network, more specifically
the Faster Region-based Convolutional Neural Network (R-
CNN) [33]. This network predicts the object locations in
terms of bounding boxes and object detection scores of the
80 object categories of COCO 2014 [27]. To produce object
location maps, we use the same object proposals generated
from the Faster R-CNN network. We first define an m × n
non-overlapping grid on the image where each of the cells,
Fc(i, j), accumulates the integral of Gaussian distributions
fit to the object proposals of the class category c as

Fc(i, j) =
∑

bk∈BB(c)

∫∫
bk∩G(i,j)

p(bk)N(center(bk), diag(bk)) , (1)

where BB(c) is the set containing bounding box object pro-
posals for category c, p(bk) is the confidence assigned by
the detector to proposal bk, G(i, j) is the grid cell at posi-
tion (i, j) and N(µ, σ) are Gaussians of given mean µ and
standard deviation σ. For each object category, this grid
is computed and vectorized to produce a feature vector of
dimensionality m × n. The final feature vector is obtained
by concatenating the category-wise vectors and denoted as
“m×nGauss”.

One disadvantage of the “m×nGauss” feature vector is
that it can become large depending on the resolution of
the grid. To address this we also experimented with us-
ing smaller number of spatial grids to encode location in-
formation. Instead of splitting an image into m × n non-
overlapping grid cells, we split it into m vertical and n hor-
izontal strips. In this case, the vertical and horizontal cells
will overlap, but the number of cells is reduced from m× n
to m + n. The calculation of these features is analogous to
that of the regular grid-based ones, only the definition of the
grid cells G(i, j) is different. We abbreviate these features
as “m+nGauss” in the figures and result tables.

To reduce the feature vector size even further, an alter-
native is to discard the location information completely and
just encode the object detection scores. We obtain such an
80-dimensional feature vector using the detection score of
the Faster R-CNN responses by setting m = n = 1, and
refer to it as “FRC80”.

3.2 Language Model
The next stage in the pipeline is a conditional language

model which takes as input the image features and generates
a caption. The language model in the proposed framework
is based on the Long-Short Term Memory network [16]. It
computes the probability of a sentence S given an image I,
denoted by P (S|I):

P (S|I) = P (w0, w1, · · · , wn|I) (2)

= p(w0|I)

n∏
t=1

p(wt|wt−1, I) . (3)

where wi corresponds to the i-th word in a sentence. Since
we are augmenting CNN features with contextual ones, we
need two seperate feature input channels to the language
model. This is contrary to conventional LSTM language
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models, such as our baseline model based on [40], which
uses a single feature input channel. We thus modify the
LSTM architecture, according to Figure 2b, in order to suit
this purpose. In the following, we first explain the baseline
language model. Later, we outline the modifications pro-
posed for feature handling, followed by an extension for a
deep model with residual connections.

Baseline Language Model. The baseline language model,
depicted in Figure 2a, is consistent with the architecture of
the language model of [40]. The model consists of an LSTM
network with a softmax layer at its output, which produces
the probability distribution over the model’s vocabulary:

p(wt|wt−1, · · · , w0, V ) = softmax(y(t)) , (4)

where V are the gCNN features, wi corresponds to a word
generated at the i-th time step and y(i) is the output of the
LSTM network at the i-th time step. The visual features
are fed to the LSTM network at time step zero and share
the input weight matrix with the word vectors, which are
fed in subsequent time steps.

In the training, the LSTM learns to assign the highest
probability to the next ground truth word, given the current
inputs and the hidden state by minimizing

L(w1···L|V ) = −
n∑

t=1

log(p(wt|wt−1, V )) . (5)

A caption is generated based on the visual features and
previously generated words until reaching a stop symbol.
The caption generation process can be seen as inferring the
best next word given a partial sentence, which can be further
enhanced using a beam search strategy. The beam search
maintains a list of top b partial sentences instead of one par-
tial sentence at a time. It then extends each partial sentence
with the b most probable words at each time step, result-
ing in b2 extensions, which are pruned back to the b most
probable partial sentences.

Proposed Language Model. The language model we use
should be capable of utilizing both the contextual and the
visual features. Since the baseline model has only one input
channel, shared between word vectors and image features,
it can utilize multiple features only if they are fused into a
single input vector. In our study, we found that perform-
ing simple feature fusion, like concatenating the two feature
vectors, and using it as the input in the baseline language
model leads to inferior performance, presumably due to large
dimensions of the resulting feature vector.

Thus, to address this issue, we introduce another data in-
put channel and make the visual features available through-
out the whole inference process. This is similar to [35, 36],
where we use such a language model for video captioning.
The proposed framework thus computes the distribution

p(wt|wt−1, · · · , w0, V, C) = softmax(y(t)) , (6)

where C represents the contextual features. The training is
done by minimizing the cost function

L(w1···L|V,C) = −
n∑

t=1

log(p(wt|wt−1, V, C)) . (7)

Contrary to the baseline model, the gCNN visual features
are accessible throughout the whole sentence generation pro-

cess. In the proposed language model, the contextual fea-
tures share the same weight matrix with the words and are
presented at the time step zero, while the gCNN features will
have their own weight matrix. Thus this model has the abil-
ity to learn different functions from word embeddings and
the CNN features, since they no longer share the weight ma-
trix. By simultaneous learning from two different sources,
the proposed architecture results in more powerful models.

Deeper Model with Residual Connections. We also ex-
tend our language model by using a deeper version consisting
of multiple layers of stacked LSTMs and residual connec-
tions. The first layer receives visual and contextual features
and the consequent layer receives its inputs from the corre-
sponding bottom LSTM. We further add a series of residual
connections [15] between the stacked LSTM layers. In our
experiments, we noticed that the residual connections im-
prove the convergence speed and produce significantly lower
cost function values and model perplexity.

3.3 Ensemble of Language Models

Figure 3: Caption evaluator: computing the similarity be-
tween visual features and a caption in a common space.

The key idea behind an ensemble of language models is
boosting the captioning results by picking the best candi-
date caption from a set of candidates. For this purpose,
we learn a set of different language models using the com-
bination of various image features and LSTM architectures.
Given an image, the set of language models generate a pool
of captions, of which one is the best candidate. In order
to pick the best candidate, we use a convolutional neural
network. We train the network to match the image, repre-
sented by its gCNN features, with the best available caption
for it. We choose this ensembling technique as our older un-
published experiments showed that simpler language model
ensembling methods, such as averaging the multiple genera-
tors or choosing the caption that has the highest likelihood,
only produced inferior results. A complete discussion of var-
ious ensembling techniques is beyond the scope of this work.

Caption Picking. The caption picking is performed by
comparing the similarity of the gCNN features and encoded
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Table 1: The performance of contextual features in comparison with the baseline model M1. The effect of various language
model parameters, including depth and residual connections, “r”, are reported.

Model Contextual Feature
parameters validation performance metrics
depth r perplexity BLEU-4 METEOR ROUGE-L CIDEr

M1 — 1 — 10.82 0.259 0.222 0.490 0.750
M2 FRC80 1 — 10.15 0.316 0.249 0.534 0.952
M3 SUN397+FRC80 1 — 10.05 0.315 0.250 0.532 0.954
M4 4×4Gauss 1 — 10.15 0.308 0.246 0.527 0.921
M5 3+3Gauss 1 — 10.08 0.308 0.247 0.527 0.928
M6 SUN397+FRC80 2 no 10.14 0.318 0.252 0.535 0.967
M7 SUN397+FRC80 3 no 10.34 0.316 0.253 0.533 0.964
M8 SUN397+FRC80 2 yes 9.92 0.320 0.253 0.536 0.966
M9 SUN397+FRC80 3 yes 9.69 0.316 0.254 0.532 0.962
M10 3+3Gauss+SUN397+FRC80 3 yes 9.72 0.319 0.252 0.535 0.970

captions in a neural architecture, depicted in Figure 3.
To encode the captions, we employ a convolutional neural

network operating on the words of a sentence. This resem-
bles a sentence sentiment predictor network [21]. A caption
is treated as a sequence of word vectors which are learned
during training. Alternatively, one could also use off-the-
shelf word embeddings like word2vec [28] or GloVe [31]. The
convolutional neural network accepts such vector represen-
tations and produces an encoding of the sentence.

Before comparing the gCNN image features to this sen-
tence encoding, the CNN features are projected into a com-
mon space with the sentence encoding by using a projection
matrix. Then, the cosine similarity between the two encoded
vectors is computed. The higher the similarity score is, the
better the caption is.

To train the evaluator, we take a ground truth caption of
an image as the positive sample, S+, and k negative samples,
S−i , i = 1, . . . , k, from the captions of the rest of the training
images. We then use − logP (S+|S−, I) as the cost function
for maximizing the score of the positive samples, where

P (S+|S−, I) =
exp(c(S+, I))

exp(c(S+, I)) +
k∑

i=1

exp(c(S−i , I))

(8)

and c(S, I) represents the cosine similarity between the sen-
tence candidate S and the image I. Note that the normaliza-
tion terms force the score assigned to the negative captions
to be minimized when we maximize − logP (S+|S−, I).

4. EXPERIMENTS AND RESULTS
We use the Microsoft COCO 2014 data set [27] in our ex-

periments. It consists of more than 164,000 images, where
each train and validation set image has five reference cap-
tions. There are 80 object class categories annotated. For
the training of the language model, we pre-process the cap-
tions by tokenizing and removing the punctuations. The
reference captions use 23,528 unique words and, after re-
moving words occurring fewer than five times, we end up
with a vocabulary of 8,790 words.

To evaluate the performance of the captioning framework,
we report four standard evaluation metrics, BLEU-4, ME-
TEOR, ROUGE-L and CIDEr. The performance of the pro-
posed framework is measured on both the validation and
test sets using the above metrics. Additionally, we report

our models’ perplexities for the ground truth captions on
the validation set.

We thoroughly study the contribution of various contex-
tual features and compare the new language model to the
baseline by using the validation data. We collate the pro-
posed framework with the state-of-the-art entries of the MS-
COCO leaderboard1 and published results.

Implementation. We implemented the LSTM language
model using Theano [1]. The CNN feature extraction and
the Faster R-CNN models are based on the Caffe library [18].
In other words, the training of the language model is decou-
pled from the rest of the architecture. The Faster R-CNN
object detector is trained for the 80 object class categories
of COCO 2014.

The language model is trained using the stochastic gra-
dient descent with RMSProp [38] and drop out [46]. The
hidden size of the LSTM network is chosen to be 512 di-
mensions. In the test phase, we use beam search to sample
captions from the language model with a beam size of b = 5.

The caption picking convolutional neural network was cre-
ated by bi-, tri-, 4-, and 5-gram filters, where 100 filters of
each type are used. It also uses a 100-dimensional word
vector representation, which is learned from random initial-
ization. We use k = 50 negative captions in the training.

4.1 Contextual Features
To understand the benefits from the proposed framework

and contextual features, we compare them to the baseline
model. Table 1 presents the results of using each contex-
tual feature and their combinations on the validation set. It
also includes information on some of the parameters such as
the depth and existence of the residual connections “r” in
the models. We report a total of ten models, identified as
M1,. . .,M10, where M1 is the baseline model.

Comparing the models with contextual features to M1, we
learn that the contextual features and the proposed archi-
tecture outperform the baseline model significantly. On the
depth of 1, the proposed model achieves a CIDEr score of
0.954, which is 26% better than the baseline. Fine-tuning
the depth and combining different features, the performance
of the proposed framework improves further.

Contrasting the contextual features with each other, we
see that the object category feature FRC80 is the most con-

1http://mscoco.org/dataset/#captions-leaderboard
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Table 2: COCO 2014 test results. The scores are based on Microsoft COCO leaderboard. c# indicates the number of reference
captions used in the evaluation. The models are sorted based on the CIDEr score as done on the leaderboard.

Leaderboard Name
BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40

AugmentCNNwithDet (M10) 0.315 0.597 0.251 0.340 0.531 0.683 0.956 0.968
—— (Ensemble M11) 0.310 0.596 0.250 0.338 0.529 0.681 0.948 0.961
ATT VC [44] 0.316 0.599 0.250 0.335 0.535 0.682 0.943 0.958
—— (M9) 0.309 0.588 0.251 0.342 0.529 0.680 0.943 0.948
OriolVinyals [40] 0.309 0.587 0.254 0.346 0.530 0.682 0.943 0.946
MSR Captivator [12] 0.308 0.601 0.248 0.339 0.526 0.680 0.931 0.937
Berkeley LRCN [7] 0.306 0.585 0.247 0.335 0.528 0.678 0.921 0.934
human [3] 0.217 0.471 0.252 0.335 0.484 0.626 0.854 0.910
Montreal/Toronto [43] 0.277 0.537 0.241 0.322 0.516 0.654 0.865 0.893

tributing feature. Nonetheless, the model achieving the best
CIDEr score, M10, employs the combination of the scene
type, object category and object location maps as features.

4.2 Ensemble of Models

Table 3: The ensemble effect. The performance metrics and
vocabulary size, VOC, are reported.

Model VOC
performance metrics
METEOR CIDEr

M1 (Baseline) 513 0.222 0.750
M2 887 0.249 0.952
M3 962 0.250 0.954
M7 1093 0.253 0.964
M8 983 0.253 0.966
M9 1197 0.254 0.962
M10 1112 0.252 0.970

M11 (Ensemble) 1303 0.254 0.978

To evaluate the our caption picking mechanism, we build
an ensemble using M3, M7, M9, M10, and two additional
models obtained by combining SUN397 with the object
maps of spatial grids of 3+3Gauss and 4×4Gauss, respec-
tively. We compare the performance of the proposed ensem-
ble model with each of its contributing models, the baseline
and two of the best-performing models, M2 and M8.

The results are reported in Table 3, where we also show
the size of the vocabulary of the language models. For
brevity, we skip the BLEU and ROUGE-L metrics in this
table. It is evident that the captions picked from the ensem-
ble of models improve the validation set performance on all
the four metrics.

Comparing the size of the vocabulary of the models, we
learn that the baseline has the smallest vocabulary of 513
words, while the ensemble’s vocabulary has the largest num-
ber of words, 1303. The vocabulary size signifies the variety
of words used in the captions generated by a model. It is in-
teresting that the ensemble model both has the most diverse
vocabulary and outperforms all the other models, which in-
dicates that the evaluator successfully utilizes the diversity
in the ensemble. Figure 4 shows some sample captions gen-
erated by the ensemble model M11 and the model M10 on
images from the validation set.

Table 4: Comparison of our models to the best published
results on COCO 2014 validation set.

Model BLEU-4 METEOR CIDEr
M11 0.320 0.254 0.978
M10 0.319 0.252 0.970
ATT VC [44] 0.304 0.243 –
Berkeley LRCN [7] 0.300 0.242 0.896
OriolVinyals [40] 0.277 0.233 0.855
MSR Captivator [12] 0.257 0.236 –
Montreal/Toronto [43] 0.250 0.230 –

4.3 Benchmark
We compare the performance of the proposed model

with several state-of-the-art models reported on the COCO
2014 captioning leaderboard and published results on
the validation set. For this purpose, we submitted
M9, M10 and the ensemble model M11 captions to
the CodaLab portal. We compare our results with
ATT VC [44], MSR Captivator [12], Berkeley LRCN [7],
Montreal/Toronto [43], OriolVinyals [40], and human [3] re-
ported in CodaLab. It is worth noting that the OriolVinyals
model shares the same architecture with our baseline model.

Table 2 reports the results of the benchmark2. While
the ensemble model was the best model on the validation
set, we observe that M10 is a better model on the test set.
This could be because some models in the ensemble do not
generalize well to the test set. Considering the overall per-
formance of our model M10, we outperform several models
and are on the top of the leaderboard as on 12-Apr-2016.

The scores in the CodaLab leaderboard are not necessarily
reflecting the original published work results due to changes
and updates. Thus, we also present a comparison with the
published scores on the validation set in Table 4. We see that
our models outperform all published results on the validation
set, with the largest improvement seen in the CIDEr score.
We omit the ROUGE-L metric from this table as only one
other prior publication listed here reports it.

5. DISCUSSION AND CONCLUSION
We proposed an image captioning framework in which the

language model is first initialized with contextual image fea-

2The leaderboard with more models and scores is at
http://mscoco.org/dataset/#captions-leaderboard
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M11: a man and a dog herding sheep in a field M11: a bathroom with a sink toilet and bathtub M11: a bottle of wine and a glass of wine

M10: a man standing next to a herd of sheep M10: a bathroom with a toilet and a sink M10: two bottles of wine sitting on a table

M11: a view of a bridge in the snow M11: a table with plates of food on it M11: a person riding a bike down a city street

M10: a train crossing a bridge over a river M10: a table topped with plates of food and drinks M10: a city street filled with lots of traffic

Figure 4: Captions generated for some validation images by two of our models. The first row contains samples where the
ensemble model, M11, performs better, and the second row cases where M10 is better.

tures and then has access to the CNN features during the
whole process of caption generation. The proposed frame-
work outperformed the state-of-the-art on the MS-COCO
captioning leaderboard.

From the experiments with various contextual features,
we learned that the 80-dimensional object type feature is
the most contributing feature. We also reported our ex-
periments with a caption picking mechanism which uses an
ensemble of caption generators and a neural network trained
to choose the best caption among the candidates. While the
ensemble model performed the best on the validation set, it
fell slightly short of our best single model on the test set.

Despite the proposed model significantly improves over
a baseline model and outperforms the state-of-the-art, it
seems still failing to learn the fine-grained relationships be-
tween the objects in an image. For example, as depicted in
Figure 4, the model cannot yet discriminate between a bi-
cyclist and a person standing next to a bike. The proposed
model also cannot count the objects correctly and is prone
to repeated words instead of a numeric referral in some of
the captions. For example, it sometimes generates “apple
and apple” for referring to “two apples”.

The vocabulary size of our ensemble model achieves 1/8 of
that of the ground-truth captions. This can be interpreted as
room for improvement in the sense of language enrichment.
We hope to address these issues in the future work.
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