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Abstract

‘We propose two strategies to improve the optimization in information geometry. First, a local Euclidean embedding is identified by whitening
the tangent space, which leads to an additive parameter update sequence that approximates the geodesic flow to the optimal density model.
Second, removal of the minor components of gradients enhances the estimation of the Fisher information matrix and reduces the computational
cost. We also prove that dimensionality reduction is necessary for learning multidimensional linear transformations. The optimization based on
the principal whitened gradients demonstrates faster and more robust convergence in simulations on unsupervised learning with synthetic data and

on discriminant analysis of breast cancer data.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Denote J an objective function to be minimized and @ its
parameters. The steepest descent update rule

0"V =0 —nv7@) ey

with 1 a positive learning rate is widely used for minimization
tasks because it is easy to implement. However, this update
rule performs poorly in machine learning problems where the
parameter space is not Euclidean. It was pointed out by Amari
that the geometry of the Riemannian space must be taken into
account when calculating the learning directions (Amari, 1998).
He suggested the use of natural gradient (NAT) updates in
place of the ordinary gradient-based ones:

0™ =0 —nGO)"'VI®), (2)

where G(0#) is the Riemannian metric matrix. Optimization
that employs natural gradients generally requires much less
iterations than the conventional steepest gradient descent
(ascend) method.
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Information geometry is another important concept proposed
by Amari and Nagaoka (2000), where the Riemannian metric
tensor is defined as the Fisher information matrix. The
application of the natural gradient to information geometry
leads to substantial performance gains in Blind Source
Separation (Amari, 1998), multilayer perceptrons (Amari,
1998; Amari, Park, & Fukumizu, 2000), and other engineering
problems that deal with statistical information. Nevertheless,
many of these applications are restricted by the additive
Gaussian noise assumption. Little attention has been paid on
incorporating the specific properties of information geometry
to facilitate general optimization.

We propose here to improve the natural gradient by a
novel additive update rule called Principal Whitened Gradient
(PWG):

0" — 6 — nG0) VT (O). 3)

The square root and hat symbols indicate two strategies we
use, both of which are based on a crucial observation that
the Fisher information is the covariance of gradient vectors.
First, we identify a local Euclidean embedding in the parameter
space by whitening the tangent space at the current estimate
of 0. The additive update sequence with whitened gradients
results in a better approximation to the geodesic flow. The
choice of learning rates also becomes easier in the Euclidean
embedding. Second, the whitening procedure is accompanied
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with removal of minor components for computational efficiency
and for better estimation of the Fisher information with
finite data. We also prove that dimensionality reduction is
necessary for learning a great variety of multidimensional linear
transformations.

We demonstrate the advantage of PWG over NAT by
three simulations, two for unsupervised learning and one for
supervised. The first task in our experiments is to learn the
variance of a multivariate Gaussian distribution. The second is
to recover the component means of a Gaussian mixture model
by the maximum likelihood method. The last one is to learn a
matrix that maximizes discrimination of labeled breast cancer
data. In all simulations, the updates with principal whitened
gradients outperform the original natural gradient results in
terms of efficiency and robustness.

The above innovation was preliminarily proposed in Yang
and Laaksonen (2007) by the same authors. In this paper we
include the following new contributions:

e We propose to interpret the Fisher information metric as the
local change of the Kullback—Leibler divergence. A formal
derivation based on Taylor series is also provided.

e We point out that the Fisher information matrix is the
covariance of ordinary online gradients and this property
is invariant of linear transformations. This result provides a
new justification for the employed prewhitening procedure.

e We clarify the motivation for discarding the minor
components as the principal ones correspond to the
directions where the local information change is maximized.

e We use three different simulations. A new kind of simulation
is added to demonstrate the learning of variance. The
learning on Gaussian mixtures is extended to a two-
dimensional case. We also use another data set for the
discriminative learning experiment.

The remaining part of the paper is organized as follows. We
first provide a brief of the natural gradient and information
geometry, as well as the concept of geodesic updates in
Section 2. In Section 3, we present two strategies to improve
the optimization in information geometry. Next we demonstrate
the performance of the proposed method with simulations on
learning a Gaussian mixture model and discriminating breast
cancer data in Section 4. Finally the conclusions are drawn in
Section 5.

2. Background
2.1. Natural gradient and information geometry

A Riemannian metric is a generalization of the Euclidean
one. In an m-dimensional Riemannian manifold, the inner
product of two tangent vectors u and v, at point @, is defined
as

m m
(W, v)g =Y Y IGO)]ijuiv; =u'G@)v, “)
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where G(0) is a positive definite matrix. A Riemannian metric
reduces to Euclidean when G (@) = I, the identity matrix.

The natural gradient (NAT) method proposed by Amari
(1998) addresses the optimization in a Riemannian manifold.
It mimics the steepest descent approach in the Euclidean space
by seeking a vector a that minimizes the linear approximation
of the updated objective (Amari, 1998)

JO)+VIT®)a. (5)

Natural gradient employs the constraint (a, a)g = € instead of
the Euclidean norm, where € is an infinitesimal constant. By
introducing a Lagrange multiplier A and setting the gradient
with respect to a to zero, one obtains

_ Lt
a= 7 G@#) 'VT@0). (6)

Observing a is proportional to G(6)"'V7(0), Amari (1998)
defined the natural gradient

NarT (0) = G(0) "' VT (6) (7)
and suggested the update rule

0" =0 —nG(0)"'VI ) (8)

with 1 a positive learning rate.

Many statistical inference problems can be reduced to
probability density estimation. Information geometry proposed
by Amari and Nagaoka (2000) studies a manifold of parametric
probability densities p(x; @), where the Riemannian metric is
defined as the Fisher information matrix

00(x; 0) 0L(x; 0)
GO)j=E{————¢. 9
[G(0)]ij { 30, %, } )
Here £(x; 0) = —log p(x; #). Amari also applied the natural

gradient update rule for the optimization in the information
geometry by using J(@) = £(x;60) as the online objective
function, which is equivalent to the maximum likelihood
approach (Amari, 1998). Similarly, the batch objective function
can be defined to be the empirical mean of £(x; @) over x.

It is worth to note that the natural gradient method has been
applied to other Riemannian manifolds. For example, Amari
(1998) proposed to use the natural gradient on the manifold
of invertible matrices for the blind source separation problem.
However, this is beyond the scope of information geometry. In
this paper we only focus on the improvement in the manifolds
defined by the Fisher information metric.

2.2. Geodesic updates

Geodesics in a Riemannian manifold generalize the concept
of line segments in the Euclidean space. Given a Riemannian
metric G = G(f) and ¢t € R, a curve = 0(¢) is a geodesic if
and only if (Peterson, 1998)
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are Riemannian connection coefficients. The geodesic with
a starting point #(0) and a tangent vector v is denoted by
0(t; 0(0), v). The exponential map of the starting point is then
defined as

expy(0(0)) = 6(1; 6(0), v). (12)

It can be shown that the length along the geodesic between 6 (0)
and exp, (6(0)) is |v| (Peterson, 1998).

The above concepts are appealing because a geodesic
connects two points in the Riemannian manifold with the
minimum length. Iterative application of exponential maps
therefore forms an approximation of flows along the geodesic
and the optimization can converge quickly.

Generally obtaining the exponential map (12) is not a
trivial task. In most cases, the partial derivatives of the
Riemannian tensor in (11) lead to rather complicated expression
of Fl’j and solving the differential equations (10) therefore
becomes computationally infeasible. A simplified form of
exponential maps without explicit matrix inversion can be
obtained only in some special cases, for instance, when
training multilayer perceptrons based on additive Gaussian
noise assumptions (Amari, 1998; Amari et al., 2000). When
the Riemannian metric is accompanied with left- and right-
translation invariance, the exponential maps coincide with the
ones used in Lie Group theory and can be accomplished by
matrix exponentials (see e.g. Nishimori and Akaho (2005)).
This property however does not hold for information geometry.

3. Principal whitened gradient
3.1. Whitening the gradient space

Most statistical inference techniques are based on the
assumption that the data are independently and identically
distributed (i.i.d.). The online gradients calculated by using
individual data can be viewed as i.i.d. random variables. For
clarity, we use the concise symbol V = V.7 (0) in what follows.
It is a crucial observation that the Fisher information matrix in
(9) coincides with the covariance of these gradients. That is, the
squared norm of a tangent vector u is given by

lullg =u'Gu=u"E(VVT}u. (13)

The following theorem justifies that such a squared norm is
proportional to the local information change along u.

Theorem 1. Letu be a tangent vector at . Denote p = p(x; )
and p' = p(x; 0 + ru). For information geometry,

e = VaTGa = v lim YKL P). "

t—0 t

where Dgi, is the Kullback—Leibler divergence. The proof can
be found in Appendix A.

Now let us consider a linear transformation matrix F in the
tangent space. From the derivation in Appendix A, it can be
seen that the first term in the Taylor expansion always vanishes,
and the second remains zero under linear transformations.

When connecting to the norm, the terms of third or higher order
can always be neglected if 7 is small enough. Thus the local
information change in the transformed space is only measured
by the second-order term.

Another crucial observation is that the Hessian H of the
Kullback-Leibler divergence can be expressed in the form of
gradient vectors instead of the second order derivative. Thus
we have the following corollary:

Corollary 1. Given a linear transformation @ = Fu, the
Hessian in the transformed space
H=G=E(VV") =FE(VVT}FT, (15)
and
v D , p! o~ -
«/zlin(l) M = JRE(VVT}d = |, (16)
t—

where p' = p(x; 0 + tu).

This allows us to look for a proper F for facilitating the
optimization.

Since the Fisher information matrix G is positive semi-
definite, one can always decompose such a matrix as G =
EDE" by a singular value decomposition, where D is a diagonal
matrix and ETE = I. Denote the whitening matrix G~ 7 for the
gradient as

1 1

G 2 =ED 2ET, (17)
where
_1 1/\/Di; if Dji >0
D 2] — 123 . 123 18
[ i {O if D;; = 0. (a8

1
With F = G™2, the transformed Fisher information matrix
becomes

E(VWT =G 2E(VVT)GZ = L (19)

That is, the whitening matrix locally transforms the Riemannian
tangent space into its Euclidean embedding:

g =6’ E{VVTH = a'a = i), (20)

The optimization problem in such an embedding then becomes
seeking a tangent vector a that minimizes

TO +[77®)] a @1)

under the constraint [|al|> = €. Again by using the Lagrangian
method, one can obtain the solution

1 -
a= —§V\7(0), (22)

which leads to an ordinary steepest descent update rule in the
whitened tangent space:

0™ =0 — VI @). (23)
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By substituting V = G_%V, we get the whitened gradient
update rule:

0™ — 9 — nG0)"2VIT(@). (24)

The update rule (24) has a form similar to the natural
gradient one (2) except the square root operation on the
eigenvalues of the Fisher information matrix at each iteration.
We address that such a difference brings two distinguished
advantages.

First, it is worth to notice that additive updates are equivalent
to exponential maps when the Riemannian metric becomes
Euclidean. In other words, the steepest descent updates with
whitened gradients form approximated exponential maps and
hence result in fast convergence. By contrast, the natural
gradient updates (2) have no concrete geometric meaning and
the updating sequence may therefore be far from the true
geodesic. Moreover, our proposed objective (21) is the linear
approximation of 7 (@ + ta), which is naturally defined in the
Euclidean space. On the contrary, the underlying approximation
(5) could perform poorly in a highly curved Riemannian
manifold.

Second, we can see that the learning rate n in (2), or
the corresponding Lagrange multiplier A in (6), is a variable
that depends not only on @ and J, but also on G(@). This
complicates the choice of a proper learning rate. By contrast,
selecting the learning rate for the whitened gradient updates is
as easy as for the ordinary steepest descent approach because 7
in (24) is independent of the local Riemannian metric.

3.2. Principal components of whitened gradient

The singular value decomposition used in (17) is tightly
connected to Principal Component Analysis (PCA) which is
usually accompanied with dimensionality reduction for the
following two reasons.

First, the Fisher information matrix is commonly estimated
by the scatter matrix with n < co samples x):

1 n ) .
G~ — § Vot(xV; 0)Vpe(x?; 0)T. (25)
n
i=1

However, the estimation accuracy could be poor because of
sparse data in high-dimensional learning problems. Principal
Component Analysis is a widely-applied method for reducing
such kind of artifacts by reconstructing a positive semi-definite
matrix from its low-dimensional linear embedding. In our
case, the principal direction w maximizes the variance of the
projected gradient:

w = arg ||m”a_x1 E{(uTV)Z}. (26)

According to Theorem 1, w coincides with the direction that
maximizes local information change:

2
E{u'V)?} =u"E(VVTju=2 (lin(l) —W) . @27
t—

where p = p ((x?}:0), p' = p({x?};0 +ru), and 0 is
the current estimate. By this motivation, we preserve only
the principal components and discard the minor ones that are
probably irrelevant for the true learning direction. Moreover,
the singular value decomposition (17) runs much faster than
inverting the whole matrix G when the number of principal
components is far less than the dimensionality of 6 (Golub &
van Loan, 1989).

Second, dimensionality reduction is sometimes motivated
by structural reasons. Consider a problem where one tries to
minimize an objective of the form

T W) =7 (IWI?). 8)

where W is an m X r matrix. Many objectives where
Gaussian basis functions are used and evaluated in the linear
transformed space can be reduced to this form. Examples can
be found in Neighborhood Component Analysis (Goldberger,
Roweis, Hinton, & Salakhutdinov, 2005) and in a variant of
Independent Component Analysis (Hyvérinen & Hoyer, 2000).
The following theorem justifies the necessity of dimensionality
reduction for these kinds of problems.

Denote & = |[WTx?|12 in (28) and f; = 20.7(£;)/9&;. The
gradient of 7 (x); W) with respect to W is denoted by

. , . A\T
v = vw I x; W) = fix® (x(’)) W. (29)

The m x r matrix V) can be represented as a row vector

AT
(1/1(’)) by concatenating the columns such that

"o _y®

k+(I—Dm kl > k=1,...

,m,l=1,...,r. (30)
AT

Piling up the rows ('ﬁ(l)) ,i =1,...,n,yields an n x mr

matrix ¥.

Theorem 2. Suppose m > r. For any positive integer n, the
column rank of ¥ is at mostmr —r(r — 1)/2.

The proof can be found in Appendix B. In other words, no
matter how many samples are available, the matrix ¥ is not
full rank when r > 1, and neither is the approximated Fisher
information matrix

1
G~ -vly. (31)
n

That is, G is always singular for learning multidimensional
linear transformations in (28). G~! hence does not exist and
one must employ dimensionality reduction before inverting the
matrix.

Suppose D is a diagonal matrix with the ¢ largest
eigenvalues of G, and the corresponding eigenvectors form the
columns of matrix E. The geodesic update rule with Principal
Whitened Gradient (PWG) then becomes

PR S
0" =0 —nG Py, (32)

A A A AT
where G = EDE . For learning problems (28), the new W is
then obtained by reshaping @ into an m X r matrix. The online
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gradient ¥ in (32) can also be replaced by a batch gradient
E{y}.

4. Simulations

4.1. Learning of variances

First we applied the NAT update rule (2) and our PWG
method (3) to the estimation of a 30-dimensional zero-mean
Gaussian distribution

30
dH |wal 1 30
=1 2
Y =) , 33
p(x; W) 272 CXP( 2d=1(ded) ) (33)

where the parameter wy, is the inverted variance of the dth
dimension. Although there exist methods to obtain the estimate
in a closed form, this simulation can serve as an illustrative
example for comparing NAT and PWG.

We drew n = 1, 000 samples from the above distribution.
The negative log-likelihood of the ith sample is

30
exV;w) = —Zlog|wd|
d=1

1 & O\ 30
+ 3 ; (wdxd ) + > log 27, (34)
of which the partial derivative with respect to wy is

3e(xD; w) 2 1
= (wex”) = o (35)

With these online gradients, we approximated the Fisher
information matrix by (25) and calculated the batch gradient

30(xD; w)

v (36)

1"
V=-
i

We first set the learning rate = 1 in natural gradient
updates. The whitening objective values in the iterative
optimization are shown as the dot-dashed curve in Fig. 1. The
learning proceeds slowly and after 1,000 iterations the objective
is still very far from the optimal one. Increasing the learning to
n = 10 can slightly speed up the optimization, but a too large
learning rate, e.g. n = 50, leads to a jagged objective evolution.
Although the objective keeps decreasing in the long run, the
resulting variance estimates are no better than the ones obtained
with n = 10.

By contrast, the optimization using PWG is much faster
and more robust. The objective significantly decreases in the
first two hundred iterations and smoothly converges to a nearly
perfect value 43,814. For better comparison, we also plot the
optimal objective 40,776, calculated with the true variance, as
the dashed line in Fig. 1.

x 10
18 T T T T
— — Natural Gradients (n=1)
16F A A Natural Gradients (n=10) |
/\ ) Natural Gradients (n=50)
W 1)
/ w‘”wi Mo PWG (n=0.01)
" ! /i A — — — The optimal objecti
gy T W \Hf (W\m L e optimal objective
"""""""""" = =V My =
| T e T Vi A"'“‘.W- Wy 4, T
.............. "'h\v ] q‘\ f\‘"
......... W Ty
10 e " j‘\,-\f.,\_vf'w F

objective

=]
T

iterations

Fig. 1. Learning the variances of a multivariate Gaussian distribution.

4.2. Gaussian Mixtures

Next we tested the PWG method (3) and the NAT update rule
(2) on synthetic data that were generated by a Gaussian Mixture
Model (GMM) of ten two-dimensional normal distributions
N(’Lik), I,k =1,...,10. Here ;Lik) were randomly chosen
within (0, 1) x (0, 1). We drew 100 two-dimensional points
from each Gaussian and obtained 1,000 samples in total. The
true {;Lfkk)} values were unknown to the compared learning
methods, and the learning task was to recover these means
with the estimates {®)} randomly initialized. We used the
maximum likelihood objective, or equivalently the minimum
negative log-likelihood

1000

Jommrh) = ex@; ()

i=1
1000 10 @ _ ()2
==Y g ) exp (—w) el 37)
i=1 j=1

where C = 1000 log (277)'%/? is a constant. We then computed
the partial derivatives with respect to each mean:
e (p))
o
1000 (x — u®) exp (—4I1x? — w®)|2)
= — 0 . (38)
=L e (4O - p0R)
]:

Similarly, the batch gradient was the empirical mean of the
online ones over i, and the Fisher information matrix was
approximated by (25).

The dot-dashed line in Fig. 2 shows the evolution of
the objective when using natural gradient (2) with the
learning rate n = 0.001. Although the negative likelihood
is decreasing most of the time, the optimization is severely
hindered by some unexpected upward jumps. We found
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Fig. 2. Learning a GMM model by natural gradient and principal whitened
gradient in 1000 rounds (top) and in the first 100 rounds (bottom).

17 rises in the curve, among which the most significant
four take place in the 1st, 546th, 856th and 971st rounds.
Consequently the objective cannot converge to a satisfactory
result.

One may think that the n = 0.001 could be too large
for natural gradient updates and turn to a smaller one,
e.g. n = 107*. The training result is shown as the thin solid
curve in Fig. 2, from which we can see that the objective
decreases gradually but slowly. Although the unexpected rises
are avoided, the optimization speed is sacrificed due to the
excessively small learning rate.

The objectives by using principal whitened gradient are also
shown in Fig. 2 (thick solid curve). Here we set n = 0.01 and
seven principal components of the whitened gradient are used in
(3). It can be seen that Jgmm decreases steadily and efficiently.
Within 18 iterations, the loss becomes less than 3,200, which
is much better than the loss levels obtained by the natural
gradient updates. The final objective achieved by PWG updates
is 3,151.40—a value very close to the global optimum 3,154.44
computed by using the true Gaussian means { ;Lfkk) }.

4.3. Wisconsin Diagnostic Breast Cancer Data

We then applied the compared methods on the real
Wisconsin Diagnostic Breast Cancer (WDBC) dataset which
is available in UCI Repository of machine learning databases
(Newman, Hettich, Blake, & Merz, 1998). The dataset consists
of n = 569 instances, each of which has 30 real numeric
attributes. 357 samples are labeled as benign and the other 212
as malignant.

Denote {(x®, ¢;)}, x) € R, ¢ € {benign,malignant}
for the labeled data pairs. We define here the Unconstrained
Informative Discriminant Analysis (UIDA) which seeks a linear
transformation matrix W of size 30 x 2 such that the negative
discrimination

Juma(W) = =Y " log p(cily?) (39)
i=1

is minimized in the transformed space where y) = WTx®,
Here the predictive density p(c;|y®) is estimated by the Parzen
window method:

n
Y dijeij
. i=1
peily?) oc Y (40)
> €ij
j=1
where
exp (5 Iy? —y D) i %)
ej = 2 , 41)
0 i=j

and ¢;; = 1if ¢; = ¢; and O otherwise.

UIDA is a variant of the Informative Discriminant Analysis
(IDA) method which was first discussed in Peltonen and
Kaski (2005). IDA extracts the discriminative components
of data for visualization and recognition. The original IDA
learning requires additional steps to select a proper Parzen
window width, and the transformation matrix W is constrained
to be orthonormal. In this illustrative example we aim at
demonstrating the advantage of PWG over NAT updates in
convergence. We hence remove the orthonormality constraint
for simplicity. By this relaxation, the selection of the
Parzen window width is absorbed into the learning of the
transformation matrix.

PWG is suitable for the UIDA learning since UIDA’s
objective has the form (28). Let k denote a class index. First
we compute the individual gradients

n s
Zl eijB(lJ)
v = vectorize | 1= , (42)
>
e,‘j
j=1
¥ am
. ci=
V;E') — vectorize | £ , (43)
2 eij
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Fig. 3. Objective curves of discriminating WDBC data by using NAT and
PWG.

where BU) = (x@ — x()) (x) — x(j))T W. The batch gradi-
ent is

~ 1 <& . .
_ 2 i) _ @)
V=- » (v §k p(k)V,; ) (44)

i=1

By applying Taylor expansion in analog to the derivation in
Appendix A, we can obtain

Jua(W + tV) — Jua (W)

=5 (%) [G -y p(k)Gk:| (19) + 00?, (45)
k

where
n . AT

G=) vO(v®), (46)
i=1

Gi= > v (v,ﬁ“)T. (47)
ici=k

Then the learning direction is V left-multiplied by the principal
whitened components of G — Y, p(k)Gy.

We tried three different learning rates in the natural gradient
algorithm (2). The results in log-log scale are shown in Fig. 3.
With n = 0.01, the natural gradient updates seem to work well
in the first 110 iterations, but after the 111st iteration Jypa
soars up to the value 2004.7, which is much worse than the
initial value. In the 112nd iteration, the loss even increases
to 7012.9, and the subsequent natural gradient learning never
returns an objective less than 4800. Such unexpected jumps
cannot be avoided either by using n = 0.001, as an upward
jump still occurs after the 1096th round. With an excessively
small learning rate n = 0.0001, although there are no upward
jumps, the learning speed becomes extremely slow and the
UIDA objective is no less than 180 after 10,000 iterations.

By contrast, the proposed PWG method (3) demonstrates
both efficiency and robustness in this learning task. From Fig. 3,

120 T T T T T T
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malignant

100+

80~

60+

40+

dimension 2

20+

—40 ) 1 L L ! L 1
-40 -20 0 20 40 60 80 100 120
dimension 1

120

benign
malignant

100

80

60 [

40

dimension 2

20

—-40 -20 0 20 40 60 80 100 120
dimension 1

Fig. 4. WDBC data in the projected space. Top: 500 NAT updates with n =
0.001. Bottom: 500 PWG updates with n = 0.1.

it can be seen that the negative discrimination keeps decreasing
by using PWG with n = 0.1. We obtained Jympa < 200 after
40 iterations, and the best objective achieved by using PWG is
19.24 after 10,000 iterations.

The projected data are displayed in Fig. 4, where we used
n = 0.001 for NAT and n = 0.1 for PWG. The results are
examined after 500 iterations of both methods. We can see
that the benign and malignant samples mainly distribute along
a narrow line and are heavily mixed after the NAT updates,
whereas the two classes are quite well separated by using the
PWG method. The corresponding objective value is 229.04 by
using NAT and 24.89 by PWG.
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5. Conclusions

We have presented two strategies to improve natural gradient
updates in information geometry. Whitening the tangent vectors
with respect to the Fisher information matrix transforms the
Riemannian space to be locally Euclidean. The resulting
additive update sequence approximates the geodesic flow
towards the optimal solution well. Calculating the learning
direction with only principal components of the whitened
gradients further enhances both efficiency and robustness of
the optimization. We have also pointed out that dimensionality
reduction is indispensable for learning multidimensional linear
transformations. The proposed method has been validated by
simulations in both unsupervised and supervised learning.

There exist several directions to extend the principal
whitened gradient. In this paper we computed the whitening
matrix and the batch gradient separately. Actually one may
achieve a direct and faster method for computing their product,
for example, by adopting online Principal Component Analysis
(Yang, 1995). Another potential extension of the PWG update
rule is to make it to accommodate additional constraints such
as orthonormality or sparseness. Moreover, many conventional
optimization techniques, such as the conjugate gradient, can
be applied in the Euclidean embedding to further improve the
convergence speed.
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Appendix A. Proof of Theorem 1

The proof follows the second order Taylor expansion of the
Kullback-Leibler divergence around 6:

;0
Dki(p; p') = /p(X; 0)10g%

= DxL(p; p) + (rw)Tg(6)

+ %(tu)TH(O)(tu) + o(1%), (A.1)
where
_aDxL(p; p)
g0) = YT s (A2)
and
_ 02Dkw(p; p')
H(@®) = W 01:0, (A.3)

with 8" = 6 + ru.

The first term equals zero by the definition of the divergence.
Suppose the density function fulfills the mild regularity
conditions:

k
/%p(x; 0)dx =0, ke{l,2). (A.4)

The second term also vanishes because

/‘ x: o)alogp(x 0)

—/—p(x #)dx =0

g(9)

(A.5)

Furthermore,

82
H@®) = —/P(X, 0)%10gp(X, 0)dx

_ . 0 (9p(x:0) .
= [P(X, 0)80 < 20 /p(X, 0)> dx

2p(x;0) 1
/p(x ) 90>  p(x;0)

T
1
L P 0) 9 (_p(x;o)) .
00 00

X

32

(ﬂlogp(x;(?)) (alogp(x;o))T
00 20
+ /p(x; 0) d

p*(x; 0)

_ g | 2logp(x;0) (alogmx; 0>)T
- 30 30

= G().

X

(A.6)

Therefore Dgp (p; p') = %t2uTGu + o(t%). We thus obtain

\/D
m KL(p i) = VulGu + hm o(t)
l—)

= [ullg. O (A7)

Appendix B. Proof of Theorem 2

We apply the induction method on r. When r = 1, the
number of columns of ¥ is m. Therefore the column rank of ¥,
rankco (%), is obvious no greater than m xr—r x (r—1)/2 = m.

Suppose rankeo(T* D) < mk — 1) — (k — 1)(k — 2)/2
holds for r = k — 1, k € Z*. Denote w'/) the jth column of

W. Then we can write =D = (B(l), R B(kfl)) with block
matrix representation B) which equals
WX LW () () ()
X1 Zxd wi flxr(n“zxd wi
d=1 d=1
(B.1)
m m
xl(n)zx(gn)w‘(i/) an,(,?) Zx(gn)w(J)
= d=1
Now consider each of the matrices
~ k .
B0 = (B<J>B<k>), =1, k=1 (B.2)
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Notice that the coefficients

p= (wgk),...,w,ﬁf),—ng),...,—w,(,{)> (B.3)
fulfill
oTBYY 0, =1, k-1 (B.4)

Treating the columns as symbolic objects, one can solve the

k — 1 equations (B.4) by for example Gaussian elimination
and then write out the last k — 1 columns of @® as linear
combinations of the first mr — (k — 1) columns. That is, at
most m — (k — 1) linearly independent dimensions can be added
when w®) is appended. The resulting column rank of &% is
therefore no greater than

m(k_l)_uz("_z)m_(k_])
_ k= =D (B.5)
2
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