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Abstract—The affective content of a movie is often considered to
be largely determined by its style and aesthetics. Recently, studies
have attempted to estimate affective movie content with computa-
tional features, but results have been mixed, one of the main rea-
sons being a lack of data on perceptual stylistic and aesthetic at-
tributes of film, which would provide a ground truth for the fea-
tures. The distinctions between energetic and tense arousal as well
as perceived and felt affect are also often neglected. In this study,
we present a data set of ratings by 73 viewers of 83 stylistic, aes-
thetic, and affective attributes for a selection of movie clips con-
taining complete scenes taken from mainstream movies. The affec-
tive attributes include the temporal progression of perceived and
felt valence and arousal within the clips. The data set is aimed to be
used to train algorithms that predict viewer assessments based on
low-level computational features. With this data set, we performed
a baseline study modeling the relation between a large selection
of low-level computational features (i.e., visual, auditory, and tem-
poral) and perceptual stylistic, aesthetic, and affective attributes
of movie clips. Two algorithms were compared in a realistic pre-
diction scenario: linear regression and the neural-network-based
Extreme Learning Machine (ELM). Felt and perceived affect as
well as stylistic attributes were shown to be equally easy to pre-
dict, whereas the prediction of aesthetic attributes failed. The per-
formance of the ELM predictor was overall found to be slightly
better than the linear regression. A feature selection experiment
illustrated that features from all low-level computational modali-
ties, visual, auditory and temporal, contribute to the prediction of
the affect assessments. We have made our assessment data and ex-
tracted computational features publicly available.

Index Terms—Aesthetics, content-based analysis, felt affect,
film, machine learning, modeling, perceived affect, style.

I. INTRODUCTION

OMPUTATIONAL content-based movie analysis pro-
vides a way to describe, summarize and recommend
movies automatically without subjective interpretations [1]
or genre classification [2], which often fail to describe the
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stylistic, aesthetic and affective topology of movies accurately.
These elements of film expression are interrelated [3], and in
particular, the affective content of a movie is often considered
to be largely determined by its style and aesthetics [4], [5]. It
has been claimed that style, aesthetics and affect communicate
more strongly with viewers than high-level semantic concepts
such as plot or theme [6]. As such, they are crucial in terms of
the overall artistic impression made by a movie [7].

Recently, several studies (e.g. [8], [9]) have attempted to esti-
mate affective movie content with computational features based
on attributes of film style. Computational models of affective
content would be helpful in movie classification and recommen-
dation systems, even the most sophisticated of which still rely on
user-generated metadata such as star ratings [10]. Results have,
however, been mixed, and three possible reasons can be sug-
gested: first, a lack of data on perceptual stylistic and aesthetic
movie content; second, simplistic modeling of affective con-
tent; and third, direct operationalization of perceptual stylistic
attributes as computational features.

The purpose of this study is to compare predictions of
stylistic, aesthetic and affective movie content by low-level
computational features that can be automatically extracted
from a movie clip. Addressing the aforementioned shortcom-
ings of previous studies, the prediction is based on ground
truth data obtained in a subjective assessment of movie clips
representing a wide range of stylistic, aesthetic and affective
content. Previous studies have typically modeled affect with
a two-dimensional valence—arousal affect space [11], where
valence describes the pleasurability and arousal the alertness
associated with an affect. In contrast, the current study utilizes
a three-dimensional space [12] containing, in addition to the
valence dimension, two distinct arousal dimensions, energetic
arousal (from tired to awake) and tense arousal (from calm
to tense), to obtain more detailed affect data. The study also
takes into account the distinction between perceived and felt
affect; that is, between the affect expressed in a movie and
the viewer’s affective response [13], which have been shown
[14] to differ both in terms of inter-rater agreement and their
relation to stylistic attributes. Lastly, the study avoids making
a priori assumptions about the computational equivalents of
specific perceptual stylistic attributes (e.g. by imposing a single
computational measure for the attribute colorfulness). Two pre-
diction methods are compared: multiple linear regression and
the recent neural-network-based Extreme Learning Machine
(ELM) [15] algorithm.
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The study aims to answer five research questions. First, which
types of movie attributes—stylistic, aesthetic or affective—can be
most effectively predicted by computational features? Second,
is the prediction more effective for perceived or felt affect?
Third, how do the predictions obtained with ELM compare to
those obtained with linear regression? Fourth, how does the af-
fective prediction performance change if one targets temporally
shorter segments? And fifth, does feature selection affect the ac-
curacy of affective content prediction?

The article is organized as follows. First, the theoretical basis
for the collection of the ground truth data is discussed; style and
aesthetics are covered in Section II and affect in Section III.
Then, an overview of previous studies on affective movie con-
tent prediction, which provides the basis for the selection of the
low-level features, is given in Section IV. The current study’s
assessment of the stylistic, aesthetic and affective content of
movie clips in an experimental setup is presented in Section V,
and the prediction of these assessments by computational fea-
tures in Section VI. Results are discussed in Section VII and
conclusions are drawn in Section VIII.

II. STYLE AND AESTHETICS

Style and aesthetics are related concepts in that the aesthetic
composition of a movie is understood to be largely determined
by its style [7], [16]. In this sense, style is an aspect of aes-
thetics, and indeed, some studies (e.g. [3]) conflate the terms by
including stylistic impressions in their definition of aesthetics.
In the context of the current study, however, the two concepts
are distinguished by their degree of abstraction. Here, film style
is defined as a set of audiovisual means of narration and elicita-
tion of emotions based on specific techniques such as camera-
work and the use of color. Aesthetics, on the other hand, covers
more abstract impressions (e.g. beauty) that are irreducible to
a specific technique. In essence, aesthetics is here used to de-
scribe, following [17], the aesthetic effects of movies, and style
the means by which they are achieved.

A. Style

Film style can be split into three modalities: visual, auditory
and temporal [18]. Since film is an evolving art form, an ex-
haustive list of its stylistic attributes cannot be given, but certain
attributes can be considered central due to their repeated expo-
sure in film theory textbooks (e.g. [4], [18]). For visual style,
which concerns properties of the image, these include lighting,
contrast, color and framing. For auditory style, which concerns
properties of the soundtrack, they include loudness as well as the
use of music, dialogue and sound effects. Lastly, for temporal
style, which concerns variations of the visual and auditory at-
tributes in time, they include, in addition to temporal manipula-
tion of the aforementioned features, shot duration, shot motion
and rhythm. These are discussed, along with their possible com-
putational estimates, in Section IV-A.

Whereas much has been written about the relation between
film emotion and narrative structure, theme and characters [1],
[19], there is a notable lack of studies on the influence of specific
stylistic attributes on affect in film. Still, relations between some
of the aforementioned attributes and affect have been shown for
other media. For example, valence has been shown to increase
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with image brightness and saturation [20] and with music tempo
[21], and also to be affected in various ways by the rhythm and
pitch of human speech [22]. Arousal has been shown to decrease
with image brightness and increase with saturation [20], with
the loudness and rate of speech [22], with the loudness of music
(including an increase in tense arousal) [23] and with the inten-
sity of video motion [24].

Previous studies indicate that both the visual and auditory
modalities contribute to the elicitation of emotions in film.
Music has been shown to be a particularly strong affect cue,
having been found to influence the connotative meaning of a
movie clip [25] and predict its perceived emotion ratings [26].

B. Aesthetics

Like style, film aesthetics defies exhaustive definition,
partly because of the abstract nature of the concept itself,
and partly because of the scarcity of studies on film-specific
aesthetic terms. For practical purposes, however, the most
commonly-used attributes in studies across various art forms
can be identified. Chief among them is beauty, whose preva-
lence in studies on aesthetic terms has been described “the
primacy of beauty” [27]. Other common attributes include
complexity, comprehensibility (also called understandability),
interestingness, naturalness, novelty (encompassing familiarity,
predictability and suddenness) and pleasantness [3], [28]-[30].

The difficulty of defining a set of aesthetic attributes is com-
pounded by domain-specificity in aesthetic word usage. How-
ever, according to [31], word usage in aesthetic descriptions of
visual art can be generalized to film, with film-specific words
mostly related to affect. Since aesthetics is kept distinct from
affect (Section III) in the current study, it is assumed that the
aforementioned attributes will suffice for its purposes.

Though aesthetics and affect are here studied separately, it is
recognized that they are related concepts. Aesthetic appraisal
of an artwork is thought to influence the emotions elicited by
it [30], and some definitions of aesthetic impression encompass
affective experience (e.g. [29], [32]). Lastly, according to [16],
the overall aesthetic composition of a movie is largely deter-
mined by its mood (that is, by its affective content), which is in
turn created with various “cinematic-aesthetic devices”.

III. AFFECT

Affective science is concerned with the study of affect and
emotion. From a psychological perspective, an emotion is a con-
scious affective state marked by cognitive appraisal, while af-
fect is a broader category encompassing feelings, emotions and
moods [33]. Emotion can thus be seen as a subset of affect.
However, the two terms are often used interchangeably.

Relevant models of affect are presented in Section III-A.
The distinction between perceived and felt affect is discussed
in Section III-B.

A. Models of Affect

Several models of affect have been developed to distinguish
between emotions and to determine how they relate to each
other. These are typically based on either categorical or dimen-
sional emotion theories [34]. Both approaches appear regularly
in studies on affective movie content prediction (Section IV-B).
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Categorical models of affect are based on a theory of emo-
tions as discrete states governed by distinct neural processes
[34]. Categorical models are typically concerned with so-called
basic emotions [35], which differ from one another in terms
of their physiology, appraisal and behavioral response. Various
lists of basic emotions have been proposed, the most influential
being Paul Ekman’s list consisting of happiness, surprise, fear,
anger, disgust—contempt and sadness [35].

A theory based on discrete emotions has been claimed to be
ineffective in describing nuances between affective states [34].
As a result, categorical emotion theory has lost ground to di-
mensional emotion theory, which sees emotions as arising from
overlapping neurophysiological systems, thought of as dimen-
sions of a common affective space. The valence—arousal-con-
trol model of affect [11] has proven particularly influential. Va-
lence (from negative to positive) describes the pleasurability of
an affect, arousal (from calm to aroused) describes the alertness
associated with it, and control describes the degree to which the
affect is within the subject’s control. Control has been shown to
play only a minor role in affect [36], leading to the introduction
of a simpler two-dimensional circumplex model of affect [37]
on which all affective states are expressed as linear combina-
tions of valence and arousal.

The use of a single arousal dimension was challenged in
[12], with two distinct arousal dimensions proposed instead:
energetic arousal (awake—tired) and tense arousal (calm—tense).
This has led to the proposal of a three-dimensional model with
one hedonic tone (valence) dimension and two arousal dimen-
sions [38]. It was shown in [39] that energetic and tense arousal
are independent and not mixtures of valence and a single
arousal dimension, and that more accurate affect modeling can
be achieved with two arousal dimensions.

B. Perceived and Felt Affect

An important distinction in affect modeling is that between
perceived and felt affect; that is, between the affect expressed
in a stimulus (such as a movie) as perceived by the viewer, and
the viewer’s personal affective response to the stimulus [40]. In
this sense, perceived and felt affect are distinguished from one
another by the objects of their focus: the former is a property
of the movie, and the latter is a property of the viewer. The per-
ceived affect of a movie can be thought of as its mood, that is,
its “affective character” [41] that determines the “aesthetic com-
position of a cinematic world” [16] and facilitates emotional re-
sponses in the viewer [5].

The relation between the two types of affect has mostly been
studied in musicology, with the general finding that perceived
affect ratings are more objective—and thus more generaliz-
able—than felt affect ratings. In [40], perceived and felt emotion
ratings of classical music were found to be mostly similar,
although felt emotion was stronger than perceived emotion
in connection with valence and weaker in connection with
arousal. Perceived affect showed greater inter-rater agreement,
indicating that it is less sensitive to individual differences
between viewers. On the other hand, in a recent multimedia
study [42] perceived and felt basic emotion ratings of non-film
video clips were found to be highly consistent.
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Studies on the relation between perceived and felt affect in
film are scarce, but recent results suggest that perceived affect
shows more promise in terms of computational affective content
prediction. In [43], an affect space mixing elements of perceived
and felt affect was proposed to this end. The authors found
greater inter-rater agreement with this space than with a quan-
tized version of the circumplex model of affect [37]. Also, in
[14], perceived and felt affect ratings of movie clips were com-
pared on the hedonic tone—energetic arousal-tense arousal space
proposed in [38]. Perceived affect ratings occupied a greater
portion of the affect space and showed greater inter-rater agree-
ment, thus providing better separation of affect ratings. The
study also found stylistic attributes to have a stronger relation
with perceived affect, suggesting that style-based computational
prediction of affective movie content should focus on perceived
affect. Lastly, in [44] it was suggested that perceived affect
could be used to estimate an individual viewer’s affective re-
sponse with the help of a viewer profile, which would provide
a mapping between the content of a movie and the preferences
of the viewer.

IV. AFFECTIVE MOVIE CONTENT PREDICTION

A. Features

The theoretical foundations and performance of visual, audi-
tory and temporal features used recently in studies on affective
movie content prediction are discussed below. The reader is re-
ferred to the original publications for technical details. In the
following, frame refers to a single image and shot to a sequence
of frames between two edit points [18].

1) Visual Features: Visual features can be extracted from a
single frame. They are typically related to either color or bright-
ness, although shot size has also been used recently.

Color is considered one of the most expressive devices in vi-
sual narration [20]. It is used in film to direct attention, create
associations and support narrative development [18]. Conse-
quently, many studies on affective content prediction include
color features, such as hue histogram [45], [46], dominant color
[9], [47], color variance [46], [48], saturation [2], [45], [49]
and color energy [2], [49]. Some of these also appear in the
MPEG-7 standard [50]. However, the performance of color fea-
tures has often been moderate at best. In [51], light source color
was found to be poorly suited for valence modeling, and in [9],
the removal of color features improved the quality of valence
modeling. Also, in [2] color energy performed poorly overall,
except when highly saturated colors were present.

Bright images are generally associated with pleasant emo-
tions and dark images with unpleasant ones [18], [20], making
brightness (or lightness in the CIE Luv space) an effective pre-
dictor of valence. Median lightness and a lightness histogram
featured in [46], and in [49] brightness was one of the five visual
features used. The proportion of pixels whose brightness falls
below a threshold has sometimes been expressed as a shadow
proportion measure [2], [46]. The product of the mean and stan-
dard deviation of a frame’s grey level values can also be used
to estimate its lighting key, ranging from bright, low-contrast
lighting to dark, high-contrast lighting [48].



2088

Framing, an important attribute of visual style, is determined
by camera angle, level and height, as well as shot size [18].
However, only the last of these has so far been successfully
modeled computationally [2], [52]. As such, framing remains
largely unaccounted for in affective movie content prediction.

2) Aural Features: Since images and sounds engage sepa-
rate senses, sounds can be used to influence the viewer’s emo-
tions independently of images [18]. Five auditory features are
presented here: volume, zero-crossing rate, sound energy, fre-
quency and mel-frequency cepstral coefficients.

Volume, which describes the perceived amplitude of sound,
is used in movies to direct attention and create affective impres-
sions [18]. Volume has a proven association with arousal [53],
[54], but a volume feature is quite rare in computational studies.
Still, it can be used to compute other features, such as volume
standard deviation and dynamic range [47].

Zero-crossing rate is a simple but common [46], [47], [49]
measure of the rate at which the signal changes sign between
positive and negative. It has been used in speech recognition
and shown to be able to characterize aspects of music, especially
percussive sounds [55].

Sound energy is another widely-used [2], [46], [47], [49],
[51], [56], [57] feature closely related to volume and often as-
sociated with arousal [44]. It is typically defined as the sum
of the spectral values of an audio sequence’s power spectrum.
Thresholding allows it to be used in different ways; in [44], only
frequencies above 700 Hz were considered, and in [2], thresh-
olding was used to detect periods of silence.

The short-time Fourier transform of an audio sequence
allows the computation of several frequency-domain features
[58]. These include the spectral centroid and frequency band-
width measures, which describe the “center of mass” of the
frequency spectrum and the range of the sound’s frequencies,
respectively [46], [47], [49]. Both of these are related to the
sound’s timbre, that is, its tonal quality or “brightness” [59].

Mel-frequency cepstral coefficients (MFCC) represent the
amplitudes of a sound’s short-term power spectrum. They re-
semble properties of the human auditory system [47] and have
proven effective in several studies [2], [56]. In [46], MFCCs
were among the best valence and arousal estimates.

3) Temporal Features: In addition to temporal variations in
visual and auditory features [2], certain computational features
can be considered inherently temporal. Two such features are
presented here: shot duration and shot motion, along with a dis-
cussion of their use as proxies for rhythm.

The primary form of film expression has been argued to be
movement [60], created by editing and shot motion [18]. Editing
influences shot duration and the change in space or time across
shots [18]. Since detecting the latter requires a semantic inter-
pretation of the content, it is not considered in most studies. Shot
duration, however, has been included in practically all recent
studies [2], [44]-[49], [56], [61]. It is most commonly expressed
as mean duration, but median duration [45] and duration vari-
ance [62] have also been used.

Shot motion can result from either camera or object motion
[18]. It is commonly computed between adjacent frames, typ-
ically with a pixel- or block-level difference measure [2], [9],
[471, [48], [62] or motion vectors [44], [46], [51], [56], [63].
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The name of the feature varies, with motion activity, intensity
and magnitude all appearing regularly. In [9], the removal of the
motion feature from the feature set had no significant effect, but
in [2], a feature based on weighted pixel-based shot motion was
ranked the best visual feature used.

Tempo, which operates on a slow—fast scale [64], is oc-
casionally used as a proxy for the more complex concept of
rhythm, which can be slow or fast, linear or non-linear, fluid or
fitful [65], [66], and which is yet to be successfully estimated
computationally. Both shot duration [44] and motion [67], or a
weighted combination of both [51], have been used to model
visual tempo. They can also be combined with an auditory
tempo feature to model overall tempo [63].

B. Affect Modeling

Both categorical and dimensional models have been used in
affective movie content prediction. With categorical models,
computational features—or combinations thereof—are mapped
directly to specific emotions. Ekman’s basic emotions are
common [2], [9], [62], [68], though emotions rarely repre-
sented in movies are sometimes omitted (e.g. disgust [2]).

Dimensional models, particularly the valence—arousal model,
have also been widely adopted [8], [9], [44], [69], with gener-
ally better prediction results than with categorical models. In
fact, many studies that use categorical models (e.g. [9], [62])
rely on dimensional models as an intermediate stage in the
mapping between low-level features and discrete emotions.
The popularity of dimensional models can be attributed to
well-established methods for the acquisition of valence and
arousal ratings, from self-assessment to psychophysiological
measurements [34], and the successful mapping from dimen-
sional data to Ekman’s basic emotions (e.g. [2], [69]).

C. Prediction Methods

Basic affective content prediction has typically involved
a regression model in which individual feature weights are
either determined manually [44] or based on image parameters,
such as a saliency map [63]. Recently, though, more advanced
methods have become more common, including naive Bayes
classifiers [8], Dynamic Bayesian Networks [62], relevance
vector machines [46], Hidden Markov Models (HMM) [9],
[45], [70], Gaussian mixture models [69] and generalized
state-space models [57]. Neural-network-based methods are
more rare, but in [47], a multilayer Perceptron algorithm was
applied to genre classification based on low-level features.

The lack of publicly available benchmarking data sets of
movie clips makes comparing feature extraction and prediction
methods difficult [71]. Since replicating other researchers’
work is seldom possible, carrying out reliable comparisons is
infeasible without common data sets. The recently-published
LIRIS-ACCEDE data set [72] provides felt affect ratings for
clips taken from movies shared under Creative Commons
licenses, but none for commercially-released movies. As such,
its applicability to feature extraction from, for example, main-
stream Hollywood movies is questionable. The set also contains
no ratings on stylistic or aesthetic attributes. In response to this
need, we have made our assessment and computational feature
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TABLE 1
THE MoOVIE CLIPS USED IN THE USER STUDY. TIMECODES ARE
TAKEN FROM NTSC DVD RELEASES

# Movie title Year Timecode  Length Shots
[h:mm:ss]  [m:ss]

1 500 Days of Summer 2009  0:31:20 2:04 23

2 Amelie 2001 2:00:35 1:36 15

3 Army of Shadows 1969  0:38:40 1:54 15

4 Before Sunrise 1995  1:31:57 2:33 31

5 Blue Velvet 1986  1:55:32 2:21 16

6 Children of Men 2006  0:26:00 2:07 1

7 Days of Heaven 1978 0:04:05 1:37 16

8 ET 1982 1:47:42 1:10 25

9 Punch-Drunk Love 2002  1:06:30 1:16 7
Raiders of the . .

10 Lost Ark 1981  0:07:45 2:09 59
The Good, the Bad el .

11 and the Ugly 1966  2:45:49 2:17 61
The Night of cp. .

12 the Hunter 1955  0:56:30 1:58 15

13 The Shining 1980  0:34:59 1:56 19

14 Vertigo 1958  0:26:00 1:45 18

data publicly available for other researchers to use in comparing
their methods to our results (see Section V-E).

V. DATA COLLECTION

To obtain data on perceptual stylistic, aesthetic and affective
content in movies, we conducted a user study whose participants
were shown a series of movie clips and asked to assess their
stylistic, aesthetic and affective attributes. These ratings are then
used to train the algorithms used in the computational prediction
experiment (Section VI). For a detailed discussion of the user
study, the reader is referred to [14].

A. Participants

In all, 73 participants (44 women, 29 men, M,z = 27.1
years, SD,gz. = 5.4 years) took part in the study. Most were uni-
versity students, from various fields. Thirty-eight percent were
experts in film. A participant was considered an expert if he or
she had studied film and/or had filmmaking as a hobby. Fluency
in English was required of the participants since the movie clips
were spoken or subtitled in English.

B. Movie Clips

The sample consisted of 14 movie clips 1-2.5 minutes in
length (Table I). They were chosen from a set of 22 candidate
clips based on their perceived affect ratings obtained in a pilot
study. Due to the large number of participants in the user study,
two sets of seven clips with similarly wide affect distributions
were chosen, with the sets shown to different groups.

The clips were taken from mainstream movies made between
1955 and 2009 with an average of 180,000 IMDb ratings and an
average rating of 8.15/10.1 They encompassed several genres,
such as action, drama, horror and romance. They also varied
stylistically in terms of, for example, composition, colors, sound
and editing. Nine clips (3—7, 10, 12—14) contained speech; ten
(1, 5, 7-14) contained music. All clips were presented in their
original language, clip 3 (in French) with subtitles. Each clip
contained a complete scene that could be understood without
knowledge of the preceding events.

[Online]. Available: http://www.imdb.com.
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TABLE II
USER STUDY GROUPS, SESSIONS, PARTICIPANTS AND CLIPS
. Experts Female  Clips in

Group  Session N [%] [%] viewing order

Expert 15 67 73
! Non-expert 19 5 53 2,6,4,7,12, 11, 1

Expert 20 75 55
2 Non-expert 19 11 63 8,3,9,13,14,5,10

C. Procedure

Participants were split into two groups, each viewing a dis-
tinct set of seven movie clips. A separate session was held tar-
geting the expert and non-expert participants in either group,
resulting in four sessions in all (Table II).

The study was conducted in a movie theater. Participants
rated the clips in terms of perceived and felt affect as well as
style and aesthetics. Felt affect was rated before perceived af-
fect to prevent the latter, more objective, rating from influencing
the former, and because the duration of an emotional response
is limited [33].

D. Assessments

Participants used the UWIST Mood Adjective Checklist [38]
to produce, for each clip, a rating of the affect expressed in it
(perceived affect) and a rating of their personal affective re-
sponse to it (felt affect), on a discrete scale of [1], [4]. Using the
procedure in [38], we transformed the ratings into values in the
hedonic tone (HT, corresponding to valence), energetic arousal
(EA) and tense arousal (TA) dimensions. These ratings are on
a scale of [—1, 1], from negative to positive, tired to energetic
and calm to tense, respectively [12].

Using low-level features to detect events within movie scenes
was recently shown to be feasible [73]. As these events can be
expected to influence the affect ratings [5], we asked the par-
ticipants to plot the progression of the perceived and felt affect
within each clip in time—affect plots. This allowed us to study
whether more temporally detailed affect data can improve the
prediction of the affective content of the clips.

Each participant drew two curves for both perceived and felt
affect: one for hedonic tone (from negative to positive) and
one for general arousal (from low to high). We scanned the
hand-drawn curves and transformed them to discrete numeric
values on a scale of [—1, 1]. Since participants used the scales
differently, we normalized each participant’s curves to use the
full scale, separately for hedonic tone and arousal. An example
of the averaged hedonic tone and arousal curves is shown for
clip 6 in Fig. 1. The onset of a violent event 25 seconds (20%)
into the clip is reflected in the perceived hedonic tone curve
[Fig. 1(a)] by a sudden drop, and by a corresponding increase in
arousal [Fig. 1(c)]. The effect is similar, but less clearly defined,
for felt affect [Figs. 1(b), 1(d)].

For the computational prediction, we split the curves for
each clip into four temporal segments of equal duration and
computed mean values for each segment across participants.
These are used to compare the accuracy of segment-based
clip affect prediction to prediction based on movie-wise affect
ratings. For this purpose, we also transformed participants’
affect ratings into general arousal values, from [—1, 1] [38].
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Fig. 1. Averaged affect plots for clip 6. Top row: hedonic tone (from negative
to positive) of (a) perceived and (b) felt affect. Bottom row: arousal (from low to
high) of (c) perceived and (d) felt affect. The grey areas denote 95% confidence
intervals.

Since the curves were drawn after the viewing of each clip, they
are limited in their temporal precision, making them unsuitable
for determining absolute affect changes at specific moments in
time. However, by studying the curves, we found four segments
to be sufficient in illustrating their overall trends. Also, in [73],
the average duration of a film event was estimated to be around
I minute, making higher-resolution segmentation unfounded
from a narrative standpoint. For these reasons, we limited the
number of segments to four per clip, whereby the shortest
segment (for clip 8) was 18 seconds long.

In the style and aesthetics assessment, participants rated the
applicability of 13 stylistic and 14 aesthetic attributes (Table IIT)
to each clip on a discrete scale of [1], [5]. The attributes were
presented without category or modality labels. They contained
semantic opposites, such as brightness and darkness. These
were rated separately since they are not necessarily mutually
exclusive [74]; for example, a clip could be considered both
beautiful and ugly for different reasons.

E. Benchmark Data

We have made our data publicly available at http://re-
search.ics.aalto.fi/cbir/data/ to allow other researchers to
compare their methods with our baseline results. The data con-
sists of the human ratings (Section V-D) and the computational
features (Section VI-A). The movie clips can be obtained using
the information in Table I.

The assessment data is provided in two forms: in a raw form
containing assessments with missing values, marked “NAN”
(not-a-number), and in a cleaned form where, for each (movie,
participant) pair, all assessments with missing values have been
removed. The raw form contains assessments for 42 001 (movie,
participant, attribute) triplets and the cleaned form for 38 844
triplets. In our experiment we used the cleaned set.

To our knowledge, this is the first publicly available data set
of ratings not just of the affective content of movie clips (all
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TABLE 111
STYLISTIC AND AESTHETIC ATTRIBUTES ASSESSED IN THE USER STUDY
Category  Modality  Attributes
Visual Brightness Colorfulness
Colorlessness Darkness
Auditory Dialogue-basedness  Loudness
Stylistic Music-basedness Quietness
Fastness Fitfulness
Temporal  Rhythmicity Slowness
Smoothness
Beauty Complexity
Familiarity Interestingness
Pleasantness Predictability
Aesthetic Simplicity Tiresomeness
Ugliness Unclarity
Understandability Unfamiliarity
Unpleasantness Unpredictability

from mainstream movies), but also their stylistic and aesthetic
attributes. The set also contains hedonic tone and arousal curve
data for each clip and participant, useful for studying the effect
of temporal changes on affect within movie scenes. The set is
expected to facilitate the further development and evaluation of
computational descriptors of perceptual attributes.

VI. ASSESSMENT PREDICTION EXPERIMENT

A. Computational Features

We automatically extracted a large set of computational fea-
tures from the clips. They were required to be closely analogous
to those described in Section IV-A, easy to implement, and fast
to extract automatically. We do not propose any novel features
especially designed for the current prediction task. Instead, we
use a large number of conventional features, with a total dimen-
sionality of 192, among which the prediction algorithms can
make use of the most beneficial ones.

Table IV lists the computational features used. The second
column gives the number of components in each feature, i.c.
its dimensionality. Visual features were first calculated for each
frame and auditory features for each second of audio, and then
expressed as the mean of these values averaged over the whole
clip. The features marked with an asterisk (*) were also rep-
resented by two additional values: their standard deviation and
mean-normalized deviation over the whole clip. The mean-nor-
malized deviation was calculated as the ratio between the stan-
dard deviation and the mean to compensate for the fact that fea-
tures with large average values often also exhibit large variation.
The features are discussed in more detail below.

Visual Features: We used the average intensity value over all
frames as a measure of overall brightness. We also calculated
the variation in brightness between different parts of a frame
divided into five zones (Fig. 2) to characterize the intra-frame
contrast between spatial areas. Colors were represented in either
the RGB, CIE Luv or HSV color space depending on the feature.
Dominant color was calculated as in [50]. The spatial zones of
Fig. 2 were also used to describe spatial color variations. Lastly,
we used a five-bin brightness (intensity) histogram as a repre-
sentation of lighting key. Its first bin can be interpreted as the
shadow proportion.

Auditory Features: We used the traditional MFCC and
zero-crossing rate features, as well as the audio power spectrum



TARVAINEN et al.: CONTENT-BASED PREDICTION OF MOVIE STYLE, AESTHETICS, AND AFFECT

2091

TABLE 1V
COMPUTATIONAL FEATURES USED IN THE PREDICTION, ALONG WITH THEIR BASIC DIMENSIONALITIES AND DESCRIPTIONS.
FEATURES MARKED WITH AN ASTERISK (*) WERE REPRESENTED BY TRIPLETS CONSISTING OF THE MEAN, THE
STANDARD DEVIATION AND THE MEAN-NORMALIZED DEVIATION OF THE VALUE OVER THE WHOLE CLIP

Fig. 2. Spatial image zones used in visual features.

as a representation of both the overall volume and the energy
distribution over different octave-wide frequency bands. Also,
in addition to our own feature implementations, we extracted
four music features—brightness, event density, mode and
tempo—using the Music Information Retrieval (MIR) Toolbox
[75]. These features were not explicitly targeted for the music
sequences in the clips, nor were they tuned to describe the
auditory content of the clips in question.

Temporal Features: We used the shot number, average shot
duration and variation of shot duration features. As the number
and duration of clips in our study was limited, for greater accu-
racy, we determined the features with manually annotated shot
boundaries instead of automatic shot boundary detection, which
is often considered a solved technical problem [76]. Also, to
express the overall motion in the clip, we used the MPEG-7
Motion Activity feature [50], which has been split into its four
components in Table IV: motion intensity, motion direction, and
spatial and temporal motion distribution. Lastly, we modeled the
difference between adjacent video frames with three measures:
the raw average pixel-wise RGB difference, the Euclidean dis-
tance between Census Transform (Centrist) [77] features and
the average measured movement length of matching SURF key-
points [78] between the frames.

Name | Dim. | Technical description
Visual features
Brightness * 1 average intensity value
Brightness variation * 1 standard deviation of intensity over the five zones of Figure 2
Color variation * 1 standard deviation of values over all RGB channels and the five zones of Figure 2
Average colors * 15 average RGB in the five zones of Figure 2
Dominant colors * 6 CIE Luv components of the two dominant colors
Brightness histogram * 5 proportions of intensity values in 20 % bins
Saturation histogram * b proportions of saturation values in 20 % bins
Auditory features
Overall volume * 1 average sound energy
Frequency band energy * 6 energy in octave frequency bands up to 22 kHz
MFCC * 13 Mel-frequency cepstral coefficients
Zero-crossing rate * 1 number of sign changes in the audio signal
Music brightness 1 percentage of energy in frequencies above 1500 Hz
Music event density 1 average frequency of events, i.e. the number of note onsets per second
Music mode 1 estimate of modality (major vs. minor) as a numerical value
Music tempo 1 estimate of tempo (beats per minute) based on periodicities in the onset detection curve
Temporal features
Shot duration 1 average shot duration
Shot number 1 number of shots
Variation of shot duration 1 standard deviation of shot durations
Motion intensity 1 overall intensity of motion activity
Motion direction 2 dominant direction of motion activity (x and y)
Spatial motion distribution 3 number and size of regions with motion activity
Temporal motion distribution 5 variation of motion activity over shot duration
Between-frame difference * 3 pixel-wise RGB difference, difference in Centrist features, keypoint movement length
1 B. Prediction Methods
Our goal is to predict the style, aesthetics and affect ratings
2 3 4

of new movie clips based only on human ratings of the training
set clips and automatically extracted computational features. To
this end, we use two methods, linear regression and the non-
linear ELM, that try to learn the relations between low-level
features and human ratings. The data collected in the user study
(Section V) is used to train and test the predictors.

Both linear regression and ELM are conventional,
well-known methods. Their use is motivated by the lim-
ited number of clips we have for training the predictors. Being
simple models, they can be expected to work better in these
conditions than more complex models, such as Support Vector
Regression [79], which generally require more training sam-
ples. Due to its simplicity and widespread use in machine
learning applications, linear regression can be considered the
reference method here. ELM, on the other hand, is a recent and
popular algorithm that is a notably fast non-linear classification
method [15], making it suitable for comparison with linear
regression.

Let us assume that we have n training clips, for which we
have some computational feature vectors xj, Xa. . . ., x,, and the

corresponding human ratings 1, y2. - . . , ¥, of some particular
attribute. We then wish to form a prediction model of the relation
y = f(x) that can be used to predict the human rating when
the computational features are known. Each feature vector x; is

assumed to consist of p components:
X; = [Ti1, Ti2, - -5 Tip) - (D

In our experiments, all the features listed in Table IV were con-
catenated, leading to feature vectors x; with p = 192.
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Linear Regression: A multiple linear regression model as-
sumes a linear relation; for: = 1,....,n

¥ = Brwin + Bawin + .. 4 Bpwip + v + & (2)
which can be written more concisely in matrix form as
y=XB+e¢ 3)

where the ratings y; have been collected in a vector

T

y= [y17y27~~~ayn]

and the prediction errors ¢; in

€= [617623"'7€n}T'

Likewise, the feature vectors for each clip have been stacked
as rows of the matrix X, with the last column set to ones to
accommodate the intercept v, i.e.

11 T 1
921 -.. T2p 1
X=1 . . ) ; 4)
. .. . 1
Lol Tpp 1
/8: [Blvﬁ?v-"a/ﬁpf}I]T' (5)

The least-squares solution 3 for # minimizes the prediction
error ||¢]|* = |ly —XB||?. For solving the least-squares problem
we used the DGELSD routine from the LAPACK library [80]
via the Python numpy package for scientific computing2. This
approach first reduces the matrix X into a bidiagonal form
using Householder transformations. The resulting bidiagonal
least-squares problem is solved using a divide and conquer
approach, and the solution can be transformed back into the
original problem by applying the reverse Householder trans-
formations. The routine uses a regularization that imposes a
cut-off ratio for small singular values of X. We set the cut-off
ratio to 0.05 times the largest singular value.

Once @ is determined, one can predict the ratings of new
movie clips for which computational features x,. have been
automatically extracted, simply by

Ynew — flinrcg(xncw) - Xnowﬂ~ (6)

Extreme Learning Machine (ELM): In essence, ELM [15]isa
non-linear single-hidden-layer feed-forward network where the
parameters of the hidden layer are simply randomized and thus
need no training. The model of the input-output dependency of
ELM is

L
Y = z hi(x:)B; + €. (7
j=1
or, in matrix form,
y=HB+e¢ (8)

2http://www.numpy.org/
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where
hi(x1) hr(x1)
H=| ©)
hi(x,) hr(xn)
and B = [B1,...,5c]" are the output weights between the

hidden layer of L nodes and the output node. The non-linear
hidden node output function is given in the form

hj(x) = g(x;a;,b;) (10)

where g(+) is typically a sigmoid or a radial basis function (RBF)
and the parameters are randomly generated. In the experiments
presented here, we have used the Gaussian form

a2
g(x;a;,b;) = exp (%M)
¢

J

(11)
Finally, one can solve for ﬁ as in the previous section, to get

(12)

L ||x —aj||?
= E exp (—bj4new 3 Z )/3]'. (13)
cs
=1

J

L
Ynew = fELI\rI(Xnew) = Z hJ (Xnew)ﬁj
=1

We experimented with different numbers 7. of hidden nodes.
The prediction results improved with an increased number of
nodes; however, around L. = 20 the benefit of adding nodes
became relatively small. We opted to use L = 100, but in time-
critical applications a smaller value can be used, such as L. = 50,
which gives results almost as good in a shorter time.

We used David Lambert’s Python implementation of ELM3.
The values a; where randomly uniformly sampled from within
the bounding hyperrectangle of the inputs, ¢; = max(||z —
a;|)/V2L and b; = 0.01 was selected by experimentation.

C. Evaluation Procedure and Metrics

Since our sample (n = 14) of clips is quite small, splitting it
into fixed training and test sets would be infeasible. Instead, we
use an n.-fold leave-one-out approach where one clip is excluded
in turn and the remaining » — 1 clips are used for training. The
excluded clip is then used to test the predictor.

Our basic evaluation metric is the absolute difference be-
tween the predicted value ; = ynew, from either (6) or (12), and
the ground truth value y;, i.e. ¢; = |§; — y;|. The ground truth is
the mean of the human ratings for each clip, which number be-
tween 27 and 39, depending on the assessed clip and attribute.
The evaluation metric for a single attribute is the average of e;
over all n clips, i.e. over each partition of leaving one clip out
for testing and using the others for training.

Comparing the performance of the prediction between dif-
ferent categories of assessed attributes is difficult due to the dif-
fering statistics of the human ratings. First, attributes may have
different between-movie deviations oy, 1.e. some stylistic, aes-
thetic or affective attributes are more widely dispersed between

3https://github.com/dclambert/Python-ELM



TARVAINEN et al.: CONTENT-BASED PREDICTION OF MOVIE STYLE, AESTHETICS, AND AFFECT

movies than others. The between-movie deviation is measured
as the standard deviation of the mean ratings of different movies.
For example, if perceived arousal is generally rated higher than
felt arousal, the prediction errors of the former can similarly ap-
pear greater than those of the latter.

Second, the within-movie deviation o, can also be substan-
tially different for different attributes. The value of &, reflects
how much the participants disagreed in their ratings. If the rat-
ings vary greatly for a given clip, the computational prediction
for it cannot be expected to be very accurate either.

In evaluating the prediction results, we analyze these two de-
viations and normalize the errors with respect to ;. We also
compare the absolute prediction errors against the absolute error
d of another prediction, which we here call naive prediction,
being simply the average of the human-provided attribute values
of the n — 1 training samples. This is useful as a baseline for
comparison: if the prediction method used performs better than
the naive prediction, it can be said to have learned from the low-
level computational features something relevant that cannot be
inferred simply from the clip ratings.

In addition to the clip-level analysis, we also predict hedonic
tone and general arousal ratings based on the four temporal seg-
ments acquired from the affect curves (see Section V-D). In this
case, each segment of each clip is treated as a separate predic-
tion target and the segments of the 13 other movies are used for
training. The other three segments from the same clip are not
used for training to avoid including information about the movie
whose segment is to be predicted in the training data. In effect,
this procedure multiplies the amount of training data fourfold,
though the ratings derived from the curves are arguably less re-
liable than the clip-level numerical ratings.

VII. RESULTS

The Gaussian-modeled probability density functions of the
tense arousal ratings of all 14 movie clips (Fig. 3) illustrate two
general differences between perceived and felt affect. First, av-
erage perceived affect ratings were, for each affect dimension,
more spread out (i.e. o, was larger) than felt affect ratings, in-
dicating better separation of clips by perceived affect. Second,
for most clips, the standard deviations of perceived affect rat-
ings were narrower (i.e. o, was smaller) than those of the cor-
responding felt affect ratings, indicating better inter-rater agree-
ment for perceived affect. The greater spread of the vertical lines
(representing average ratings), and the narrower probability dis-
tributions, in Fig. 3(a) (perceived affect) than Fig. 3(b) (felt af-
fect) illustrate this phenomenon for tense arousal. Still, Fig. 3
also shows considerable overlap between ratings for both affect
types; the phenomenon was present to varying degrees in all the
attribute categories. Considering the general difficulty of visual
pattern recognition tasks, such as optical character recognition
or visual concept detection, trivial for humans yet difficult for
machines, the overall low level of inter-rater agreement here
hints at the even more challenging nature of predicting movie
ratings.

Fig. 4 shows the movie-wise felt and perceived affect ratings,
as well as their linear regression, ELM and naive predictions, in
a two-dimensional valence—arousal space. Hedonic tone (hori-
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Fig. 3. Probability density functions of the (a) perceived and (b) felt tense
arousal ratings of the 14 movie clips. The vertical lines denote average values.

zontal axis) corresponds to valence, and the arousal dimension
(vertical axis) is represented by energetic arousal.

As in Fig. 3, it can be seen from Fig. 4 that individual rat-
ings for each clip are quite varied, but that standard deviations
are slightly smaller for perceived affect. It can also be seen that
the average felt and perceived affect ratings for a given clip are
generally located in the same quadrant of the valence—arousal
space, but that average perceived affect ratings are more spread
out, occupying a greater portion of the space. Lastly, the figure
indicates that, overall, the content-based predictions perform
slightly better than the naive prediction, which is based only on
average user ratings. However, there are also cases where the
naive prediction is better. The results also show that linear re-
gression performs comparably to ELM.

A. Rating Statistics

In order to make a quantitative comparison of the results for
the stylistic, aesthetic and affective attribute categories, we cal-
culated the average between- and within-movie deviations (o
and o,,, respectively) over all movie clips. The first block of
columns in Table V shows the averages of these statistics across
different attribute categories. The values describe the distribu-
tions of the human ratings and can be used to analyze their vari-
ation and the overlap between clips. In addition, they are useful
for assessing the magnitude of the prediction errors.
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Fig. 4. Movie-wise affect ratings and predictions for the movie clips. In each plot, the horizontal axis represents hedonic tone, from negative (—1) to positive
(41), and the vertical axis represents energetic arousal, from tired (—1) to awake (4-1). For each clip, felt affect is shown above perceived affect. Individual human
ratings are shown by crosses, and their average and standard deviation by a dot and an oval, respectively. The ELM-predicted rating is shown by a star, the linear
regression prediction by a triangle, and the naive prediction by a square.

The first block of rows contains prediction results for the affect ratings, respectively. These include results for the predic-
stylistic and aesthetic attribute categories (see Table III). The tion based on both the movie-wise affect ratings (hedonic tone
second and third blocks give the results for the perceived and felt  as well as energetic, tense and general arousal) and the temporal
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TABLE V
RATING STATISTICS AND PREDICTION ERRORS ACROSS DIFFERENT ATTRIBUTE CATEGORIES. RATINGS STATISTICS ARE GIVEN IN TERMS OF
THE BETWEEN- AND WITHIN-MOVIE DEVIATIONS (65 AND o, RESPECTIVELY) AS WELL AS THEIR RATIO (7 /¢, ). PREDICTION
ERRORS ARE GIVEN WITH RESPECT TO THE WITHIN- AND MOVIE DEVIATIONS AS WELL AS THE NAIVE PREDICTION ERROR d

Rating statistics Prediction errors
o o ow/o e/ e/d

b w w/% | linreg ELM | linreg ELM
Stylistic, visual 0.74 0.93 1.30 0.65 0.68 0.99 1.04
Stylistic, auditory 097 0.82 0.87 0.50 0.49 0.75 0.76
Stylistic, temporal 0.61 0.96 2.05 0.65 0.52 1.03 0.86
Stylistic, all 0.76 091 1.45 0.60 0.56 0.93 0.88
Aesthetic 0.64 1.00 1.64 0.75 0.82 1.11 1.19
Perceived affect
Hedonic tone 044 0.26 0.58 0.37 0.42 0.44 0.51
Energetic arousal 032  0.29 0.87 0.56 0.48 0.76 0.65
Tense arousal 040 0.34 0.83 0.74 0.57 1.25 0.97
General arousal 029 0.24 0.84 0.85 0.52 1.35 0.82
Perceived affect, all 0.38 0.28 0.72 0.63 0.50 0.95 0.73
Hedonic tone (curve) - - - - - 0.78 0.89
General arousal (curve) - - - - - 1.13 0.87

Felt affect

Hedonic tone 0.26 0.32
Energetic arousal 0.17 0.38
Tense arousal 0.29 040
General arousal 0.18 0.28
Felt affect, all 0.28 0.32

Hedonic tone (curve) - -
General arousal (curve) - -

1.21 0.58 0.54 0.73 0.68
222 0.44 0.60 0.68 0.94
1.35 0.60 0.45 1.15 0.86
1.47 0.51 0.50 0.98 0.95
1.28 0.53 0.52 0.89 0.86

- - - | 084 o081

segment means computed from the hedonic tone and arousal
curves. Since the clip segments originate partially from the same
clips, the interpretation of their between- and within-movie de-
viations is not straightforward. For this reason, &} and o, are
not reported for these assessments.

The between-movie deviation op describes how widely
distributed the ratings of different movie clips are. The values
illustrate the phenomenon mentioned in Section III-B and
exemplified in Fig. 3 that perceived affect ratings have, on av-
erage, larger absolute values than felt affect ratings, occupying
a greater portion of the valence—arousal space, which in turn
means greater variability between clips and larger o} values
for perceived affect ratings. Style and aesthetics ratings have
systematically larger o variability than affect ratings because
their rating scale was [1], [5], whereas for the affect dimensions
the ratings were scaled to the range [—1, 1].

The within-movie deviation o, describes the variation in the
human ratings for a given clip, a larger value indicating greater
disagreement between participants. Due to the difference in
scales, style and aesthetics ratings again have larger values
than affect ratings. Perceived affect has smaller variability than
felt affect, illustrating the finding, mentioned in Section III-B
and seen in Fig. 3, that though viewers’ emotional responses
(felt affect) to a movie may vary, they tend to agree about what
emotions are expressed by it (perceived affect). For example,
though all viewers may not find a horror movie scary, they may
still agree that its intention is to scare viewers.

The third rating statistics column in Table V shows the av-
erage ratio between the within- and between-movie deviations.
Note that this ratio is the geometric mean of the movie-wise
ratios within a given category, not the direct ratio between the
averages in the first and second columns. For style ratings, the
values indicate that auditory attributes distinguish between clips
relatively well (o, /o, = 0.87), while for temporal attributes,

the ratings have considerably more overlap (o, /o;, = 2.05).
The deviation ratio further emphasizes the difference between
the perceived and felt affect ratings mentioned in Section I1I-B.
For felt affect, the ratio is so large (7., > o3, for all dimensions)
that ratings for different clips overlap substantially, while per-
ceived affect ratings (o, < o3 for all dimensions) are more
clearly separated.

B. Prediction Results

The right-hand side of Table V contains prediction errors for
linear regression and ELM. The prediction errors are shown in
two groups of column pairs, the first showing the ratio of the
error to the between-movie deviation ¢y, and the second to the
average absolute prediction error d of the naive prediction. The
between-movie deviation ratio e/oy, aims to account for differ-
ences in the spread of mean ratings between different attributes.
Lastly, naive prediction deviation ratio e /d values below one in-
dicate that the prediction has benefited from the low-level fea-
tures. All prediction error ratio values shown in Table V are geo-
metric means of the movie-wise ratios over all clips. We used the
geometric mean because it is mathematically more motivated
than the arithmetic mean for averaging out ratios.

The between-movie deviation ratio e/, can be used to as-
sess the predictability of the different attribute categories in
Table V: stylistic, aesthetic and affective. The values indicate
that for ELM, stylistic, perceived affect and felt affect attributes
appear roughly equally easy to predict, with average e/a;, =
0.56,0.50, 0.52, respectively. For linear regression, felt affect
performs better than the other categories, with e/o;, = 0.53,
versus 0.63 for perceived affect and 0.60 for stylistic attributes.
Among style modalities, auditory attributes appear the easiest
to predict for both algorithms. Lastly, aesthetic attributes are
clearly the most difficult to predict.
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We also investigated, with the ¢/d metric, which prediction
method is more efficient: ELM or linear regression. The results
indicate that the relative performance of the two methods varies
by category. Overall, ELM performed slightly better for stylistic
attributes and perceived affect, and its e/d value is below one
for all affect dimensions. Aesthetics is the only attribute cate-
gory for which both linear regression and ELM have e /d values
larger than one, indicating that the computational prediction did
not improve on the naive prediction.

Comparing the segment-based hedonic tone and general
arousal curve prediction results to those based on the corre-
sponding movie-wise ratings, it can be seen that the curve data
did not improve but worsened the prediction for hedonic tone.
For general arousal, on the other hand, the segment-based pre-
diction performed better than the rating-based prediction with
linear regression in the case of perceived affect (¢/d = 1.13
and 1.35, respectively). For felt affect, the segment-based pre-
diction performed better for both linear regression (¢/d = (.84
and 0.98) and ELM (¢/d = 0.81 and 0.95).

C. Feature Selection

Though the number of human-rated movie clips in the data set
is not large enough to rank the computational features based on
their influence on the prediction accuracy of different attributes,
it is nevertheless possible to study the features involved in the
prediction of a given attribute.

To investigate which features were the most significant in the
prediction of all affect types, we conducted a feature selection
experiment, leaving out each of the 14 clips in turn and gener-
ating a separate feature selection using cross-validation in the
remaining 13-clip subset. Then, the number of times each fea-
ture was selected was added up across all 14 experiments for a
final result. Within the 13-clip subset, we used a sequential back-
ward selection (SBS) scheme to perform the feature selection.
The algorithm terminated when the average absolute prediction
error e increased from its previous value by more than a small
predefined margin. We set this margin heuristically to 0.005,
which is less than the maximum discretization error in the di-
mensional affect ratings. Due to the computational requirements
of the experiment, we conducted it with the linear predictor in-
stead of ELM.

Feature selection did not improve results in terms of ¢/d.
Also, there were no notable differences between the fea-
tures most often selected for different affect dimensions. The
best-performing features for all dimensions included shot du-
ration, dominant colors, motion intensity and direction, spatial
and temporal motion distribution, as well as all four MIR fea-
tures. This shows that all modalities of low-level computational
features contribute to the prediction of the affective content.

VIII. CONCLUSION

We have presented a data set and a setup for automatically
predicting stylistic, aesthetic and affective movie content ratings
using low-level computational features. We conducted a user
study with a large number of subjects to collect human ratings
of the style, aesthetics and affect of a limited number of movie
clips. Perceived and felt affect were assessed separately, and
the clips were mapped into a three-dimensional valence—arousal
space with two distinct arousal dimensions, energetic and tense.
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We have made the data publicly available, along with the low-
level features extracted from the clips.

We have also presented a prediction experiment to serve as
a baseline for future performance comparisons with our data
set. The experiment simulates a situation where the system must
predict the average human rating of the stylistic, aesthetic and
affective content of a new, previously unknown movie clip. It
should be noted that this is different and more difficult than a
simple correlation analysis where the ratings are known before-
hand. The presented setup imitates a realistic video classifica-
tion or recommendation system where a new video is classified
using only previous ratings of other videos and computational
features automatically extracted from the video.

We compared two prediction methods: multiple linear re-
gression and the recent neural-network-based Extreme Learning
Machine (ELM) algorithm. Overall, ELM performed slightly
better than linear regression. Its performance was also more con-
sistent across the different attribute categories.

Though perceived affect ratings illustrated greater inter-rater
agreement and better affect-based separation of clips than felt
affect in the user study, in our prediction experiment, both af-
fect types appear equally easy to predict when prediction er-
rors are normalized with respect to the between-movie varia-
tion in the human ratings. These results are promising, since
for affect-based movie recommendations, the modeling of ac-
tual viewer response is more desirable than the modeling of the
movie’s expressed emotion. However, the result should be ver-
ified with a larger data set. Also, since perceived affect, being
the more objective of the two measures, has been shown [14]
to be better at distinguishing between affect ratings, it remains
a worthwhile target in terms of video classification. Perceived
affect could also be used to predict an individual viewer’s affec-
tive response with the help of a viewer profile containing data
on their personal preferences [44].

We found stylistic and affective attributes equally easy to pre-
dict overall. Among style modalities, auditory attributes were
the easiest to predict. Aesthetic attributes were the hardest to
predict, and feature-based prediction performed, on average,
worse than the naive baseline prediction. The poor performance
of both prediction methods for aesthetic attributes suggests that
both style and affect may be more within the grasp of computa-
tional methods than aesthetics. The finding is interesting in the
sense that though both affect and aesthetics are abstract con-
cepts, the former appears to be more closely linked to low-level
features than the latter.

The segment-based affect prediction improved results for
general arousal, but worsened results for hedonic tone. This may
be because the arousal curves displayed greater within-scene
changes than the hedonic tone curves overall. Since the curves
were drawn by hand and rescaled in preprocessing, they all
contained small-scale temporal fluctuations, which can be
interpreted as noise resulting from inaccuracies of freehand
plotting. Furthermore, since the hedonic tone curves were, save
for a few exceptions (such as clip 6, shown in Fig. 1), in general
more flat than the arousal curves, the relative influence of these
fluctuations on curve values was greater, resulting in a lower
signal-to-noise ratio for the hedonic tone curves, and thereby in
more inaccurate prediction. General arousal, on the other hand,
benefited considerably from the curve data, suggesting that in
terms of arousal prediction, scene-level sampling may be too
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coarse, since it can neglect the influence of within-scene events
on both perceived and felt arousal.

Feature selection did not improve prediction performance.
However, it indicated that some of the low-level computational
features in our feature set are more important than others and
that features from all modalities—visual, auditory and tem-
poral—contribute to the prediction of affect ratings.
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