
Symmetry in SAT (and ASP and CP): Breaking the
right symmetries

Bart Bogaerts

Aalto University

December 8, 2015

1 / 43



Main Reference

Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe.
BreakIDGlucose: On the importance of row symmetry.
In Proceedings of the Fourth International Workshop on the
Cross-Fertilization Between CSP and SAT (CSPSAT), 2014.

2 / 43



Take Home Message

Take Home Message

Don’t go implementing any of the methods I describe in this talk!
(unless you really have to)

3 / 43



Content

1 Motivation

2 Symmetries
Constraint Programming
SAT Solving

3 Row Interchangeability Detection: Take 1

4 Row Interchangeability Detection: Take 2

5 Row Interchangeability Detection: Take 3

6 Final thoughts

4 / 43



Motivation

2012

“Symmetry Propagation” for SAT [Devriendt et al., 2012]

Add symmetric variants of learnt clauses lazily

Performance: good (compared to symmetry breaking)

Except...

On the pigeonhole problem

Unexplainable difference: (bad) luck?

Except...

If we permute the variables...

5 / 43



Motivation

2012

“Symmetry Propagation” for SAT [Devriendt et al., 2012]

Add symmetric variants of learnt clauses lazily

Performance: good (compared to symmetry breaking)

Except...

On the pigeonhole problem

Unexplainable difference: (bad) luck?

Except...

If we permute the variables...

6 / 43



Motivation

2012

“Symmetry Propagation” for SAT [Devriendt et al., 2012]

Add symmetric variants of learnt clauses lazily

Performance: good (compared to symmetry breaking)

Except...

On the pigeonhole problem

Unexplainable difference: (bad) luck?

Except...

If we permute the variables...

7 / 43



Content

1 Motivation

2 Symmetries
Constraint Programming
SAT Solving

3 Row Interchangeability Detection: Take 1

4 Row Interchangeability Detection: Take 2

5 Row Interchangeability Detection: Take 3

6 Final thoughts

8 / 43



CP perspective

CSP: (V ,D,C )

assignment α : (V → D)

solution satisfies constraints

For example:

V = {a, b, c , d , e, f }
D = {0, 1}
C = {b ≤ 0}
α = {a = 1, b = 0, c = 1,
d = 1, e = 1, f = 1}
α′ = {a = 0, b = 1, c = 0,
d = 0, e = 1, f = 0}

9 / 43



CP perspective

CSP: (V ,D,C )

assignment α : (V → D)

solution satisfies constraints

For example:

V = {a, b, c , d , e, f }
D = {0, 1}
C = {b ≤ 0}
α = {a = 1, b = 0, c = 1,
d = 1, e = 1, f = 1}
α′ = {a = 0, b = 1, c = 0,
d = 0, e = 1, f = 0}

10 / 43



CP perspective

CSP: (V ,D,C )

assignment α : (V → D)

solution satisfies constraints

For example:

V = {a, b, c , d , e, f }
D = {0, 1}
C = {b ≤ 0}
α = {a = 1, b = 0, c = 1,
d = 1, e = 1, f = 1}
α′ = {a = 0, b = 1, c = 0,
d = 0, e = 1, f = 0}

11 / 43



CP perspective on symmetry

S : (V → D)→ (V → D)
symmetry S is a permutation of the
set of assignments preserving satisfac-
tion to all constraints
Recall:

V = {a, b, c , d , e, f }
D = {0, 1}
C = {b ≤ 0}

12 / 43



CP perspective on symmetry

S : (V → D)→ (V → D)
symmetry S is a permutation of the
set of assignments preserving satisfac-
tion to all constraints
Recall:

V = {a, b, c , d , e, f }
D = {0, 1}
C = {b ≤ 0}

13 / 43



CP perspective on symmetry

Common restriction:
variable symmetry SP : α 7→ α ◦ P
induced by variable permutation P : V → V
For example: P = (ce)(df )

14 / 43



CP perspective on row symmetry
Row symmetry:

special case of variable symmetry
assumption: V is ordered as a matrix M
P permutes the rows of M
CSP is row-interchangeable for M iff all permutations on the rows of
M induce a symmetry

15 / 43



CP perspective on row symmetry
Symmetry breaking: speed up search by adding extra constraints to
remove symmetrical assignments from the assignment space.

Complete symmetry breaking: maximal number of symmetric assignments
removed while retaining soundness.

CP result: row interchangeability can be broken completely by enforcing
lexicographic order on rows. [Flener et al., 2002]

16 / 43



CP perspective on row symmetry
Symmetry breaking: speed up search by adding extra constraints to
remove symmetrical assignments from the assignment space.

Complete symmetry breaking: maximal number of symmetric assignments
removed while retaining soundness.

CP result: row interchangeability can be broken completely by enforcing
lexicographic order on rows. [Flener et al., 2002]

17 / 43



SAT perspective

SAT instance: (V , {0, 1},C ), C is a CNF

assignment α : (V → D)

solution satisfies C

18 / 43



SAT perspective on symmetry

SAT instance: (V , {t, f},C ), C is a CNF

assignment α : (V → D)

solution satisfies C

A variable symmetry is a permutation P of V such that α |= C iff
α ◦ P |= V

(this is exactly the same as in CP)

19 / 43



SAT perspective on breaking symmetry

General symmetry breaking in SAT as per Saucy+Shatter
[Aloul et al., 2006]:

For each variable permutation P (in some set of generators) and for
each variable v , add the lex-leader constraint
(∀v ′ ≺ v : v ′ = P(v ′))⇒ v ≤ P(v).

20 / 43



Can Shatter completely break row interchangeability?

variable permutations: P12, P23

that induce row interchangeability

order on variables: a ≺ b ≺ c ≺ d ≺ e ≺ f

symmetry breaking constraints:
a ≤ c , a = c ⇒ b ≤ d ,
c ≤ e, c = e ⇒ d ≤ f

These constraints actually state that the
rows of each solution must be lexicograph-
ically ordered!

Row interchangeability can be completely broken by standard SAT
symmetry breaking methods, given the right variable permutations and

variable ordering.

21 / 43



What can go wrong?
variable permutations: P12, P321

that induce row interchangeability
order on variables: a ≺ b ≺ c ≺ d ≺ e ≺ f
symmetry breaking constraints:
a ≤ c , a = c ⇒ b ≤ d ,
a ≤ e, a = e ⇒ b ≤ f ,
a = e ∧ b = f ⇒ c ≤ a,a = e ∧ b = f ∧ c = a⇒ d ≤ b

These do not represent lexicographic row ordering constraint

22 / 43



What can go wrong?
variable permutations: P12, P23

that induce row interchangeability
order on variables: f ≺ b ≺ c ≺ d ≺ e ≺ a
symmetry breaking constraints:
b ≤ d , b = d ⇒ c ≤ a,
f ≤ d , f = d ⇒ c ≤ e

These do not represent lexicographic row ordering constraint

23 / 43



SAT perspective: conclusion

To completely break row interchangeability:

need for right generator symmetries

need for right ordering on variables

Easy when you know the matrix structure of the variables. . .

How to detect matrix structure of variables in a CNF?
How to detect row interchangeability in a CNF?

24 / 43



Motivation

2012

“Symmetry Propagation” for SAT [Devriendt et al., 2012]

Add symmetric variants of learnt clauses lazily

Performance: good (compared to symmetry breaking)

Except...

On the pigeonhole problem

Unexplainable difference: (bad) luck?

Except...

If we permute the variables...

25 / 43



Pigeon Hole

SAT encoding of the CSP (V ,D,C )

V = {1..n},D = {1..n − 1}
C = {∀d ∈ D : #{v | α(v) = d} ≤ 1}.
(Boolean encoding of α(i) is a “row”)

Any permutation of variables induces a symmetry

Saucy: generators (12), (23), (34), (45), . . .

with order on variables 1 ≺ 2 ≺ 3 ≺ . . . : breaking constraints

α(1) ≤ α(2), α(2) ≤ α(3), α(3) ≤ α(4) . . .

Breaks the symmetry group completely (no two symmetric
assignments satisfy this constraint)

however. . . with order 2 ≺ 1 ≺ 4 ≺ 3 ≺ . . . :

α(2) ≤ α(1), α(2) ≤ α(3), α(4) ≤ α(3), . . .

26 / 43



Pigeon Hole

SAT encoding of the CSP (V ,D,C )

V = {1..n},D = {1..n − 1}
C = {∀d ∈ D : #{v | α(v) = d} ≤ 1}.
(Boolean encoding of α(i) is a “row”)

Any permutation of variables induces a symmetry

Saucy: generators (12), (23), (34), (45), . . .

with order on variables 1 ≺ 2 ≺ 3 ≺ . . . : breaking constraints

α(1) ≤ α(2), α(2) ≤ α(3), α(3) ≤ α(4) . . .

Breaks the symmetry group completely (no two symmetric
assignments satisfy this constraint)

however. . . with order 2 ≺ 1 ≺ 4 ≺ 3 ≺ . . . :

α(2) ≤ α(1), α(2) ≤ α(3), α(4) ≤ α(3), . . .

27 / 43



Pigeon Hole

SAT encoding of the CSP (V ,D,C )

V = {1..n},D = {1..n − 1}
C = {∀d ∈ D : #{v | α(v) = d} ≤ 1}.
(Boolean encoding of α(i) is a “row”)

Any permutation of variables induces a symmetry

Saucy: generators (12), (23), (34), (45), . . .

with order on variables 1 ≺ 2 ≺ 3 ≺ . . . : breaking constraints

α(1) ≤ α(2), α(2) ≤ α(3), α(3) ≤ α(4) . . .

Breaks the symmetry group completely (no two symmetric
assignments satisfy this constraint)

however. . . with order 2 ≺ 1 ≺ 4 ≺ 3 ≺ . . . :

α(2) ≤ α(1), α(2) ≤ α(3), α(4) ≤ α(3), . . .

28 / 43



Content

1 Motivation

2 Symmetries
Constraint Programming
SAT Solving

3 Row Interchangeability Detection: Take 1

4 Row Interchangeability Detection: Take 2

5 Row Interchangeability Detection: Take 3

6 Final thoughts

29 / 43



Row Interchangeability Detection
Problem statement:

Row Interchangeability Detection (RID)
Given a CNF, find a maximal set of variables that form a variable matrix

with interchangeable rows.

Chosen problem perspective: start from detected symmetry group.

30 / 43



Involution symmetries form rows

A permutation P for which P2 = I , is an involution. Each variable
involution forms multiple interchangeable row matrices, with only 2 rows:

31 / 43



Involution symmetries form rows

Compatible involutions can be combined to row interchangeable matrices
with more than 2 rows:

32 / 43



Heuristically search for involutions

Start from generator symmetries returned by Saucy. Compose symmetries
to form small involutions.

33 / 43



Matrix structure detection by involutions
Combining involution generation & matrix extraction solves RID:

Can be extended to the piecewise case, where multiple disjoint row
interchangeable variable matrices exist for one problem.

Piecewise Row Interchangeability Detection – the PRID problem.

34 / 43



Working implementation: BreakIDGlucose

extends Shatter with row interchangeability handling
I use Saucy to detect symmetry inducing variable permutations
I new: generate involutions to solve PRID
I new: add row involutions to set of variable permutations
I new: adjust order on variables as per detected rows
I add Shatter’s lex-leader constraints

used Glucose 2.1 as SAT solving engine

obtained gold medal at 2013’s SAT competition hard combinatorial
track

could only solve 5 out of 14 two-pigeon-hole instances

Complete row interchangeability breaking is relevant in SAT
Improvement possible with better detection of matrix structure – better
answer to PRID.

35 / 43



Content

1 Motivation

2 Symmetries
Constraint Programming
SAT Solving

3 Row Interchangeability Detection: Take 1

4 Row Interchangeability Detection: Take 2

5 Row Interchangeability Detection: Take 3

6 Final thoughts

36 / 43



Working implementation 2: BreakIDGlucose2

extends Shatter with row interchangeability handling
I use Saucy to detect a set G of symmetry inducing variable

permutations
I new: search for g1, g2 ∈ G : two “matching” involutions (rows r1, r2 and

r3)
I new: for each g ∈ G , g(ri ) is a candidate row: check whether

r1 ↔ g(ri ) is a symmetry
I new: use Saucy to find more permutations that do not permute rows

r2, r3, ...
I new: continue extending the row-interchangeability matrix
I new: adjust order on variables as per detected rows
I add Shatter’s lex-leader constraints

used Glucose 4.0 as SAT solving engine

obtained 10th place out of 28 in the 2015 SAT Race (best of all
Glucose variants)

37 / 43



Content

1 Motivation

2 Symmetries
Constraint Programming
SAT Solving

3 Row Interchangeability Detection: Take 1

4 Row Interchangeability Detection: Take 2

5 Row Interchangeability Detection: Take 3

6 Final thoughts

38 / 43



Work in progress: tackling the actual problem

Two main directions

Modify Saucy to give “the right” generators

Use algebraic tools (e.g., GAP) to modify the set of generators

39 / 43



Content

1 Motivation

2 Symmetries
Constraint Programming
SAT Solving

3 Row Interchangeability Detection: Take 1

4 Row Interchangeability Detection: Take 2

5 Row Interchangeability Detection: Take 3

6 Final thoughts

40 / 43



Where does row interchangeability in SAT come from?

SAT encodings of

variable interchangeable CSP’s

value interchangeable CSP’s

row interchangeable CSP’s

relational model generation problems where relation R : D1 × . . .×Dn

has to be found and some disjoint Di contains interchangeable
elements.
For example: the IDP system.

Note the triviality of solving the PRID problem in such a high level
language!

41 / 43



Take Home Message

Take Home Message

Don’t go implementing any of the methods I describe in this talk!
(unless you really have to)

“There are no CNF problems” (P.J. Stuckey, 2013)

42 / 43



Thanks for your attention!
Questions?

Aloul, F. A., Sakallah, K. A., and Markov, I. L. (2006).
Efficient symmetry breaking for Boolean satisfiability.
IEEE Transactions on Computers, 55(5):549–558.

Devriendt, J., Bogaerts, B., De Cat, B., Denecker, M., and Mears, C.
(2012).
Symmetry propagation: Improved dynamic symmetry breaking in SAT..
In IEEE 24th International Conference on Tools with Artificial
Intelligence, ICTAI 2012, Athens, Greece, November 7-9, 2012, pages
49–56.

Flener, P., Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson,
J., and Walsh, T. (2002).
Breaking row and column symmetries in matrix models.
In Hentenryck, P., editor, Principles and Practice of Constraint
Programming - CP 2002, volume 2470 of LNCS, pages 462–477.
Springer Berlin Heidelberg.

43 / 43


	Motivation
	Symmetries
	Constraint Programming
	SAT Solving

	Row Interchangeability Detection: Take 1
	Row Interchangeability Detection: Take 2
	Row Interchangeability Detection: Take 3
	Final thoughts

