Symmetry in SAT (and ASP and CP): Breaking the
right symmetries

Bart Bogaerts

Aalto University

December 8, 2015

/43



Main Reference

[@ Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe.
BreakIDGlucose: On the importance of row symmetry.
In Proceedings of the Fourth International Workshop on the
Cross-Fertilization Between CSP and SAT (CSPSAT), 2014.

2/43



Take Home Message

Take Home Message

Don't go implementing any of the methods | describe in this talk!
(unless you really have to)

/43



Content

@ Motivation

4/43



Motivation

2012
“Symmetry Propagation” for SAT [Devriendt et al., 2012]
Add symmetric variants of learnt clauses lazily

Performance: good (compared to symmetry breaking)

5/43



Motivation

e 2012

e “Symmetry Propagation” for SAT [Devriendt et al., 2012]

o Add symmetric variants of learnt clauses lazily

@ Performance: good (compared to symmetry breaking)
Except...

@ On the pigeonhole problem

@ Unexplainable difference: (bad) luck?

6/43



Motivation

e 2012
e “Symmetry Propagation” for SAT [Devriendt et al., 2012]
o Add symmetric variants of learnt clauses lazily

@ Performance: good (compared to symmetry breaking)

Except...

@ On the pigeonhole problem

@ Unexplainable difference: (bad) luck?
Except...

o If we permute the variables...



Content

© Symmetries
@ Constraint Programming
@ SAT Solving

43



CP perspective

e CSP: (V,D, ()
@ assignment a: (V — D)
@ solution satisfies constraints

For example:

o V={ab,cderfr}

e D=1{0,1}

e C={b<0}

ea={a=1,b=0,c=1,
d=1e=1f=1}

e ={a=0,b=1,c=0,
d=0,e=1,f=0}

43



CP perspective

e CSP: (V,D, ()
@ assignment a: (V — D)
@ solution satisfies constraints

For example:
o V={ab,cderfr}
e D=1{0,1}
e C={b<0}
ea={a=1,b=0,c=1,
d=1e=1f=1}

={a=0,b=1,¢c=0,

O[,
d=0,e=1,f=0}

@ ®
© @

©®© ©
ONORONO

ONORORO
ONORORO



CP perspective

@ ©®
e CSP: (V,D, ()
@ assignment o : (V — D) @ @

@ solution satisfies constraints

For example: @ @

o \/:{a,b,C,d,e,f}

D = {0,1} @ @

C={pb<0}

a={a=1b=0c=1, O O OXO

d:17e:1,f:1}

o ={a=0,b=1,¢c=0, @ @

d:O’e:]_?f:O}

11/43



CP perspective on symmetry

S:(V—-D)—(V—D)

symmetry S is a permutation of the
set of assignments preserving satisfac-
tion to all constraints

Recall:
e V={ab,cdef}
e D=1{0,1}
o C={b<0)}

12 /43



CP perspective on symmetry

© ©
© @

S:(V—-D)—(V—D) \
symmetry S is a permutation of the

set of assignments preserving satisfac- @ @ @ @
tion to all constraints

DO OO

e V={ab,cdef}

o- o OO OO

o C={b<0}

13 /43



CP perspective on symmetry

Common restriction:
variable symmetry Sp: o — o P
induced by variable permutation P: V — V

For example: P = (ce)(df)

0. 00
o

©
©

©
©

\

@0 @
D@ ©

©

\

©,



CP perspective on row symmetry
Row symmetry:
@ special case of variable symmetry
@ assumption: V is ordered as a matrix M
@ P permutes the rows of M
@ CSP is row-interchangeable for M iff all permutations on the rows of
M induce a symmetry

o
©

@)\ (@
CAC
ORONO,
O-@ ©

15/43



CP perspective on row symmetry
Symmetry breaking: speed up search by adding extra constraints to
remove symmetrical assignments from the assignment space.

@b OO0
©@ 00O OO
@ ® OO0

16

43



CP perspective on row symmetry

Symmetry breaking: speed up search by adding extra constraints to
remove symmetrical assignments from the assignment space.

@b 00
©@ 00O OO
@® OO0

Complete symmetry breaking: maximal number of symmetric assignments
removed while retaining soundness.

17/43



SAT perspective

@ SAT instance: (V,{0,1},C), Cis a CNF
@ assignment a: (V — D)

@ solution satisfies C

18 /43



SAT perspective on symmetry

SAT instance: (V,{t,f}, C), Cisa CNF
assignment a: (V — D)

solution satisfies C

A variable symmetry is a permutation P of V such that a = C iff
aoPEV

(this is exactly the same as in CP)

19/43



SAT perspective on breaking symmetry

General symmetry breaking in SAT as per Saucy+Shatter

[Aloul et al., 2006]:

sym inducing
variable
permutations

total order
on literals

For each variable permutation P (in some set of generators) and for
each variable v, add the lex-leader constraint

A
oV

(W <v:v =P(V))=v < P(v).

symmetry
breaking
constraints

20 /43



Can Shatter completely break row interchangeability?

@ variable permutations: Pip, Po3 6 @
that induce row interchangeability

@ order on variables: a<b<c<d<e=<f

@ symmetry breaking constraints:
a<c,a=c=b<d,

c<ec=e=d<f

These constraints actually state that the
rows of each solution must be lexicograph- @ G

ically ordered!

21/43



What can go wrong?

@ variable permutations: Pio,
that induce row interchangeability
@ order on variables: a<b<c<d<e<f
@ symmetry breaking constraints:
a<c,a=c= b<d,

These do not represent lexicographic row ordering constraint

@__..@ 00
@ O O

PCLLLLLLLY T oR

@ @ @_@ D ©

"aaggunnn®

0.,’

"'-------"



What can go wrong?

@ variable permutations: Pip, Po3

that induce row interchangeability
@ order on variables: f < b<c<d<e<a
@ symmetry breaking constraints:

b<d b=d=c<a,

fF<d, f=d=c<e

These do not represent lexicographic row ordering constraint

gunnn®

O ® O O
Q@ ©OO® OO

SPCLLLLLLELTION
.

@B OO © O

0..’

".
Can

¢ ©



SAT perspective: conclusion

To completely break row interchangeability:
@ need for right generator symmetries

@ need for right ordering on variables

Easy when you know the matrix structure of the variables. ..

24/43



Motivation

e 2012
e “Symmetry Propagation” for SAT [Devriendt et al., 2012]
o Add symmetric variants of learnt clauses lazily

@ Performance: good (compared to symmetry breaking)

Except...

@ On the pigeonhole problem

@ Unexplainable difference: (bad) luck?
Except...

o If we permute the variables...

25 /43



Pigeon Hole

@ SAT encoding of the CSP (V, D, C)

o V={1l.n},D={1.n—-1}

o C={VdeD:#{v]|a(v)=d} <1}
e (Boolean encoding of «(i) is a “row”)

26 /43



Pigeon Hole

SAT encoding of the CSP (V, D, C)
V={1l.n},D={1.n—1}
C={vdeD:#{v|a(v)=d} <1}
(Boolean encoding of a(i) is a “row")

@ Any permutation of variables induces a symmetry
e Saucy: generators (12),(23), (34), (45),. ..
@ with order on variables 1 <2 < 3 < ...: breaking constraints

a(l) < a(2),a(2) < a(3),a(3) < a(4)...

@ Breaks the symmetry group completely (no two symmetric
assignments satisfy this constraint)

27 /43



Pigeon Hole

@ SAT encoding of the CSP (V, D, C)

o V={1l.n},D={1.n—-1}

o C={VdeD:#{v]|a(v)=d} <1}
e (Boolean encoding of «(i) is a “row”)

@ Any permutation of variables induces a symmetry
e Saucy: generators (12),(23), (34), (45),. ..
@ with order on variables 1 <2 < 3 < ...: breaking constraints

a(l) < a(2),a(2) < a(3),a(3) < a(4)...

@ Breaks the symmetry group completely (no two symmetric
assignments satisfy this constraint)

@ however.. . withorder2 <1 <4<3<...:
a(2) < a(l),a(2) < a(3),a(4) < a(3),...

28 /43



Content

© Row Interchangeability Detection: Take 1

29 /43



Row Interchangeability Detection
Problem statement:

Chosen problem perspective: start from detected symmetry group.

G\G @ ©

\@e@
©® @ © ©

30/43



Involution symmetries form rows

A permutation P for which P? =/, is an involution. Each variable
involution forms multiple interchangeable row matrices, with only 2 rows:

56 &8
@@ ©0d

31/43



Involution symmetries form rows

Compatible involutions can be combined to row interchangeable matrices
with more than 2 rows:

32/43



Heuristically search for involutions

Start from generator symmetries returned by Saucy. Compose symmetries

to form small involutions.

@6

33/43



Matrix structure detection by involutions

Combining involution generation & matrix extraction solves RID:

G‘@ O @ ©
0. @C>Q @ >© @
(&—@ @ e ©

Can be extended to the piecewise case, where multiple disjoint row
interchangeable variable matrices exist for one problem.

34/43



Working implementation: BreaklDGlucose

@ extends Shatter with row interchangeability handling

» use Saucy to detect symmetry inducing variable permutations
> new: generate involutions to solve PRID

» new: add row involutions to set of variable permutations

» new: adjust order on variables as per detected rows

» add Shatter's lex-leader constraints

@ used Glucose 2.1 as SAT solving engine

@ obtained gold medal at 2013's SAT competition hard combinatorial
track

@ could only solve 5 out of 14 two-pigeon-hole instances

Complete row interchangeability breaking is relevant in SAT
Improvement possible with better detection of matrix structure — better
answer to PRID.

35/43



Content

@ Row Interchangeability Detection: Take 2

36 /43



Working implementation 2: BreaklDGlucose2

@ extends Shatter with row interchangeability handling

» use Saucy to detect a set G of symmetry inducing variable
permutations

» new: search for g1, € G: two “matching” involutions (rows ry, r» and
r3)

» new: for each g € G, g(r;) is a candidate row: check whether
r <> g(r;) is a symmetry

» new: use Saucy to find more permutations that do not permute rows
rn,rs,...

> new: continue extending the row-interchangeability matrix

» new: adjust order on variables as per detected rows

» add Shatter’s lex-leader constraints

@ used Glucose 4.0 as SAT solving engine

@ obtained 10th place out of 28 in the 2015 SAT Race (best of all
Glucose variants)

37/43



Content

© Row Interchangeability Detection: Take 3

38/43



Work in progress: tackling the actual problem

Two main directions
@ Modify Saucy to give “the right” generators
@ Use algebraic tools (e.g., GAP) to modify the set of generators

39/43



Content

© Final thoughts

40/43



Where does row interchangeability in SAT come from?

SAT encodings of
@ variable interchangeable CSP's
@ value interchangeable CSP's
@ row interchangeable CSP's
°

relational model generation problems where relation R: Dy X ... x D,
has to be found and some disjoint D; contains interchangeable
elements.

For example: the IDP system.

Note the triviality of solving the PRID problem in such a high level
language!

41 /43



Take Home Message

Take Home Message

Don't go implementing any of the methods | describe in this talk!
(unless you really have to)

42/43



]

K]

Thanks for your attention!
Questions?

Aloul, F. A., Sakallah, K. A., and Markov, I. L. (2006).
Efficient symmetry breaking for Boolean satisfiability.
IEEE Transactions on Computers, 55(5):549-558.

Devriendt, J., Bogaerts, B., De Cat, B., Denecker, M., and Mears, C.
(2012).

Symmetry propagation: Improved dynamic symmetry breaking in SAT.
In IEEE 24th International Conference on Tools with Artificial
Intelligence, ICTAI 2012, Athens, Greece, November 7-9, 2012, pages
49-56.

Flener, P., Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson,
J., and Walsh, T. (2002).

Breaking row and column symmetries in matrix models.

In Hentenryck, P., editor, Principles and Practice of Constraint
Programming - CP 2002, volume 2470 of LNCS, pages 462-477.
Springer Berlin Heidelberg.

43/43



	Motivation
	Symmetries
	Constraint Programming
	SAT Solving

	Row Interchangeability Detection: Take 1
	Row Interchangeability Detection: Take 2
	Row Interchangeability Detection: Take 3
	Final thoughts

