
SAT-to-SAT
December 2015

1/19

Declarative Extension of SAT Solvers with
New Propagators

Shahab Tasharrofi
Joint work with Tomi Janhunen and Eugenia Ternovska

Department of Information and Computer Science, Aalto University

Computational Logic Day
December 8, 2015

SAT-to-SAT
December 2015

2/19

Introduction

Several lines of work involve:

High-level declarative languages
for specifying search problems

(e.g. find a Hamiltonian Path in a graph)

plus

Solvers for use in practice

E.g.: Constraint Modelling Languages (Essence, Zinc, . . .)
ASP, IDP system, Enfragmo, NP-Spec, etc.

SAT-to-SAT
December 2015

3/19

Example: Hamiltonian Path Specification

The languages possess nice features: arithmetic, aggregates,
induction(sometimes)
that allow one to write natural specifications of many problems

Example: FO+Arithmetic specification of Hamiltonian Path:

∀u∀v (next(u, v)⇒ arc(u, v)).
∀u∀v∀v ′ (next(u, v) ∧ next(u, v ′)⇒ v = v ′).
∀u∀u′∀v (next(u, v) ∧ next(u′, v)⇒ u = u′).
∀u (reach(0,u)⇔ u = s).
∀n ∀u (reach(n + 1,u)⇔ reach(n,u) ∨ ∃v (reach(n, v) ∧ next(v ,u))).
∀u (reach(|nodes|,u)).

SAT-to-SAT
December 2015

4/19

Existing Practice

Grounding:
e.g., Satgrnd

Specification:
e.g., Hamil-
tonian Path

Instance:
e.g., Graph

Solver:
e.g.,

Minisat

Solution:
e.g., Hamil-
tonian path

So, a grounder takes the specification and an instance of a
problem to generate a ground instance that is solved by a
black-box solver

BUT, what if:
I the black-box solver gets stuck?
I or, solver’s inference methods are too slow for our

problem?

SAT-to-SAT
December 2015

5/19

Our Goals

Our final long-term goal is to:

Develop methods and foundations for declarative
specification and automatic construction of opti-
mized problem-specific solvers

In this paper, our goal is to:

Develop methods to specify problem-specific prop-
agators and to automatically modify a SAT solver to
use such mechanisms

SAT-to-SAT
December 2015

6/19

Our Approach

Grounding:
e.g., Satgrnd

Specification:
e.g., Hamil-
tonian Path

Instance:
e.g., Graph

Solver:
e.g.,

Minisat

Solution:
e.g.,

Hamiltonian
path

Propagator
Engine

Propagator
Speci-
fication

So, we can:
I specify problem-specific propagators, and,
I incorporate those propagators into a solver

SAT-to-SAT
December 2015

7/19

Language P[R] to Specify Problems Modulo
Reasonings

Syntactically: P[R] programs take the form of (φ, {ψ1, . . . , ψn})
with φ, ψ1, . . ., and ψn being first order programs
Here, φ is the main program and ψ1, . . . , ψn are propagators

Propagator vocabulary of ψi is τi = vocab(ψi) \ vocab(φ)

Semantically: P[R] program (φ, {ψ1, . . . , ψn}) is equivalent to
following second-order formula:

φ ∧
∧

1≤i≤n

¬∃τi (ψi)

The role of propagators is to specify undesirable models.

SAT-to-SAT
December 2015

8/19

Example: Reachability Propagator for Hamiltonian
Path

Main problem φ asserts that next is a subset of arcs without
any two arcs with the same source or the same destination:

φ :=


∀x , y (next(x , y)→ arc(x , y)).

∀x , y , y ′ (next(x , y) ∧ next(x , y ′)→ y = y ′).
∀x , x ′, y (next(x , y) ∧ next(x ′, y)→ x = x ′).

∀x (¬next(x , s)).


Propagator ψ checks if a cut separates s from some other node

ψ :=

{
cut(s). ∃x ¬cut(x).

∀x , y (next(x , y) ∧ cut(x)→ cut(y)).

}
P[R] specification (φ, {ψ}) finds Hamiltonian paths because
propagator ψ guarantees reachability of all nodes from s

SAT-to-SAT
December 2015

9/19

Grounding P[R] Specifications

Underapproximate translation of propagator ψ, denoted as
JψKε, is formula ψ′ so that

I Positive occurrences of R ∈ ε is replaced by Rl

I Negative occurrences of R ∈ ε is replaced by Ru

Grounding of P[R] specification (φ, {ψ1, . . . , ψn}) w.r.t. A,
denoted by Gnd((φ, {ψ1, . . . , ψn});A), is

(Gnd(φ;A), {Gnd(Jψ1Kε;A), . . . ,Gnd(JψnKε;A)})

where ε = vocab(φ) \ vocab(A)

SAT-to-SAT
December 2015

10/19

Theoretical Foundations
If B is a (σ ∪ ε)-structure that partially interprets ε, its 2-valued
representation, denoted as B2v , is a (σ ∪ εl ∪ εu)-structure so
that

I For R ∈ σ, RB2v = RB,
I For R ∈ ε, RB2v

l is the lowerbound of RB, and
RB2v

u is the upperbound of RB, i.e.,

R(x̄) = true ⇒ Rl(x̄) = Ru(x̄) = true
R(x̄) = unknown ⇒ Rl(x̄) = false,Ru(x̄) = true

R(x̄) = false ⇒ Rl(x̄) = Ru(x̄) = false

Theorem: For partial str. B:
B2v |= ∃τ JψiKε ⇒ all extensions of B falsify (φ, {ψ1, . . . , ψn})

SAT-to-SAT
December 2015

11/19

Example: Hamiltonian Path

Underapproximate translation of reachability propagator ψ is

JψK{next} :=

{
cut(s). ∃x ¬cut(x).

∀x , y (nextu(x , y) ∧ cut(x)→ cut(y)).

}
Here, if B2v |= ∃cut (JψK{next})⇒ (no matter how many
unknown arcs in nextB are made true) s cannot reach all nodes
using nextB

SAT-to-SAT
December 2015

12/19

Solving P[R] Programs: SAT-to-SAT
For a given propagator ψ, we want to incorporate ψ into a SAT
solver for the main problem φ

Note that a SAT solver state can be viewed as a partial
structure

⇒ (by previous theorem) In state B of SAT solver for φ, if B2v
satisfies ∃τ JψKε then SAT solver for φ should backtrack
(because there cannot be a model in this branch of search)

Also, note that, using a (new) SAT solver, we can check if a
state B satisfies some propagator specification

⇒ The idea is to have a SAT solver for φ that communicates
with other SAT solvers for ψi ’s (hence the name SAT-to-SAT)

SAT-to-SAT
December 2015

13/19

P[R] + SAT-to-SAT: In a Glance

Grounder

Input

Grounder

...
Grounder

φ

ψ1

...
ψn

Linker SAT-to-SAT Solution

Input

Input

Input

SAT Solver for φ

· · ·SAT Solver
for ψ1

SAT Solver
for ψn

Linked
CNF Solution

Partial
Model

Conflict
Clause

Partial
Model

Conflict
Clause

SAT-to-SAT
December 2015

14/19

SAT-to-SAT: Conflict Clauses and Triggers
Implemented a propagator that, given state B of external
solver:

I Computes 2-valued representation B2v of B,
I Runs an internal SAT solver to check if B2v |= ∃τ JψiKε,
I If so, it returns 〈SAT , J〉 with J a set of literals such that
B′ |=3

∧
x∈J x ⇒ B′2v |= ∃τ JψiKε, and

I If not, it returns 〈UNSAT , J〉 with J a set of literals such that
B′ 6|=3

∨
x∈J x ⇒ B′2v 6|= ∃τ JψiKε

Lazy conflict clause generation: If internal solver returned
〈SAT , J〉, add clause

∨
x∈J ¬x to external solver

Triggers: If internal solver returned 〈UNSAT , J〉, do not run it
again until external solver has assigned some x ∈ J to true

Theorem: SAT-to-SAT algorithm with clause generation and
triggers as above is sound and complete for P[R] specifications

SAT-to-SAT
December 2015

15/19

Example: Hamiltonian Path with Reachability
For propagator ψ in Hamiltonian path:

Conflict clauses always take the following form:∨
u∈cut ,v 6∈cut ,arc(u,v)

next(u, v)

where
I cut is a proper subset of nodes including starting node s,

and
I next(u, v) is assigned to false whenever u ∈ cut and

v 6∈ cut

Triggers will always be of the form
T = {¬next(u1, v1), . . . ,¬next(uk , vk)}
where T contains a rooted spanning tree of G with root s

SAT-to-SAT
December 2015

16/19

Experiments: Hamiltonian Path

Hamiltonian Path Instances (15m time limit)
Size Total Glucose SAT-to-SAT

Inst. Direct Enc. Reachability Enc. Acyclicity Enc.
Time # Time # Time

50 20 20 4.85s 20 0.02s 20 0.02s
100 20 4 390s 20 0.13s 20 0.63s
150 20 0 — 20 1.14s 20 7.52s
200 20 0 — 20 9.00s 20 74.0s
250 20 0 — 20 82.3s 18 283s
300 20 0 — 9 288s 5 639s

Table: Solving Hamiltonian path using SAT-to-SAT on two different
encodings plus using Glucose on a direct encoding.

SAT-to-SAT
December 2015

17/19

Future Directions

Upcoming soon (with Bart and Tomi):
I Solving QBF: i.e., arbitrary levels of nesting in SAT-to-SAT
I Generating KR solvers from their semantics: i.e., a

second-order front-end for SAT-to-SAT

And, later:
I Developing methods to reason about a solver’s state and

history, e.g., decision variables and their levels or
propagated variables and their reasons

I Developing foundations of temporal reasoning about
solving process

SAT-to-SAT
December 2015

18/19

Thank You

Questions?

SAT-to-SAT
December 2015

19/19

Example: Acyclicity Propagator for Hamiltonian
Path

P[R] Specification (φ′, {ψ′}) also specifies Hamiltonian paths:

φ′ :=


∀x , y (next(x , y)→ arc(x , y)).
∀x , y , y ′ (next(x , y) ∧ next(x , y ′)→ y = y ′).
∀y (y 6= s → ∃x (next(x , y))).


ψ′ :=

{
∀y (cycle(y)→ ∃x (cycle(x) ∧ next(x , y))).
∃x cycle(x).

}

Here, propagator ψ′ checks if next has become cyclic
(φ′, {ψ′}) specifies Hamiltonian Paths because next has to be
an acyclic path of size n − 1

