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Introduction

Several lines of work involve:

High-level declarative languages
for specifying search problems

(e.g. find a Hamiltonian Path in a graph)

plus

Solvers for use in practice

E.g.: Constraint Modelling Languages (Essence, Zinc, . . . )
ASP, IDP system, Enfragmo, NP-Spec, etc.
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Example: Hamiltonian Path Specification

The languages possess nice features: arithmetic, aggregates,
induction(sometimes)
that allow one to write natural specifications of many problems

Example: FO+Arithmetic specification of Hamiltonian Path:

∀u∀v (next(u, v)⇒ arc(u, v)).
∀u∀v∀v ′ (next(u, v) ∧ next(u, v ′)⇒ v = v ′).
∀u∀u′∀v (next(u, v) ∧ next(u′, v)⇒ u = u′).
∀u (reach(0,u)⇔ u = s).
∀n ∀u (reach(n + 1,u)⇔ reach(n,u) ∨ ∃v (reach(n, v) ∧ next(v ,u))).
∀u (reach(|nodes|,u)).
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Existing Practice

Grounding:
e.g., Satgrnd

Specification:
e.g., Hamil-
tonian Path

Instance:
e.g., Graph

Solver:
e.g.,

Minisat

Solution:
e.g., Hamil-
tonian path

So, a grounder takes the specification and an instance of a
problem to generate a ground instance that is solved by a
black-box solver

BUT, what if:
I the black-box solver gets stuck?
I or, solver’s inference methods are too slow for our

problem?
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Our Goals

Our final long-term goal is to:

Develop methods and foundations for declarative
specification and automatic construction of opti-
mized problem-specific solvers

In this paper, our goal is to:

Develop methods to specify problem-specific prop-
agators and to automatically modify a SAT solver to
use such mechanisms
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Our Approach

Grounding:
e.g., Satgrnd

Specification:
e.g., Hamil-
tonian Path

Instance:
e.g., Graph

Solver:
e.g.,

Minisat

Solution:
e.g.,

Hamiltonian
path

Propagator
Engine

Propagator
Speci-
fication

So, we can:
I specify problem-specific propagators, and,
I incorporate those propagators into a solver
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Language P[R] to Specify Problems Modulo
Reasonings

Syntactically: P[R] programs take the form of (φ, {ψ1, . . . , ψn})
with φ, ψ1, . . ., and ψn being first order programs
Here, φ is the main program and ψ1, . . . , ψn are propagators

Propagator vocabulary of ψi is τi = vocab(ψi) \ vocab(φ)

Semantically: P[R] program (φ, {ψ1, . . . , ψn}) is equivalent to
following second-order formula:

φ ∧
∧

1≤i≤n

¬∃τi (ψi)

The role of propagators is to specify undesirable models.
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Example: Reachability Propagator for Hamiltonian
Path

Main problem φ asserts that next is a subset of arcs without
any two arcs with the same source or the same destination:

φ :=


∀x , y (next(x , y)→ arc(x , y)).

∀x , y , y ′ (next(x , y) ∧ next(x , y ′)→ y = y ′).
∀x , x ′, y (next(x , y) ∧ next(x ′, y)→ x = x ′).

∀x (¬next(x , s)).


Propagator ψ checks if a cut separates s from some other node

ψ :=

{
cut(s). ∃x ¬cut(x).

∀x , y (next(x , y) ∧ cut(x)→ cut(y)).

}
P[R] specification (φ, {ψ}) finds Hamiltonian paths because
propagator ψ guarantees reachability of all nodes from s
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Grounding P[R] Specifications

Underapproximate translation of propagator ψ, denoted as
JψKε, is formula ψ′ so that

I Positive occurrences of R ∈ ε is replaced by Rl

I Negative occurrences of R ∈ ε is replaced by Ru

Grounding of P[R] specification (φ, {ψ1, . . . , ψn}) w.r.t. A,
denoted by Gnd((φ, {ψ1, . . . , ψn});A), is

(Gnd(φ;A), {Gnd(Jψ1Kε;A), . . . ,Gnd(JψnKε;A)})

where ε = vocab(φ) \ vocab(A)
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Theoretical Foundations
If B is a (σ ∪ ε)-structure that partially interprets ε, its 2-valued
representation, denoted as B2v , is a (σ ∪ εl ∪ εu)-structure so
that

I For R ∈ σ, RB2v = RB,
I For R ∈ ε, RB2v

l is the lowerbound of RB, and
RB2v

u is the upperbound of RB, i.e.,

R(x̄) = true ⇒ Rl(x̄) = Ru(x̄) = true
R(x̄) = unknown ⇒ Rl(x̄) = false,Ru(x̄) = true

R(x̄) = false ⇒ Rl(x̄) = Ru(x̄) = false

Theorem: For partial str. B:
B2v |= ∃τ JψiKε ⇒ all extensions of B falsify (φ, {ψ1, . . . , ψn})
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Example: Hamiltonian Path

Underapproximate translation of reachability propagator ψ is

JψK{next} :=

{
cut(s). ∃x ¬cut(x).

∀x , y (nextu(x , y) ∧ cut(x)→ cut(y)).

}
Here, if B2v |= ∃cut (JψK{next})⇒ (no matter how many
unknown arcs in nextB are made true) s cannot reach all nodes
using nextB
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Solving P[R] Programs: SAT-to-SAT
For a given propagator ψ, we want to incorporate ψ into a SAT
solver for the main problem φ

Note that a SAT solver state can be viewed as a partial
structure

⇒ (by previous theorem) In state B of SAT solver for φ, if B2v
satisfies ∃τ JψKε then SAT solver for φ should backtrack
(because there cannot be a model in this branch of search)

Also, note that, using a (new) SAT solver, we can check if a
state B satisfies some propagator specification

⇒ The idea is to have a SAT solver for φ that communicates
with other SAT solvers for ψi ’s (hence the name SAT-to-SAT)
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P[R] + SAT-to-SAT: In a Glance

Grounder

Input

Grounder

...
Grounder

φ

ψ1

...
ψn

Linker SAT-to-SAT Solution

Input

Input

Input

SAT Solver for φ

· · ·SAT Solver
for ψ1

SAT Solver
for ψn

Linked
CNF Solution

Partial
Model

Conflict
Clause

Partial
Model

Conflict
Clause
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SAT-to-SAT: Conflict Clauses and Triggers
Implemented a propagator that, given state B of external
solver:

I Computes 2-valued representation B2v of B,
I Runs an internal SAT solver to check if B2v |= ∃τ JψiKε,
I If so, it returns 〈SAT , J〉 with J a set of literals such that
B′ |=3

∧
x∈J x ⇒ B′2v |= ∃τ JψiKε, and

I If not, it returns 〈UNSAT , J〉 with J a set of literals such that
B′ 6|=3

∨
x∈J x ⇒ B′2v 6|= ∃τ JψiKε

Lazy conflict clause generation: If internal solver returned
〈SAT , J〉, add clause

∨
x∈J ¬x to external solver

Triggers: If internal solver returned 〈UNSAT , J〉, do not run it
again until external solver has assigned some x ∈ J to true

Theorem: SAT-to-SAT algorithm with clause generation and
triggers as above is sound and complete for P[R] specifications
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Example: Hamiltonian Path with Reachability
For propagator ψ in Hamiltonian path:

Conflict clauses always take the following form:∨
u∈cut ,v 6∈cut ,arc(u,v)

next(u, v)

where
I cut is a proper subset of nodes including starting node s,

and
I next(u, v) is assigned to false whenever u ∈ cut and

v 6∈ cut

Triggers will always be of the form
T = {¬next(u1, v1), . . . ,¬next(uk , vk )}
where T contains a rooted spanning tree of G with root s
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Experiments: Hamiltonian Path

Hamiltonian Path Instances (15m time limit)
Size Total Glucose SAT-to-SAT

Inst. Direct Enc. Reachability Enc. Acyclicity Enc.
# Time # Time # Time

50 20 20 4.85s 20 0.02s 20 0.02s
100 20 4 390s 20 0.13s 20 0.63s
150 20 0 — 20 1.14s 20 7.52s
200 20 0 — 20 9.00s 20 74.0s
250 20 0 — 20 82.3s 18 283s
300 20 0 — 9 288s 5 639s

Table: Solving Hamiltonian path using SAT-to-SAT on two different
encodings plus using Glucose on a direct encoding.
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Future Directions

Upcoming soon (with Bart and Tomi):
I Solving QBF: i.e., arbitrary levels of nesting in SAT-to-SAT
I Generating KR solvers from their semantics: i.e., a

second-order front-end for SAT-to-SAT

And, later:
I Developing methods to reason about a solver’s state and

history, e.g., decision variables and their levels or
propagated variables and their reasons

I Developing foundations of temporal reasoning about
solving process
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Thank You

Questions?
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Example: Acyclicity Propagator for Hamiltonian
Path

P[R] Specification (φ′, {ψ′}) also specifies Hamiltonian paths:

φ′ :=


∀x , y (next(x , y)→ arc(x , y)).
∀x , y , y ′ (next(x , y) ∧ next(x , y ′)→ y = y ′).
∀y (y 6= s → ∃x (next(x , y))).


ψ′ :=

{
∀y (cycle(y)→ ∃x (cycle(x) ∧ next(x , y))).
∃x cycle(x).

}

Here, propagator ψ′ checks if next has become cyclic
(φ′, {ψ′}) specifies Hamiltonian Paths because next has to be
an acyclic path of size n − 1


