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Problem definition

Motivation

subset of good diverse/similar solutions for decision-making
Design space exploration
Product configuration

Planning

Phylogeny reconstruction
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Problem definition

Example: Hamiltonian cycle

% Generate
1{cycle(X,Y) : edge(X,Y)}1
:— node(X) .

1{cycle(X,Y) : edge(X,Y)}1 e 0
:= node(Y). ’

% Define

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y);
reached(X) .

% Test
:— node(Y), not reached(Y).
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Problem definition

Example: Hamiltonian cycle

% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y). 0 g

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:= node(Y), not reached(Y). G

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

e
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Problem definition

Example: Hamiltonian cycle

% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y). 0 g

% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).

<
P2 vl

:= node(Y), not reached(Y).

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4 (41)
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Problem definition

Example: Hamiltonian cycle

% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y). 0 g

% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X)

D <
P2 vl

:= node(Y), not reached(Y).

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
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Problem definition

Example: Hamiltonian cycle

% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y). 0 g

% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).

<
P2 vl

:= node(Y), not reached(Y).

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
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Problem definition

Example: Hamiltonian cycle

% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y). 0 g

% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).

<
P2 vl

:= node(Y), not reached(Y).

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
Q cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
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Problem definition

Example: Hamiltonian cycle

% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y). 0 g

% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).

% Test

:= node(Y), not reached(Y). 0 a

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
Q cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP



Problem definition

Example: Distance

Distance function d in my example is percentage of different
atoms.
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Problem definition

Example: Distance

Distance function d in my example is percentage of different
atoms.

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
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Problem definition

Example: Distance

Distance function d in my example is percentage of different
atoms.

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
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Problem definition

Example: Distance

Distance function d in my example is percentage of different
atoms.

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
< atoms of 2 solutions are 50% different, d(2,3) = 50.
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Problem definition

Example: Set distance

Set distance A is maximum of pairwise distance d.
Given following set of solutions S:
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Problem definition

Example: Set distance

Set distance A is maximum of pairwise distance d.
Given following set of solutions S:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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Problem definition

Example: Set distance

Set distance A is maximum of pairwise distance d.
Given following set of solutions S:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
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Problem definition

Example: Set distance

Set distance A is maximum of pairwise distance d.
Given following set of solutions S:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP



Problem definition

Example: Set distance

Set distance A is maximum of pairwise distance d.
Given following set of solutions S:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
Distances:

d(1,2) 50%
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Problem definition

Example: Set distance

Set distance A is maximum of pairwise distance d.
Given following set of solutions S:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
Distances:

d(1,2) 50%
d(1,3) 50%
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Problem definition

Example: Set distance

Set distance A is maximum of pairwise distance d.
Given following set of solutions S:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
Distances:

d(1,2) 50%
d(1,3) 50%
d(2,3) 100%
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Problem definition

Example: Set distance

Set distance A is maximum of pairwise distance d.
Given following set of solutions S:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
Distances:

d(1,2) 50%

d(1,3) 50%
d(2,3) 100%

< A(S) = 100
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Problem definition

Problem Definition

Given ASP program P and set distance measure A : 25°/(P) 5 N:
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Problem definition

Problem Definition

Given ASP program P and set distance measure A : 25°/(P) 5 N:

n k-similar/dissimilar solutions
Find a set S of n solutions of P where A(S) < k (resp. A(S) > k)
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Problem definition

Problem Definition

Given ASP program P and set distance measure A : 25°/(P) 5 N:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where A(S) < k (resp. A(S) > k)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where A(S) is minimal (resp.
maximal A(S))
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Problem definition

Problem Definition

Given ASP program P and set distance measure A : 259(P) 5 N:

n k-similar/dissimilar solutions
Find a set S of n solutions of P where A(S) < k (resp. A(S) > k)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where A(S) is minimal (resp.
maximal A(S))

Other similarity problems: k-similar/dissimilar solution, maximal n
k-similar/dissimilar solutions, most similar/dissimilar solutions,
k-similar /dissimilar set
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Problem definition

Complexity
Problem Complexity
n k-similar/dissimilar solutions NP-complete
k-similar /dissimilar solution NP-complete
maximal n k-similar/dissimilar solutions | FNP//log-complete
n most similar/dissimilar solutions FPNP_complete
similar/dissimilar solution FPNP_complete
k-similar/dissimilar set NP-complete
k-similar/dissimilar optimal solutions ¥ F-complete
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Problem definition

Complexity
Problem Complexity
n k-similar/dissimilar solutions NP-complete
k-similar /dissimilar solution NP-complete
maximal n k-similar/dissimilar solutions | FNP//log-complete
n most similar/dissimilar solutions FPNP_complete
similar /dissimilar solution FPNP_complete
k-similar/dissimilar set NP-complete
k-similar /dissimilar optimal solutions > §-complete
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Problem definition

Complexity
Problem Complexity
n k-similar/dissimilar solutions NP-complete
k-similar /dissimilar solution NP-complete
maximal n k-similar/dissimilar solutions | FNP//log-complete
n most similar/dissimilar solutions FPNP_complete
similar /dissimilar solution FPNP_complete
k-similar/dissimilar set NP-complete
k-similar /dissimilar optimal solutions > §-complete

@ < challenging problems; need to find heuristics and
approximations to handle complexity or accept restrictions.
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Problem definition

Complexity
Problem Complexity
n k-similar/dissimilar solutions NP-complete
k-similar /dissimilar solution NP-complete
maximal n k-similar/dissimilar solutions | FNP//log-complete
n most similar/dissimilar solutions FPNP_complete
similar /dissimilar solution FPNP_complete
k-similar/dissimilar set NP-complete
k-similar /dissimilar optimal solutions > §-complete

@ < challenging problems; need to find heuristics and
approximations to handle complexity or accept restrictions.

@ In practice mostly evolutionary/genetic problem specific
algorithms for multiobjective optimization.
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Problem definition

Main inspiration

@ Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)
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Problem definition

Main inspiration

@ Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)
@ Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink:

Finding Similar/Diverse Solutions in Answer Set Programming
(2011)
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Problem definition

Main inspiration

@ Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)
@ Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink:

Finding Similar/Diverse Solutions in Answer Set Programming
(2011)

Three basic approaches are found in literature for ASP:
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Problem definition

Main inspiration

@ Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)

@ Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink:

Finding Similar/Diverse Solutions in Answer Set Programming
(2011)

Three basic approaches are found in literature for ASP:
@ Offline method

@ lterative method
© Modifying solver branching heuristic
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Clique approach

Clique approach
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Clique approach

Overview

@ Model solutions as vertices of graph with distances as labels
of edges

search for cliques in graph
complete, correct

easy to implement, versatile

not efficient
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Clique approach

Current implementation

@ ASP problems can be normal logic programs or optimization
problems in asprin-format

@ solves n k-similar/dissimilar solutions and n most similar/most
dissimilar solutions

o full python script

@ distance function in python
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Clique approach

Algorithm

Data: Distance function d, Problem P, distance k, number
solutions n

Result: Set C of n solutions of P with A(S) < k

S =getSolutions(P);

V <Set of |S| vertices, each element unique solution of P;

E ={(vi,w)|vi,va € V,vi # v, d(vi, ) < k};

C <« clique with n vertices in (V, E);

return C

Philipp Wanko Finding similar/dissimilar Solutions with ASP



Clique approach

Getting solutions
S =getSolutions(P);

@ P either normal logic program in ASP or optimization problem
in asprin-format

@ S contains all answer sets of P

@ answer sets consist of shown atoms as gringo Fun-objects
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Clique approach

Getting solutions: Example

% Generate
1{cycle(X,Y)
1{cycle(X,Y)

: edge(X,Y)}1 :- node(X).
: edge(X,Y)}1 :- node(Y).

% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).

% Test

:= node(Y), not reached(Y).

@ cycle(1,4) cycle(4,2) cycle(
@ cycle(1,3) cycle(3,5) cycle(
@ cycle(1,2) cycle(2,5) cycle(
@ cycle(1,2) cycle(2,6) cycle(
Q cycle(1,2) cycle(2,6) cycle(
@ cycle(1,4) cycle(4,2) cycle(

Philipp Wanko

2
5
5
6
6
2

cycle(5,6) cycle(6,3) cycle(3,1)
cycle(6,2) cycle(2,4) cycle(4,1)
cycle(6,3) cycle(3,4) cycle(4,1)
cycle(3,5) cycle(5,4) cycle(4,1)
cycle(5,3) cycle(3,4) cycle(4,1)
cycle(6,5) cycle(5,3) cycle(3,1)
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Clique approach

Calculating cliques

V <—Set of |S| vertices, each element unique solution of P;
E={(v1,v2)|v1,v2 € V,v1 # v2,d(v1,v2) < k};
C + clique with n vertex in (V, E);

@ first calculate pairwise distance between solutions
@ build edges between all solutions with distances as labels

@ add edges as instance to ASP clique program
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Clique approach

Getting edges: Example

Distance function d in my example is percentage of different
atoms.
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Clique approach

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
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Clique approach

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
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Clique approach

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
< 3/6 of atoms are different; edge(2,3,50) is added to instance
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Clique approach

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
— 3/6 of atoms are different; edge(2,3,50) is added to instance

Complete instance:

edge(0,1,83). edge(0,2,50). edge(0,3,83). edge(0,4,100).
edge(0,5,50). edge(1,2,66). edge(1,3,66). edge(1,4,83).
edge(1,5,100). edge(2,3,50). edge(2,4,50). edge(2,5,100).
edge(3,4,50). edge(3,5,83). edge(4,5,50).
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Clique approach

Getting cliques: Example

#program clique_sim(n,k).
edge (X,Y,D):-edge(Y,X,D).
vert (X):-edge(X,_,_).
vert (Y):-edge(_,Y,_).
n{cl_vert(X):vert(X)}n.

cl_edge(X,Y):-cl_vert(X),cl_vert(Y),
edge (X,Y,D),X<Y,D<=k.

:-cl_vert(X),cl_vert(Y),X<Y,
0{cl_edge(X,Y):edge(X,Y,_)}0.

Philipp Wanko Finding similar/dissimilar Solutions with ASP



Clique approach

Getting cliques: Example

#program clique_sim(n,k).
edge (X,Y,D):-edge(Y,X,D).
vert (X):-edge(X,_,_).
vert (Y):-edge(_,Y,_).
n{cl_vert(X):vert(X)}n.

cl_edge(X,Y):-cl_vert(X),cl_vert(Y),
edge (X,Y,D),X<Y,D<=k.

:-cl_vert(X),cl_vert(Y),X<Y,
0{cl_edge(X,Y):edge(X,Y,_)}0.

For k =60 and n = 3:
cl_vert(2), cl_vert(3), cl_vert(4)
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Clique approach

Improvements

@ optimal cliques
@ only calculate subset of solutions

@ iterate calculated solutions starting with number of required
solutions

@ add heuristic to enumerate more likely candidates
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Clique approach

Getting optimal cliques: Example

#program clique_sim_opt(n).

cl_edge(X,Y,D):-cl_vert(X),cl_vert(Y),
edge (X,Y,D) ,X<Y.

#minimize { D@1,(cl_edge,X,Y): cl_edge(X,Y,D)}.
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Clique approach

Getting optimal cliques: Example

#program clique_sim_opt(n).

cl_edge(X,Y,D):-cl_vert(X),cl_vert(Y),
edge (X,Y,D) ,X<Y.

#minimize { D@1,(cl_edge,X,Y): cl_edge(X,Y,D)}.

Optimal kK = 50 for n = 3 with same solution:
cl_vert(2), cl_vert(3), cl_vert(4)
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Iterative approach

Iterative approach
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Iterative approach

Overview

@ iteratively calculate solutions

@ one call to the solver adds a solutions satisfying distance
constraints

@ not complete, correct
@ easy to implement, only normal logic problems

@ more efficient
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Iterative approach

Current implementation

@ ASP problems can be normal logic programs

@ solves n k-similar/dissimilar solutions and n most similar/most
dissimilar solutions given a initial solution

@ python script in logic program
@ distance definition in ASP
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Iterative approach

Algorithm

Data:
@ Solve.lp (calculates solution s of P)

@ Distance.lp (calculates distances between set of solution S and s)
@ Constraint.lp (eliminates solution s with distance A(S U {s}) > k)

@ number solutions n
Result: Set S of maximum n solutions of P with A(S) < k
S=0;
for i =1 to ndo
s < Solve S Solve.lp Distance.lp Constraint.lp;
if Unsat then
‘ break;
end
S=SUs;
end
return S
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Iterative approach

Solve.lp: Example

% Generate
1{cycle(X,Y)
1{cycle(X,Y)

: edge(X,Y)}1 :- node(X).
: edge(X,Y)}1 :- node(Y).

% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

Philipp Wanko
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Iterative approach

Solve.lp: Example

% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y). e 9 e
% Define

reached(Y) :- cycle(1,Y). ’

% Test '

reached(Y) :- cycle(X,Y); reached(X).
:- node(Y), not reached(Y). e e G
Additional definition of atoms that constitute a solution:

#program solve.
_solution(0,cycle(X,Y)):-cycle(X,Y).
#show cycle/2.

Each step a new solution 0 is calculated.
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Iterative approach

Distance.lp: Example

Following logic program saves solution and excludes it in the future
(S=SUs):

Philipp Wanko Finding similar/dissimilar Solutions with ASP



Iterative approach

Distance.lp: Example

Following logic program saves solution and excludes it in the future
(S=SUs):

#program savesol (m).
_solution(m,X) :- X = @getSols(m).

#program deletemodel (m).

:— _solution(0,X) : X = QgetSols(m);
N #sum { 1,X: _solution(0,X) } N;
N = @solSize(m).
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Iterative approach

Distance.lp: Example

Following logic program is grounded in each step for each element
in S and calculates distance to s:
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Iterative approach

Distance.lp: Example

Following logic program is grounded in each step for each element
in S and calculates distance to s:

#program distance_prct(n,step).
_notsamel2(step,n,0,X):-_step(step);_solution(n,X);
not _solution(0, X).
_notsame21 (step,n,0,X):-_step(step); _solution(0,X);
not _solution(n, X).
_nratoms (step,n,0,N,K):-_step(step);N={_solution(n,X)};
K={_notsamel2(step,n,0,A)}.
_nratoms (step,0,n,N,K):-_step(step);N={_solution(0,X)};
K={_notsame21 (step,n,0,A)}.
_distance(step,n,0,K):- _step(step); _nratoms(step,n,0,N1,K1);
_nratoms (step,0,n,N2,K2);
K=@calcPrct (N1,K1,N2,K2).
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Iterative approach

Constraint.Ip: Example

Following logic program is grounded in each step for each element
in S to exclude s with A(SUs) > k:
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Iterative approach

Constraint.Ip: Example

Following logic program is grounded in each step for each element
in S to exclude s with A(SUs) > k:

#program constraint_sim(step,n,k).
:-_distance(step,n,0,X); X > k; _step(step).
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Iterative approach

Result: Example

All parts together with kK = 90 and n = 3 yield the following
results:
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Iterative approach

Result: Example

All parts together with kK = 90 and n = 3 yield the following
results:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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Iterative approach

Result: Example

All parts together with kK = 90 and n = 3 yield the following
results:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4)
cycle(4,1) _step(2) _distance(2,1,0,83)
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Iterative approach

Result: Example

All parts together with kK = 90 and n = 3 yield the following

results:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4)
cycle(4,1) _step(2) _distance(2,1,0,83)

(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)

(4,1) _step(3) _distance(3,1,0,83) _distance(3,2,0,66)

© cycle
cycle
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Iterative approach

Improvements

@ use optimize statements to ensure least distance for next
candidate

@ no more need to specify k
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Iterative approach

Improvements

@ use optimize statements to ensure least distance for next
candidate

@ no more need to specify k

Add following statement instead of Constraint.lp to the grounding
and save the last model:
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Iterative approach

Improvements

@ use optimize statements to ensure least distance for next
candidate

@ no more need to specify k

Add following statement instead of Constraint.lp to the grounding
and save the last model:

#program opt_sim(step).

_maxdist (K,step):-K = #max{X:_distance(step,_,0,X)};
_step(step).

#minimize{K: _maxdist(K,step),_step(step)}.
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Iterative approach

Improvements: Example

Same example now without k and n = 3 yield the following results:
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Iterative approach

Improvements: Example

Same example now without k and n = 3 yield the following results:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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Iterative approach

Improvements: Example

Same example now without k and n = 3 yield the following results:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) _step(2) _distance(2,1,0,50)
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Iterative approach

Improvements: Example

Same example now without k and n = 3 yield the following results:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) _step(2) _distance(2,1,0,50)

@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) _step(3) _distance(3,1,0,83) _distance(3,2,0,83)
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Iterative approach

Improvements: Example

Same example now without k and n = 3 yield the following results:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) _step(2) _distance(2,1,0,50)

@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)

cycle(4,1) _step(3) _distance(3,1,0,83) _distance(3,2,0,83)

Slight improvement in quality to k = 83 and better distance
between 1 and 2 but not nearly optimal due to unfortunate start
candidate.

Philipp Wanko Finding similar/dissimilar Solutions with ASP



asprin + Hclasp approach

asprin + Hclasp approach
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asprin + Hclasp approach

Overview

@ extend asprin preference framework with heuristic to enable
similarity

e modify branching heuristic to find similar/dissimilar models
from previous solutions

@ no guarantees

@ easy to implement, directly aids in finding solutions

@ tampering with branching heuristics may decrease performance

Philipp Wanko Finding similar/dissimilar Solutions with ASP



asprin + Hclasp approach

Current implementation

ASP problems can only be optimization problems in
asprin-format

approximates n most similar/most dissimilar solutions

python script in logic program

distance can only be expressed in _heuristic-atoms
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asprin + Hclasp approach

Algorithm

@ same branch and bound algorithm of asprin

@ change branching heuristic with hclasp when optimal solution
is found:
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asprin + Hclasp approach

Algorithm

@ same branch and bound algorithm of asprin

@ change branching heuristic with hclasp when optimal solution
is found:

Data: Set H of atoms of optmimal solution, step s
foreach a € H do Add atom _heuristic(_holds(a,0),true,s) ;
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asprin + Hclasp approach

Algorithm

@ same branch and bound algorithm of asprin

@ change branching heuristic with hclasp when optimal solution
is found:
Data: Set H of atoms of optmimal solution, step s
foreach a € H do Add atom _heuristic(_holds(a,0),true,s) ;
@ variable with highest value s is decided first and declared true,
if possible

@ CDClL-algorithm tries to pick same atoms from past optimal
solutions, regarding newer solutions the most
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asprin + Hclasp approach

Adding heuristic

If optimal solution is found, following logic program is added:
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asprin + Hclasp approach

Adding heuristic

If optimal solution is found, following logic program is added:
#program dosimilar (m).

_heuristic(_holds(X,0),true,m) :- X=Q@getHolds ().

#show _holds/2.
#show _heuristic/3.
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asprin + Hclasp approach

Adding heuristic: Example

% Generate %optimize
1{ cycle(X,Y) : edge(X,Y) }1 #preference(cl,less(weight)){
:- node (X). V:i:cycle(X,Y) : cost(1,X,Y,V)
1{ cycle(X,Y) : edge(X,Y) }1 }.
- node(Y). #preference (c2,less(weight)){
V::cycle(X,Y) : cost(2,X,Y,V)
% Define }.
reached(Y) :- cycle(1,Y). #preference (c3,less(weight)){
reached(Y) :- cycle(X,Y); V::cycle(X,Y) : cost(3,X,Y,V)
reached (X). }.
% Test #preference (all,pareto){
:- node(Y), not reached(Y). name (c1); name(c2); name(c3)
}.

#optimize (all).
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asprin + Hclasp approach

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:
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asprin + Hclasp approach

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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asprin + Hclasp approach

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
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asprin + Hclasp approach

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
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asprin + Hclasp approach

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
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asprin + Hclasp approach

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
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asprin + Hclasp approach

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule:
_holds(for(cycle(X,Y)),0):-cycle(X,Y).
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asprin + Hclasp approach

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule:
_holds(for(cycle(X,Y)),0):-cycle(X,Y).

Optimal solution in step 2:
cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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asprin + Hclasp approach

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule:
_holds(for(cycle(X,Y)),0):-cycle(X,Y).

Optimal solution in step 2:
cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adds heuristic:

_heuristic(_holds(for(cycle(6,3)),0),true,2)
_heuristic(_holds(for(cycle(5,6)),0),true,2)
_heuristic(_holds(for(cycle(1,4)),0),true,2)
_heuristic(_holds(for(cycle(2,5)),0),true,2)
_heuristic(_holds(for(cycle(4,2)),0),true,2)
_heuristic(_holds(for(cycle(3,1)),0),true,2)
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asprin + Hclasp approach

Adding heuristic: Example

First three answers without heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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asprin + Hclasp approach

Adding heuristic: Example

First three answers without heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
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asprin + Hclasp approach

Adding heuristic: Example

First three answers without heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
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asprin + Hclasp approach

Adding heuristic: Example

First three answers without heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%
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asprin + Hclasp approach

Adding heuristic: Example

First three answers without heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%
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asprin + Hclasp approach

Adding heuristic: Example

First three answers without heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%
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asprin + Hclasp approach

Adding heuristic: Example

First three answers without heuristic:

@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

< k=100 and n =3
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asprin + Hclasp approach

Adding heuristic: Example

First three answers with heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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asprin + Hclasp approach

Adding heuristic: Example

First three answers with heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
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asprin + Hclasp approach

Adding heuristic: Example

First three answers with heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
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asprin + Hclasp approach

Adding heuristic: Example

First three answers with heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%
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asprin + Hclasp approach

Adding heuristic: Example

First three answers with heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%
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asprin + Hclasp approach

Adding heuristic: Example

First three answers with heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%

2,3 66%

Philipp Wanko Finding similar/dissimilar Solutions with ASP



asprin + Hclasp approach

Adding heuristic: Example

First three answers with heuristic:
@ cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
@ cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
@ cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
Distances:
1,2 50%
1,3 83%
2,3 66%
—+k=83and n=3

Finding similar/dissimilar Solutions with ASP
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asprin + Hclasp approach

Improvements

@ heuristic modifying atoms regarding all previous solution

@ dynamic heuristic
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Benchmarks

Benchmarks
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Benchmarks

Overview

Clique:
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Benchmarks

Overview

Clique:
o Calculating all solutions:
o finds globally optimal clique
e nlp and optimization
o inefficient
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Benchmarks

Overview

Clique:

o Calculating all solutions:
o finds globally optimal clique
e nlp and optimization
o inefficient

@ Calculating solutions iterative:
e no optimal clique
e nlp and optimization
e more efficient
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Benchmarks

Overview

Clique:

o Calculating all solutions:
o finds globally optimal clique
e nlp and optimization
o inefficient

@ Calculating solutions iterative:
e no optimal clique
e nlp and optimization
e more efficient

Iterative:
@ no globally optimal solutions
@ not guaranteed to find solution

e only nlp
o fast
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Benchmarks

Overview

asprin+hclasp:
@ approximation of optimal solutions
@ no hard cutoff
@ only optimization

o fast
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Benchmarks

@ all benchmarks were run on Zuse with 2 cores exclusively
@ tried to find dissimilar solutions

e Optimization problems (6000 sek timeout, 20 Gb memout):

e Design space exploration
e Benchmark suite from asprin-paper with Pareto preference
statements

e Normal problems (2000 sek timeout, 20 Gb memout):
e Hamilton cycle suite

e Benchmark suite from asprin-paper without preference
statements
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Benchmarks

Results

n=3 n=3 n=3
k =60 k =60 k =60
Clique Clique(iter) | Iter
Class #ins || time(s) time(s) time(s)
DSE 500 2779.55(453) 2832.50(455)
asprin-paper-opt | 133 2713.82(58) | 1298.26(26)
Hamilton 474 || 1986.96(470) | 1322.72(275)| 1193.70(280)
asprin-paper-nlp | 133 1911.83 1576.63(92) | 880.17(52)
(127)
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Results

Benchmarks

n=3 n=3 n=3
opt opt opt
Clique Iter heur
Class #ins || time(s) | dist time(s) | dist time(s) | dist
DSE 500 2777.67 | 986 2723.18 | 1043
(453) (447)
asprin-paper- | 133 2722.65 | 425 361.03 | 4769
opt (58) (4)
Hamilton 474 1995.78 | 63 1223.83 | 201
(473) (289)
asprin-paper- | 133 1912.03 | 159 1130.57 | 579
nlp (127) (73)

Philipp Wanko
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Conclusion

Conclusion
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Conclusion

Conclusion

@ iterative approach much better performance for normal logic
programs

e with tweaks, clique approach is useful in small examples and
for getting a baseline

@ heuristic approach promising for multiobjective optimization
problems
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Conclusion

Improvements

@ chose different starting solutions parallel for iterative
approaches

@ generate different subsets of solutions parallel for clique
approach
@ improve performance of getting a solution:
o decrease iterations for asprin with hclasp

e improve finding similar solutions with clique(iterative) and
iterative approach with hclasp
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Conclusion

Conclusion

Thank you! Questions?
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