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ABSTRACT

Motivation: Regulation of gene expression is fundamental to
the operation of a cell. Revealing the structure and dynamics
of a gene regulatory network (GRN) is of great interest and
represents a considerably challenging computational problem. The
GRN estimation problem is complicated by the fact that the
number of gene expression measurements is typically extremely
small when compared with the dimension of the biological
system. Further, because the gene regulation process is intrinsically
complex, commonly used parametric models can provide too
simple description of the underlying phenomena and, thus, can
be unreliable. In this article, we propose a novel methodology
for the inference of GRNs from time-series and steady-state gene
expression measurements. The presented framework is based on
the use of Bayesian analysis with ordinary differential equations
(ODEs) and non-parametric Gaussian process modeling for the
transcriptional-level regulation.
Results: The performance of the proposed structure inference
method is evaluated using a recently published in vivo dataset.
By comparing the obtained results with those of existing ODE-
and Bayesian-based inference methods we demonstrate that
the proposed method provides more accurate network structure
learning. The predictive capabilities of the method are examined by
splitting the dataset into a training set and a test set and by predicting
the test set based on the training set.
Availability: A MATLAB implementation of the method will be
available from http://www.cs.tut.fi/~aijo2/gp upon publication.
Contact: harri.lahdesmaki@tut.fi
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
An important problem in molecular biology is to understand
the regulatory mechanisms that control gene expression.
Although high-throughput technologies have recently witnessed
tremendous progress, complex molecular control mechanisms
cannot be deciphered using experimental methods alone. Hence,
computational modeling has an important role in revealing
genome-wide regulatory mechanisms.

∗To whom correspondence should be addressed.

Models of transcriptional regulation are commonly depicted in
the form of a network (or graph), where directed connections
between nodes represent the regulatory interactions. Genome-wide
transcriptional regulatory mechanisms are largely unknown and,
thus, a central goal is to infer the structure of the gene regulatory
network (GRN) from the experimental data. Biological samples
are commonly profiled using gene expression microarrays and
the measured mRNA levels provide a valuable and quantitative
information source for understanding molecular control mechanisms
at systems level. Inference of GRNs from experimental data,
such as gene expression measurements, represents a considerably
challenging problem.

In recent years, researchers have proposed several different
computational approaches to reconstruct GRNs, e.g. see reviews
by Bansal et al. (2007) and Markowetz and Spang (2007). These
include, among others, approaches that rely on linear models
(D’haeseleer et al., 1999), information theory (ARACNE) (Margolin
et al., 2006), static and dynamic Bayesian networks (BANJO; Yu
et al., 2004) and Boolean networks and their probabilistic extensions
(Shmulevich et al., 2002). While these methods have been found
useful in a number of applications, they primarily model the data,
not the underlying biological process. On the other hand, GRNs
could be modeled in great detail with chemical reaction network
models. However, there are major difficulties in inference with
this modeling approach, e.g. lack of measurements from single
cells and computational problems in inferring the model parameters
and structure from data (Wilkinson, 2006). The exact models are
commonly approximated by ordinary differential equations (ODE),
which can be obtained as the expectation of the chemical master
equation under certain assumptions, and are often coupled with
linear, mass action, sigmoidal, Hill or Michaelis–Menten kinetics.
A number of different modeling approaches using ODEs have been
proposed, including, among others, estimation of model parameters
(Cao and Zhao, 2008), inference for unknown transcription factor
(TF) levels (Gao et al., 2008), coupling ODE models with protein
complexes (Wang et al., 2007) and model structure inference (NIR,
TSNI and Inferelator; Bansal et al., 2006; Bonneau et al., 2006;
Gardner et al., 2003). Other related methods that combine aspects
from ODEs and Bayesian modeling have been proposed, e.g. in
Imoto et al. (2002), Perrin et al. (2003), Nachman et al. (2004) and
Zou and Conzen (2005).

Overall, the gene expression process consists of several steps,
including transcription, splicing and translation. The transcription
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step has a central role in controlling gene expression and, hence,
most of the network modeling approaches focus on that level of
regulation. Different kinetic models used to capture transcriptional
dynamics in ODEs are well motivated and widely used, but they
are derived based on simplified assumptions. For example, it is
known that the transcription alone consists of at least four main steps:
TF binding, initiation, elongation and termination (Greive and von
Hippel, 2005). In addition to these difficulties, in the case of more
than one TF there remains a question about protein dimerizations
and their cooperative effect on regulation, such as AND, OR or XOR
types of logic. Consequently, commonly applied parametric kinetic
models may be unreliable and may have too simple view on the
underlying phenomena.

Additional difficulty stems from the fact that it is currently
difficult to measure protein concentrations in a high-throughput
manner. Although methods exist for estimating unknown protein
concentrations for a given GRN structure, such an approach
leads to an increased computational complexity. Furthermore, no
computational method has been proposed so far to simultaneously
estimate protein levels and GRNs that includes combinatorial
regulatory interactions. Thus, the inference is usually done based
on mRNA measurements. In addition, usually there are only a
small number of gene expression measurements available and the
measurements are contaminated by noise.

Here, we propose an approach that is similar to the afore-
mentioned ODE-based methods but has a couple of important
differences. The main differences are non-parametric modeling of
molecular kinetics and Bayesian analysis. Given the complexity of
the transcription step and the overall gene expression process, non-
parametric modeling allows us to infer the shape of a regulatory
function from the data without making any drastic assumptions
beforehand. Bayesian approach is particularly well-suited for ‘small
n large p’ problems where the measurements additionally contain a
considerable amount of uncertainly. In particular, under the Bayesian
approach, we may assign probabilities to different models, whereas
in the traditional frequentist view, we are only able to accept
or reject different models, which might be too harsh an action
given the limitations discussed above. Additionally, uncertainty
in measurements is taken into consideration in the model by
assuming normally distributed noise and learning its characteristics
from measurements. The proposed reverse engineering method is
also able to use both steady-state and time-series data. Having
the aforementioned aspects (non-parametric, ODE and Bayesian
modeling) in mind, we discriminate our approach from previously
proposed GRN structure learning methods in the following fashion.
All ODE-based methods are essentially parametric, such as those
proposed in Gardner et al. (2003), Perrin et al. (2003), Nachman
et al. (2004), Bansal et al. (2006) and Bonneau et al. (2006). The
work of Gao et al. (2008), however, shows a departure from standard
parametric approaches in that latent protein activities are modeled
using Gaussian processes, although the regulation function has a
parametric form. Previously proposed non-parametric approaches,
on the other hand, are essentially not based on differential equation-
type modeling, such as those in Imoto et al. (2002), Yu et al.
(2004) and Zou and Conzen (2005). Finally, most of the ODE-based
approaches make use of frequentist inference (Bansal et al., 2006;
Bonneau et al., 2006; Gardner et al., 2003), which as such might
have, e.g. the aforementioned problems of making hard decisions
(although resampling methods can alleviate that problem).

Performance of the proposed computational method is assessed
using a recently published in vivo reverse-engineering and modeling
assessment (IRMA) network (Cantone et al., 2009), which provides
an excellent framework for validation. Results demonstrate that our
novel modeling approach provides more accurate network structure
predictions than other commonly used ODE and Bayesian methods
and non-parametric modeling allows us to identify molecular
kinetics that best explain experimental data. In the next section, we
will introduce our modeling framework. After that, the performance
of the presented method is assessed by comparing it with other
methods using real data. Finally, we conclude this study in Section 4.

2 METHODS

2.1 Gene regulation model
We base our modeling approach on the commonly used first-order ODE
model which, given the lack of protein concentration measurements, uses
amounts of mRNA as a proxy for protein concentrations. Let xi(t) denote
the expression of gene i at time t and vector x̂i(t) denote the expressions
of genes that regulate gene i. The general ODE model can be expressed as
(Barenco et al., 2006)

dxi(t)

dt
=αi +fi(x̂i(t))−λixi(t), (1)

where αi is the basal transcription rate, fi is an unknown regulation function
and λi is the decay rate of the mRNA. We also consider the possibility that
a gene xi is not regulated by other genes via regulatory function fi. In that
case, the model in Equation (1) reduces to the following form

dxi(t)

dt
=αi −λixi(t). (2)

Since we only have measurements of gene expressions, we approximate
the rates of gene expression with a first-order approximation

dxi(tk)

dt
��xi(tk)= xi(tk+1)−xi(tk)

tk+1 − tk
(3)

for a given set of measurement time points. If one wants to infer regulatory
interactions from steady-state measurements, then the rate of expression is
set to zero

dxi(t)

dt
��xi(t)=0. (4)

One of the key ideas behind our method is to use Gaussian processes to learn
the unknown regulation function fi(·) from the data.

2.2 Gaussian processes
Gaussian processes provide non-parametric prior distributions over functions
and can be thought of as a generalization of multinomial Gaussian
distributions. A Gaussian process is defined to be a collection of random
variables such that any finite subset of the random variables have a joint
Gaussian distribution. We use the following notation to represent that values
of a function f (x) are modeled by a Gaussian process (Rasmussen and
Williams, 2005)

f (x)∼GP (
m(x),k(x,x′)

)
, (5)

where m(x) is a mean function and k(x,x′) is a covariance function. From
now on, this section, we assume that the mean function is identically zero
for notational convenience.

The covariance matrix is constructed by using covariance functions, i.e.
Ki,j =k(xi,xj). In order to control mean square differentiability of the process,
we choose to use the Matérn covariance function with ν=3/2 for both time-
series and steady-state data

k(x,x′)=σ(1+√
3
√

uTP−1u)exp
(
−√

3
√

uTP−1u
)
,

where u=x−x′, P=diag(l2), l is a length-scale hyperparameter and σ is an
additional-scale hyperparameter.
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By assuming normal i.i.d. additive noise on measurements, we may
write the combined covariance function as kc(xi,xj)=k(xi,xj)+σ2

nδij , where
δij is the Kronecker delta and σ2

n is a hyperparameter additional to the
hyperparameters of the Matérn covariance function. In that case, we may
write the joint distribution of the training samples (y,X) and test samples
(f∗,X∗) as [

y
f∗

]
∼N

(
0,

[
K(X,X)+σ2

n I K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
, (6)

where matrix X contains the explanatory variables x as columns and vector
y contains the responses (similarly for f∗ and X∗).

Predictions by a Gaussian process are done with the mean in the following
way

f∗|y,X,X∗ ∼N (f̄∗,Cov(f∗)), where (7a)

f̄∗ =KT∗ K−1
n y, (7b)

Cov(f∗)=K(X∗,X∗)−KT∗ K−1
n K∗, (7c)

where Kn =K(X,X)+σ2
n I and K∗ =K(X,X∗). As usual, extrapolation results

should be used carefully, however, interpolation results are usually more
reliable as we will see. Given the above specification for a Gaussian
processes, an important result is that the marginal likelihood p(y|X,θ) can
be computed analytically (Rasmussen and Williams, 2005)

p(y|X,θ)= (2π)−n/2|Kn|−1/2 exp

(
− 1

2
yTK−1

n y
)

, (8)

where θ denotes the hyperparameters.

2.3 Non-parametric molecular kinetics
The unknown regulation function fi in Equation (1) is modeled with a zero-
mean Gaussian process as it is difficult to justify any specific mean function
for fi, which, in general, can be activating or repressing or often implements
a more complex combinatorial function. Since in practice the exact values of
basal rate αi and decay rate λi are also unknown, we assign prior probability
distributions to them and integrate them out to get the complete marginal
likelihood. Assignment of a prior can be done easily in the Gaussian process
framework by introducing to the model a set of fixed basis functions h(x)

g(x)= f (x)+h(x)Tβ, (9)

where f (x)∼GP (
0,k(x,x′)

)
and β is the coefficient vector of the linear

regression model.
For the gene regulation model shown in Equation (1), an obvious choice

of fixed basis functions and coefficient vector for gene i are h(xi(t))T =
(1,−xi(t)) and β= (αi,λi)T, respectively. That is, with this choice, by
combining Equations (1) and (9), we end up with the same form as in
Equation (1). In order to be able to derive analytical expression for the
marginal likelihood, we assign a Gaussian prior to the coefficient vector
β∼N (b,B), where b is a given mean and B is a covariance matrix. This
choice of prior, however, makes it possible that parameters αi,λi have
negative values. We specify the prior rather conservatively so that all
plausible values of β have sufficiently high probability. Such an approach
provides us with a stable estimation where results are relatively insensitive
to small fluctuations in the prior.

Combining the above model specifications together for gene i, we may
write the transformation of GP (

0,k(x(t),x(t′))
)

(Rasmussen and Williams,
2005)

gi
(
xi(t),x̂i(t)

)∼
GP

(
h
(
xi(t)

)T b,k
(
x̂i(t),x̂i(t

′)
)+h

(
xi(t)

)T
Bh

(
xi(t

′)
))

,
(10)

where gi
(
xi(t),x̂i(t)

)
represents the right-hand side of Equations (1) and (3),

specifically,
dxi(t)

dt
��xi(t)=gi

(
xi(t),x̂i(t)

)
. (11)

Intuitively speaking, this can be seen as a regression problem, where gene
expressions xi(t) and x̂i(t) are used to model response variable �xi(t). With

Equation (11), we connect the core ODE model from Section 2.1 with the
general theory of Gaussian processes from Section 2.2. After incorporating
the given fixed basis functions, the mean function of the Gaussian process
is not zero but is explicitly defined by the linear part of the model, which
corresponds to the basal transcription rate and degradation terms. The non-
linear part, i.e. the Gaussian process, corresponds to the (unknown) regulation
function. Note that the predictive quantities as well as the marginal likelihood
for noisy observations can still be computed similarly as in Equations (7)
and (8)

g∗|�xi,X,X∗ ∼N (ḡ∗,Cov(g∗)), where (12a)

ḡ∗ =HT∗ β̄+KT∗ K−1
n (�xi −HTβ̄)= f̄(X∗)+RTβ̄ (12b)

Cov(g∗)=Cov(f∗)+RT(B−1 +HK−1
n HT)−1R, (12c)

where β̄= (B−1 +HK−1
n HT)−1(HK−1

n �xi +B−1b) and R=H∗ −HK−1
n K∗,

the vector �xi contains all the response variables �xi(t) (both time-series
and steady-state), and the matrices H and H∗ contain all the training and test
vectors h(xi(t)), respectively. Equation (12b) in scalar form can be utilized
in the prediction of gene expression profile with the Euler method, i.e. given
the expressions xi(tn) and x̂i(tn), approximate the rate of expression change
�xi(tn) by ḡi

(
xi(tn),x̂i(tn)

)
. Similarly, the log-marginal likelihood of �xi

can be written as

log p(�xi|X,b,B,θ)=− 1

2
vTW−1v− 1

2
log|W |− 1

2
log 2π, (13)

where v=HTb−�xi and W =Kn +HTBH .
In the case of no explanatory variables [Equation (2)], it should be clear

after incorporating the fixed basis functions that this model is based on
Bayesian linear regression. To keep the two approaches [Equations (1) and
(2)] consistent, we use the same Gaussian process framework for the case
of no explanatory variables as well by incorporating another covariance
function

knoise(xi,xj)=σ2
nδij, (14)

where σ2
n is again the hyperparameter representing the noise variance.

Therefore, in this case, the Gaussian process is merely used to model the
noise in the measurements, i.e. the covariance matrix K is diagonal.

Instead of full Bayesian treatment, we resort to an empirical Bayesian
approach in model fitting where the hyperparameters, i.e. l, σ and σ2

n are
optimized by maximizing the (log)-marginal likelihood with the Polack–
Ribiere conjugate gradient method (Rasmussen and Williams, 2005). By
taking a logarithm, one may see how the balancing between goodness-of-fit
and complexity is carried out. Consequently, danger of overfitting the model
is reduced in a natural way without introducing any statistical criteria from
outside, such as Bayesian information criteria or Akaike information criteria.

2.4 Inference
As noted above, we have two goals: estimation of the non-parametric kinetic
models and inference of the network structure. For a given model structure,
regulatory functions can be estimated as shown in Equation (12a) and by
subtracting the linear part. Bayesian model structure selection, where the
goal is to choose explanatory variables x̂i for each gene i, can be obtained
via the marginal likelihood shown in Equation (13). Let Mj denote a network
structure. The posterior probability of a given model Mj can be obtained by
applying Bayes’ theorem

p(Mj|�xi,X)= p(Mj)p(�xi|X,Mj)∑
j p(�xi|X,Mj)p(Mj)

, (15)

where terms p(�xi|X,Mj) are obtained by evaluating Equation (13) for
each gene i (corresponding to the explanatory variables specified by Mj)
and p(Mj) is the prior probability of the network structure Mj . For the
purposes of this study, we use a uniform prior over networks. We use directly
the posterior probabilities [Equation (15)] for ranking different models, i.e.
which TFs regulate a given gene. Because the model selection relies on
the marginal likelihood, the variable selection automatically favors models
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that are explanatory but at the same time not too complex. Note that the
computation of Bayesian posterior model probabilities in Equation (15) can
be extended to compare different covariance functions as well.

The actual inference procedure is done separately for each gene in the
network. That is, for each gene, we fit the model in the Equation (1) with
different combinations of explanatory variables x̂ and compute the posterior
probabilities using Equation (15). We summarize the posterior probabilities
of network models using a square connection matrix, where the (i,j) element
represents the posterior probability that gene j is regulated by gene i. Each
element of the connection matrix can be computed by summing posterior
probabilities of all networks that contain a directed connection from xi to xj .

2.5 Scalability
For a given network structure, the most time-consuming step is the
computation of the marginal likelihood, which, for each gene, involves
matrix multiplications, inversion of the covariance matrix (size n-by-n,
where n is the number of measurements) and computation of the matrix
determinant, an O(n3) operation. Computational complexity is also increased
by the iterative optimization of the hyperparameters. For moderately sized
networks, we can perform an exhaustive search for model structures,
resulting in O(N2N ) complexity, where N is the number of genes. An
alternative strategy could be to implement a Markov chain Monte Carlo
algorithm to sample network structures from the posterior. For larger
networks, we may need to set an upper bound for the number of explanatory
variables. However, because the explanatory variables can be searched for
each gene separately, it is trivial to make use of distributed computing and,
thus, to be able to infer GRNs with thousands of genes.

3 RESULTS
Validation of GRN network inference methods has traditionally
been done using in silico networks. However, depending on how
realistic the choice of an in silico model is, this kind of validation
approach has obvious limitations. To overcome these problems,
we use the IRMA network (Cantone et al., 2009) to compare
the performance of different GRN inference methods. The IRMA
network is a synthetically constructed GRN in the Saccharomyces
cerevisiae genome, which is designed to be maximally independent
in such a way that genes in the network are not regulated by genes
outside of the network (i.e. by other yeast genes). However, genes
in the IRMA network may regulate other genes in the genome. The
network consists of five genes and there are positive and negative
feedback loops and one protein to protein interaction. For details
on the construction of the network and experimental procedures, we
refer to Cantone et al. (2009). One of the purposes of the IRMA
network is to provide a realistic benchmark set for computational
studies by providing mRNA-level measurements from a known
GRN. To our knowledge, the IRMA network and dataset are the
first of a kind that are meant for validation purposes. Although the
IRMA network contains only five genes, there are about 33.6 million
different networks structures. Further, there are studies suggesting
that the performance on smaller networks typically generalize to
larger networks (Bansal et al., 2007; Stolovitzky et al., 2007).

We use both switch-off and switch-on experiments (Cantone et al.,
2009), which refer to experiments where yeast cells were shifted
from galactose to glucose and glucose to galactose, respectively.
Galactose affects the network by activating the genes whereas
glucose has an opposite effect. The time-series measurements were
taken in switch-off and switch-on conditions, resulting in time series
with a length of 20 for the switch-off and 15 for the switch-on. The
steady-state data were measured in five different conditions where

each of the genes was overexpressed in turn and this procedure
was carried out for cells growing in both galactose and glucose
media. In inference, we used averaged mRNA profiles and discarded
the possibility of self-loops to keep the results comparable with
those reported in Cantone et al. (2009). The hyperparameters of the
basal transcription rate and the decay rate (b) and the corresponding
covariance matrix (B=σ2I) are the only fixed parameters of our
approach and were set as specified in Supplementary Table 2. We use
different variance hyperparameters for time-series and steady-state
data to reflect the fact that the sample variance of the data varies by
several orders of magnitude. Note that variance hyperparameters are
small because the experimental data has remarkably small dynamic
range.

Cantone et al. used the IRMA network to compare different
commonly used network modeling approaches. In particular, they
compared the performance of an ODE model (TSNI) and dynamic
Bayesian networks (Banjo) on time-series measurements (switch-
on and switch-off), and another ODE model (NIR), static Bayesian
networks (Banjo) and an information theoretic method (ARACNE)
on steady-state measurements (galactose and glucose). ODE-based
methods TSNI and NIR were found to be top performers on time-
series and steady-state data, respectively. In addition to comparing
our results with those of TSNI, NIR and Bayesian networks, we also
provide a comparison with the Bayesian method proposed in Zou
and Conzen (2005).

The following metrics are used to assess the performance
of each of the methods: precision–recall operating characteristic
(P-ROC) curve, where positive predictive value [PPV=TP/(TP+
FP)] is plotted against true positive rate [TPR=TP/(TP+FN)]] and
receiver operating characteristic (ROC) curve, where TPR is plotted
against false positive rate [FPR=FP/(FP+TN)].1

Supplementary Figure 1 shows the P-ROC and ROC curves for the
proposed method when network structure is learned from the switch-
on data. First of all, we notice that our method correctly identified
five out of eight interactions without any false interactions. If one
wants to find all true connections in the IRMA network, it will come
with a cost of a few false connections. Second, the precision and
recall values of the other methods are beneath our P-ROC curve.

Figure 2 shows the P-ROC and ROC curves related to the switch-
off data. From this figure, we can conclude that our method works
better as in the case of the switch-on data, which is surprising given
the nature of the switch-off experiment, but this improvement might
be due to greater number of timepoints. In this case also we find
five connections out of eight without false positives, but we are
able to find seven true positives with a smaller number of false
positives than with the switch-on data. As in the case of switch-
on dataset, the proposed method outperforms the other methods.
The topology of the inferred network obtained with a threshold
of P=0.5 on individual connections is shown in Figure 1. The
two missing connections are regulatory interactions of CBF1 on
GAL4 and SWI5 on CBF1 and the two extra connections are a
regulatory effect of ASH1 on SWI5 (regulatory effect of SWI5
on ASH1 was found correctly) and a of SWI5 on CBF1. Even
by looking at the expression profiles of SWI5 and ASH1 it is

1Full P-ROC and ROC curves can be obtained for the TSNI and NIR methods
as well. However, we were not able to reproduce exactly the same results as
in Cantone et al. (2009) and, hence, we only report the point estimates from
Cantone et al. (2009).
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difficult to say anything about the direction of regulation. Further, in
steady-state experiments where each of the genes was overexpressed
separately, overexpression of CBF1 did not have a significant impact
on expressions GAL4 (Cantone et al., 2009). It should also be noted
that there is a significant delay in the activation of CBF1 (Cantone
et al., 2009), which might be the reason why the regulatory effect
of SWI5 on CBF1 was not found.

Fig. 1. The topology of the inferred IRMA network showing the correct
(solid lines), missing and extra connections (dashed lines). The interaction
between GAL4 and GAL80 is a protein to protein interaction and is
considered to be bi-directional as in Cantone et al. (2009). Lines with arrow
heads indicate activation and lines with blunt ends indicate inhibition.

One might expect that using all possible data together in the
inference process should yield better results. To address this
question, we applied the proposed method to the combination of
switch-on and switch-off time-series datasets. Obtained results are
shown in Figure 3. The results are better than the ones obtained with
the individual datasets in a sense that we find all true connections
with a smaller number of false positives. On the other hand, some
true connections have contradicting evidence in the two datasets
and those are ranked lower. Moreover, we also considered the GRN
inference by allowing self-loops and it turned out that with individual
datasets our method did not perform as well as without self-loops
(but still better than random), i.e. self-loops had high probabilities.
However, with the switch-on and switch-off datasets together the
method performed well (Fig. 3). This observation suggests that the
inference needs more data to distinguish between self-regulatory and
non-self-regulatory interactions. This observation is also supported
by the fact that genes in individual experiments exhibit only little
dynamic variability (see, e.g. Fig. 4 and Supplementary Fig. 4).

Results for galactose and glucose steady-state datasets are shown
in Supplementary Figures 2 and 3, respectively. We may see that
in both cases, inference results obtained with steady-state data
are worse than those obtained with the time-series data, despite
the different perturbations (overexpressions) that were carried out.
However, the obtained results are better than those reported in
Cantone et al. (2009) with NIR. From the above remarks, we can
conclude that time-series data contains more information about the
network dynamics and that the proposed method is able to infer the
network structure both from steady-state and time-series data.

In order to investigate the sensitivity of the fixed hyperparameters
(b and B), we rerun the complete GRN inference simulations
1000 times with different hyperparameter values for B=σ2I .
For each run, hyperparameters were chosen uniformly randomly

(a) (b)

Fig. 2. Inference results on the switch-off dataset. Obtained P-ROC curve is shown in (a) and ROC curve is shown in (b). The cross in circle marks the
results obtained with the TSNI method, the square marks the results obtained with the methods from Zou and Conzen (2005), the triangle marks the results
obtained with Banjo and the star marks our results if we take five of the most probable interactions into consideration.
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(a) (b)

Fig. 3. Inference results on the combination of the switch-on and switch-off datasets. Obtained P-ROC curves are shown in (a) and ROC curves are shown
in (b). The solid lines and dashed lines represent the results obtained without and with self-loops, respectively.

from the interval determined by increasing and decreasing the
original hyperparameter value by a factor of two. Supplementary
Figure 6 shows the box plots of the area under the ROC
(AUROC) curves for different datasets. For time-series datasets,
the hyperparameters have only a small effect on the structure
inference results (AUROC numbers for the original hyperparameters
are reported in Supplementary Table 1). Inference from steady-
state data, however, is moderately sensitive to the value of the
variance hyperparameter. This is most probably due to the very
small sample size (only five steady-state measurements) and not
an inherent problem of our computational method itself.

Part of the same data was also used in the second Dialogue
for Reverse Engineering Assessments and Methods (DREAM2;
Stolovitzky et al., 2007), where the best inference results were
obtained with an ODE method with Hill-type dynamics (Marbach
et al., 2009a, b). Although our method provides significantly better
P-ROC curves, results may not be directly comparable because the
amount of gene expression data in DREAM2 was slightly smaller
and the network predictions for the DREAM2 were done in a
completely blind fashion.

One of the goals of modeling GRNs is to obtain a predictive
model. To assess the prediction capabilities of our method, we
used the switch-off time-series dataset as a training set for both the
model structure selection and for learning the dynamics of the model
(i.e. non-parametric regulatory function and hyperparameters). We
tried to predict the expression profiles in the switch-on experiment,
which was not used to train the model, hence representing an
independent validation dataset. We show the results for gene GAL4
as an example case. First, our method found out correctly that
gene GAL4 is regulated by genes CBF1 and GAL80, i.e. this
combination of regulatory genes had highest posterior probability.
We assumed that expression of GAL4 at the first timepoint and

expression profiles of regulatory (i.e. explanatory) genes at all time
points are known. Figure 4 shows the measured expression profiles
of genes GAL4, CBF1 and GAL80 and the predicted expression
profile of gene GAL4 on the switch-off dataset. It can be seen that
the predicted expression profile closely follows the measured one,
which demonstrates that the proposed method also has predictive
capabilities.

To address the question of validity of the proposed non-parametric
ODE model more extensively, we look at the estimated regulatory
function. In Figure 5a, the estimated regulatory function for gene
GAL4 is shown along with the variance of the estimate in Figure5b.
As above, gene GAL4 is regulated by genes CBF1 and GAL80
and the regulatory function is estimated from the switch-off dataset.
From this figure, it can be seen that the method found out correctly
that gene CBF1 is an activator and gene GAL80 is a repressor of
gene GAL4. This observation demonstrates that the proposed non-
parametric model is able to learn the regulatory role of different
explanatory variables even in the case of combinatorial regulation.

In addition to the previous example, we predicted the expression
profile of CBF1 on the switch-on dataset (see Supplementary
Fig. 4). As in the previous example, the predicted expression profile
resembles the measured one. Supplementary Figure 5 shows the
estimated regulatory function on the test set (switch-on). The method
again correctly infers the repressive and activating roles of ASH1
and SWI5, respectively.

In order to investigate the scalability of our method, we use an
in silico dataset (networks with 100 genes) from the DREAM3
challenges. This dataset is computationally intensive due to the
number of genes and the amount of data, i.e. 46 time series with
21 samples in each and null-mutants and heterozygenous steady-
state measurements. Yet, we were able to get results with distributed
computing in a few days for all five networks. However, given the
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Fig. 4. Predicted expression profile of gene GAL4 on the switch-on dataset. Gene GAL4 is regulated by genes CBF1 and GAL80.

combinatorial explosion of the search space, which is independent
of our model, we had to constrain the maximum in-degree in the
models to two. Based on the results of the challenge, which are
available from the DREAM project web site, we may conclude
that the method presented in this article would have been placed
second in the challenge with a score of 53.220. Obtained AUROC
and P-ROC measures, the corresponding P-values as well as the
ROC and P-ROC curves are shown in Supplementary Tables 3–4
and Supplementary Figures 7–11, respectively. In the two networks
where the performance is weaker there are genes whose in-degree
is high, and thus the weaker performance might be due to constraint
on the maximum in-degree. In the three other cases, it should be
noted that a number of the first predictions are correct.

4 DISCUSSION
We presented a novel ODE-based approach for inferring GRNs
from steady-state or time-series measurements. The presented
method does not rely on the assumption that regulatory function
has a predefined shape, but the shape of the regulatory function
is learned from the data. This provides additional flexibility in
modeling but, at the same time, also allows modeling the standard
parametric regulatory functions via the universal approximation
property of non-parametric methods. In addition, the method is able
to take uncertainty, e.g. noise in the measurements, into account
in a well-defined manner. Bayesian analysis provides a principled
way of comparing different network structures via the posterior
probabilities. The proposed approach is able to make use of several
time-series and steady-state datasets to improve the inference of
transcriptional regulatory networks. Our method outperforms the
TSNI and Zou and Conzen’s (2005) methods on the time-series data,
NIR (and ARACNE) on the steady-state data and dynamic and static
Bayesian networks on time-series and steady-state data. Even though
any ODE method is a simplification of the underlying biochemical
system, the prediction results (Fig. 4 and Supplementary Fig. 4) and
the estimated regulatory functions (Fig. 5 and Supplementary Fig. 5)
demonstrate that the model is also able to capture the dynamics
of the system. Possible future work includes extending the model
in such a way that gene expressions are modeled in a continuous

(a)

(b)

Fig. 5. Estimated regulatory function of GAL4 as a function of CBF1 and
GAL80 evaluated on the training set (switch-off) is shown in (a) and the
variance of the estimate in (b).

manner without approximating the derivatives and developing an
adaptive methodology to extend the models in order to tackle the
difficulties arising from constraining the maximum in-degree for
large networks.
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