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Background. Revealing protein-DNA interactions is a key problem in understanding transcriptional regulation at mechanistic
level. Computational methods have an important role in predicting transcription factor target gene genomewide. Multiple data
fusion provides a natural way to improve transcription factor target gene predictions because sequence specificities alone are not
sufficient to accurately predict transcription factor binding sites. Methods. Here we develop a new data fusion method to combine
multiple genome-level data sources and study the extent to which DNA duplex stability and nucleosome positioning information,
either alone or in combination with other data sources, can improve the prediction of transcription factor target gene. Results.
Results on a carefully constructed test set of verified binding sites in mouse genome demonstrate that our new multiple data fusion
method can reduce false positive rates, and that DNA duplex stability and nucleosome occupation data can improve the accuracy
of transcription factor target gene predictions, especially when combined with other genome-level data sources. Cross-validation
and other randomization tests confirm the predictive performance of our method. Our results also show that nonredundant data
sources provide the most efficient data fusion.

1. Introduction

A central problem in molecular system biology is to under-
stand the manner in which a cell operates its complex tran-
scriptional machinery. At molecular level, transcriptional
processes are largely controlled by transcription factors (TFs)
that bind to gene promoters in a sequence-specific manner
and, thereby, inhibit or promote the expression of their
target genes. Collectively, these DNA-binding proteins and
other molecules work together to implement the complex
regulatory machinery that controls gene expression. Since
large-scale understanding of transcriptional regulation is
still severely limited even in lower organisms, it is of
great importance to reveal these regulatory protein-DNA
interactions genomewide.

Experimentally verified TF-binding sites (TFBSs) have
been collected in databases [3–5] and recently developed

experimental methods, such as ChIP-chip or ChIP-seq, are
capable of measuring in vivo TFBSs in high-throughput
manner. However, it is not possible to obtain sufficient
coverage, that is, to screen all TFs under all conditions,
using experimental methods alone. Therefore, the binding
site prediction problem calls for computational methods.
Computational predictions rely on sequence specificities that
are typically taken from a database [4] or obtained as an
output from a motif discovery method [6]. Recent progress
on experimental side has made it also possible to measure
TF-binding specificities in high-throughput manner [7]. The
advent of these experimental techniques equips TF target
gene prediction methods with much more accurate binding
specificity models and, indeed, opens a whole new avenue for
computational analysis of TF-DNA binding.

Sequence specificities alone, however, are not sufficiently
informative to accurately predict TFBSs simply because
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the probability of observing an exact copy of a presum-
ably functional binding motif in a genome by chance is
remarkably high. A natural way to improve TF target gene
predictions is to incorporate additional information into
statistical inference of TFBSs. A number of additional data
sources can be useful for this purpose, including, among
others, information on coregulated genes, evolutionary con-
servation, physical binding locations as measured by ChIP-
chip or ChIP-seq, nucleosome occupancies, CpG islands,
regulatory potential, DNase hypersensitive sites, and so
on. Incorporating additional information sources to guide
statistical inference has successfully been made use of in
the context of motif discovery [8–11], but has not attracted
enough attention in TF target gene prediction. We have
recently developed a probabilistic TF target gene prediction
method, ProbTF, which can incorporate practically any
additional genome-level information source to predict TF
target gene [12].

Statistical data fusion for TF target gene prediction
becomes more challenging in the case of multiple infor-
mation sources. Here we develop a new method for mul-
tiple data fusion and incorporate novel data sources into
TF target gene prediction. Four genome-level additional
information sources (i.e., information at the level of indi-
vidual nucleotides), evolutionary conservation, nucleosome
positioning data from a recently published computational
method, regulatory potential, and DNA duplex stability, are
employed here to improve TF target gene prediction, which
is expected to be informative of binding sites as will be
discussed shortly. Some of these and other individual data
sources have already been shown to improve de novo motif
discovery [8–11]. Here we demonstrate how multiple data
sources can be combined to make joint statistical inference
of TF target gene. Integration of data sources that have
a probabilistic interpretation is relatively straightforward
[12], and for other data sources we convert the raw data
into probabilities, or prior distributions, by extending a
previously proposed Bayesian transformation method [11].
In addition, for efficient use of DNA duplex stability data,
we propose a simple heuristic that can assess the binding
preference (single versus double-stranded DNA) for a TF
from a set of known binding sites. Results on a carefully
constructed set of verified binding sites in mouse genome
[3, 5, 12] demonstrate that the new data fusion method
that we propose here improves the performance of TF
target gene prediction methods. We also demonstrate that
a number of genome-level data sources, either alone or
especially in combination, are highly informative of TF
target gene. Consequently, our statistical data fusion method
can gain valuable new insights into genomewide models of
transcriptional regulatory networks.

2. Methods

Given the fundamental role of TFs in transcriptional reg-
ulation, we focus on predicting TF target gene. Because
each individual data source is noisy and gives only a partial
view of the underlying regulatory mechanisms, we focus

on making statistical inference for TFBSs from multiple
information sources. The essence of the data fusion problem
that we encounter is illustrated in Figure 1, which shows
four examples of verified binding sites from the test data
set together with the associated additional genome-level
data sources [12]. The first row in each subplot shows the
annotated binding site(s) for a TF in a gene promoter. The
next rows (named by their TRANSFAC IDs, grey) show
the log-likelihood scores of the position specific frequency
matrix (PSFM) models to the Markovian background model
φ. The following five rows show the additional data sources:
probability of conservation (con. [13], green), regulatory
potential (reg. [14], blue), nucleosome positioning signals
predicted by two different methods (npy. [1] and nuc. [2],
magenta), and DNA duplex stability (DNA. [15, 16], red)
score for each position of the sequences. The joint prior
combined from all the explored additional data sources is
shown in black in the last row. The median and mean of the
scores for each data type applied to the sequences shown in
Figure 1 are recorded in Table S1 in supplementary material
available online at doi: 10.1155/2010/235795.

Figure 1 shows that the highest log-likelihood score is
not always obtained at the annotated binding site. TFs are
commonly associated with multiple PSFMs since one TF
may allow certain variation in its binding motif. Thus,
it can be difficult to combine predictions from multiple
PSFMs given that these PSFMs may be extremely similar or
different. This issue can be solved by, for example, ProbTF
method, which implements an intuitive way of combining
predictions by multiple PSFMs: ProbTF considers all possible
numbers of nonoverlapping TFBSs in all possible locations
and configurations and weights each configuration according
to its probability. A more difficult problem is to decide
that which of the peaks predicted by PSFMs correspond to
real, functional binding sites. As illustrated in Figure 1, the
PSFM-based profiles have relatively good sensitivity but poor
specificity, which is common to many PSFMs. The lack of
specificity can be greatly improved by genome-level data
fusion, which forms the focus of this study.

Corresponding to what is known about transcriptional
regulation, many of the verified binding sites typically have
high degree of conservation [8] and high regulatory potential
scores [14] and are typically free of stable nucleosomes (i.e.,
have low nucleosome occupancy scores) [17]. Moreover,
DNA double helix destabilization energies at TF binding sites
are different from those at random sites [11]. In particular,
TFBSs tend to have high DNA duplex stability score if a
TF prefers to bind both strands of the promoter sequence
(Figures 1(a) and 1(b)) and low DNA stability score in the
opposite case (Figures 1(c) and 1(d)) The above reasoning
seems to provide a simple logic for filtering the real TFBSs.

However, correlation between TFBSs and any of the
additional data sources cannot be expected to be perfect even
from a biological point of view. For example, only about 50%
of functional binding sites are assessed to be evolutionary
conserved [18]. The additional information sources are also
noisy, regardless of whether they are experimental measure-
ments or computational predictions. The only possibility
is to make statistical inference, which takes the inherent
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Figure 1: Illustration of data fusion problem in TF target gene prediction. The promoter sequence names are shown above the arrow, and the
arrow corresponds to transcription start site (TSS). Horizontal axis corresponds to position relative to TSS. The red bar(s) together with a
TF name on the first line of each figure represent the known binding site. For a given TF, data shown in grey (named with TRANSFAC IDs)
represent models corresponding to different position-specific frequency matrices (PSFM) that are found from the TRANSFAC database.
Evolutionary conservation (green), regulatory potential (blue), two nucleosome positioning signals [1, 2] (magenta), and DNA duplex
stability data (red) are shown in the following five rows (abbreviated with con., reg., npy., nuc. and DNA., resp.). The joint prior from all the
four additional data sources (black) is shown in the last row. TFs shown in panels (a) and (b) are assumed to bind to their corresponding
sequences in a double-strand manner, while TFs in panels (c) and (d) bind in a single-strand manner. All plotted data are for mouse genome.

randomness into account, from multiple genome-level data
sources. The rationale is that the accuracy of computational
TF target gene predictions naturally improves when more
(useful) information is incorporated into statistical analysis.

2.1. Probabilistic Framework for TF Target Gene Prediction.
We first describe the TF target gene prediction algorithm
employed in this study (full details can be found from [12]).
Let S = (s1, . . . , sN ) denote a single strand of a promoter
sequence, where si ∈ {A,C,G,T} and N is the length
of the sequence (generalization to double-stranded DNA
sequences is also possible but omitted here). Let Q denote
the number of (unknown) binding sites and A the (hidden)
start positions of nonoverlapping binding sites in sequence S;
that is, if Q = c then A = {a1, . . . , ac}.

Nonbinding site (i.e., background) sequence locations
are modeled by the dth order Markovian background model
φ. Assuming that we have access to the d previous nucleotides

before the start of the actual sequence S, the likelihood of
a sequence S having no binding sites for any TF is P(S |
A = ∅, φ) = P(S | φ) =

∏N
i=1φ(si), where φ(si) = P(si |

si−1, . . . , si−d). We set d = 0 since that value provides the
best results in [12]. TFBSs are modeled with the standard
PSFM model which is a product of independent multinomial
distributions. Let θ(si, j) = Pθ(si, j) denote the probability
of observing nucleotide si at the jth ( j = 1, . . . , l) position
of θ, where l is the length of the motif. Assume a TF is
characterized by M PSFMs, Θ = (θ(1), . . . , θ(M)). Define
π ∈ {1, . . . ,M}c as the configuration of motif models from Θ
in A; that is, πi specifies the motif model θ(πi), which begins
from location ai and has a length lπi . Further, the probability
of sequence S, given nonoverlapping motif positions and the
motif and background models, is

P
(
S | A, π,Θ, φ

)
= P

(
S | φ

) |A|∏

j=1

W
πj
aj , (1)
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where |A| = Q = c and

W
πj
aj =





lπ j−1∏

k=0

θ(πj )
(
saj+k, k + 1

)

φ
(
saj+k

) , if 1 ≤ aj ≤ N − lπj + 1

0, otherwise.
(2)

The probability that a sequence S has c binding sites is
obtained with Bayes’ rule

P
(
Q = c | S,Θ, φ

)
= P

(
S | Q = c,Θ, φ

)
P
(
Q = c | Θ, φ

)

P
(
S | Θ, φ

) ,

(3)

where the normalization factor is P(S | Θ, φ) =
∑%N/lmin&

c=0 P(S
| Q = c,Θ, φ)P(Q = c | Θ, φ) and %N/lmin& is the maximum
number of nonoverlapping motifs in an N-length sequence.
As proposed in [12], the prior of the number of motif
instances, P(Q = c | Θ, φ), is assumed to be independent
of Θ and φ and has an exponential form

P(Q = c) ∼
[

1
2

,
1
C

,
κ
C

,
κ2

C
, . . . ,

κ%N/lmin−1&

C

]
, (4)

where C = 2
∑%N/lmin&−1

i=0 κi. We use κ = 0.5. This for-
mula defines the (user definable) prior expectation of the
number of binding sites in a given DNA sequence. Impor-
tantly, it does not incorporate any of the informative data
sources studied here. This prior, primarily only, increases
or decreases of the estimated binding probabilities, and
as such has little effect on, for example, the ROC curves.
The probability P(S | Q = c,Θ, φ) is obtained with the
assumption that, for a fixed value of Q, the prior over
binding site positions A and configurations π is uniform and
inversely proportional to the number of different binding site
positions and configurations. The probability P(S | Q =
c,Θ, φ) is obtained by summing over all possible positions
and configurations, and can be computed efficiently using a
recursive formula [12].

Finally, the probability that a TF which is characterized
by Θ binds to a promoter S, P(Θ → S | S,Θ, φ), is defined as
the probability that at least one of the motif models in Θ has
a binding site in S

P
(
Θ −→ S | S,Θ, φ

)
= P

(
Q > 0 | S,Θ, φ

)
. (5)

Integration of additional data sources into the aforemen-
tioned probabilistic TF target gene prediction framework is
carried out by assuming that the data sources are in the
form of D = (P1, . . . ,PN ) where Pi is the probability that
the ith base pair location is a binding site. D can be derived
from a single data source or from multiple data sources
(see subsections “DNA duplex stability data”, “Nucleosome
occupation data”, and “Data integration method” of this
section for details). Assuming that S and D are conditionally
independent and the probability of D does not depend on
the PSFM and background models, the probability of S and
D given A, π, Θ, and φ is

P
(
S,D | A, π,Θ, φ

)
= P

(
S | A, π,Θ, φ

)
P(D | A, π). (6)

Following (1), the probability P(D | A, π) is modeled as

P(D | A, π) =
N∏

i=1

(1− Pi)
|A|∏

j=1

lπ j−1∏

k=0

Paj+k

1− Paj+k
, (7)

and, thus, the joint probability P(S,D | A, π,Θ, φ) can be
written compactly as

P
(
S,D | A, π,Θ, φ

)
= P

(
S | φ

)
P
(
D | φ

) |A|∏

j=1

W
(πj )
aj ×D

(πj )
aj ,

(8)

where P(D | φ) =
∏N

i=1(1 − Pi) and D
(πj )
aj =

∏lπ j−1

k=0 ((Paj+k)/
(1 − Paj+k)). Consequently, the same efficient recursive
algorithm can be used to compute P(Θ → S | S,D,Θ, φ)
(see [12] for more details).

Note that the choice of Markovian and PSFM models
is arbitrary. Also note that since additional data are incor-
porated using probabilities of binding over the promoter
sequence; we could also employ methods other than ProbTF.

2.2. Data Integration Method. Define the mth additional
genome-level data source (for a single gene promoter having
length N) as D(m) = (P (m)

1 , . . . , P (m)
N ), 1 ≤ m ≤ n. Denote

the probabilities for position i from n different data sources
as Pi = (P (1)

i , . . . , P (n)
i ), 1 ≤ i ≤ N . Further, define a

thresholded version of probabilities P (m)
i as

P̃ (m)
i =





P (m)
i , if P (m)

i ≥ T(m),

0, otherwise,
(9)

where T(m) is a threshold for the mth data source and is
defined as a percentile q of the distribution of the mth data
source. Then the thresholded scores for position i can be
written as P̃i = (P̃ (1)

i , . . . , P̃ (n)
i ), 1 ≤ i ≤ N . Let vi =

|{P̃ (m)
i | P̃ (m)

i > 0, 1 ≤ m ≤ n}| be the number of data
sources that exceed their thresholds at location i, then the
integrated probability for position i, P̃i, is calculated as

P̃i =





max
(
P̃i

)
× Lvi , if vi ≥ 1,

min(Pi)× L0, otherwise.
(10)

The data integration method is parameterized by
L0,L1, . . . ,Ln and q. Note that vi ∈ {0, 1, . . . ,n} and
Lvi+1 ≥ Lvi . It is also worth noting that the resulting
probabilities do not include hard thresholding for any of
the genomic locations although thresholding is involved
in integration, and the use of thresholding during the
construction is motivated by its simple yet powerful
parametrization.

The data integration method is illustrated in Figure 2 for
the case of two additional data sources with parameters L0 =
0.5, L1 = 0.7, L2 = 1, and q = 0.9. For illustration purposes,
both data sources are assumed to have uniform distribution
and hence T(1) = T(2) = q.
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Figure 2: An illustration of the prior integration method. An
illustration of the prior integration method for the case of two
additional data sources. x and y axes correspond to the two data
sources and z-axis corresponds to the integrated prior.

In the above genome-level data integration method there
are n + 1 (n is the number of additional data sources)
weighting parameters L0,L1, . . . ,Ln, and one threshold q for
emphasizing the most informative binding locations. There
are also two scaling parameters, a multiplicative factor a(m),
and a bias term b(m), for each additional data source, and
one scaling parameter, c, for combining other data sources
with the TF target gene prediction analysis. These parameters
are used to scale the original probability values into a proper
range. In particular, the scaling parameters are used in the
following way (for the mth data source):

P (m)
i = a(m) × P

(
X ∈ B | R(m)(X)

)
+ b(m),

Pi = 2× c × P̃i + 0.5− c,
(11)

where P(X ∈ B | R(m)(X)) is the probability that a DNA
site X is a TFBS (X ∈ B) given the value of the mth raw
data R(m)(X). For conservation and regulatory potential the
original data are already in a probabilistic format, and for
nucleosome and DNA stability data the conversion of the raw
data into probabilities was described in the previous sections.
Probability Pi is the final integrated prior probability for
position i after scaling, which is directly used in further TFBS
prediction as explained, for example, in (6) and (7).

All the parameters needed in this study were chosen
by a grid search method via optimizing receiver operating
characteristic (ROC) curves, and the importance of each data
source could be reflected by the multiplicative factor “a”;
that is, the higher the multiplicative factor the less noisy or
more important this type of data is. “1-specificity” (x axis)
and “sensitivity” (y axis) are used to draw the ROC curves
according to

specificity = TN
(FP + TN)

,

sensitivity = TP
(TP + FN)

,

(12)

where TN, FP, TP, FN each stands for “true negative”, “false
positive”, “true positive”, and “false negative”, respectively.
In particular, TN, FP, TP, FN are obtained by comparing
the computed binding probabilities (of a sequence to have
a binding site for a TF) with known binding site information
from the test data set, that is, “0” (no binding site) and “1”
(at least one binding site). We used area under the curve
(AUC) and AUC30 (the AUC for the area between false
positive rates [0, 0.3]) to optimize the parameters. In case
of four additional data sources, we are dealing with a high-
dimensional grid search problem. Since the grid size grows
exponentially with the dimension, we resort to a heuristic
where each parameter is optimized separately using a 1-
dimensional grid search while keeping the other parameters
fixed. Moreover, parameter optimization is done sequentially
so that we first optimize parameters a(m) and b(m) for
individual data sources. Scaling parameters L0,L1, . . . ,Ln are
optimized similarly except that Ln is always assigned to 1. For
example, parameters L1 and L0 are optimized using two data
sources, which are then kept fixed and assigned to L2 and
L1, respectively, when optimizing new parameter L0 using
three data sources, so forth. In our study, we optimized the
parameters of up to four data sources, which are L0 = 0.72,
L1 = 0.72, L2 = 0.73, L3 = 0.8, and L4 = 1, respectively,
and q equals 0.93. It is worth noticing that the adjacent Lw’s
(0 ≤ w ≤ n) tend to be similar for small values of w, and
especially we have L1 = L0 when n equals 4. This accords well
with the main feature of our new data fusion method, which
is to search for bona fide locations (indicated by several data
sources) and reduce false positives by not paying too much
attention to the locations indicated by fewer data sources. All
the rest optimized scaling parameters are listed in Table 1.

The scaling parameters, that is, “a”, “b” and “c”, are rela-
tively robust, whose slight variations would not dramatically
affect the results. We varied “a” of the DNA duplex stability
data (for both double and single strand binding data), which
is supposed to have more effect on the results (recall that
“a” weights different information sources and reflects their
importance), and listed its AUC scores for single data source
as well as its combination with other additional information
sources in supplementary Table S2. It is clear that with small
changes of “a”, the results do not vary significantly. However,
for the weighting parameters, that is, “L0” to “Ln”, and the
threshold, q, their small changes may have greater effect on
the results, since they determine how different data sources
are combined. This can be seen from the closer values among
“L0” to “L3”, which are 0.72, 0.72, and 0.73, respectively.
These parameters depend heavily on the quality and type of
data, and should be optimized before data integration.

2.3. DNA Duplex Stability Data. The DNA stability measures
the amount of energy needed to separate the two strands of
DNA. In this study the DNA destabilization energies were
obtained from an online tool WebSIDD [15, 16], where
the parameters were set to “DNA Type: circular”, “Energetic
Type: near neighbor”, and “Energy Cutoff: level 4”. Note that
circular DNA is assumed to calculate the duplex stabilities of
linear DNA. This is because WebSIDD handles linear DNA
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similarly with circular DNA but adding 50 G/C to the end,
which is not needed here given the extended DNA used.
We obtained the energy score for each sequence with 1 kb
extension from both ends. For every binding site X we
computed the energy of destabilization G(X) as the average
of the destabilization values G(X, i) for all positions i within
this site.

2.3.1. Assessing Binding Preference for Each TF. Relatively
little is reported about specific types of protein-DNA inter-
actions in the literature and the protein domain annotations
are not available for all TFs, thus, we decided to assess the
binding preference for each factor simply by looking at the
DNA stability scores at the known binding sites in the test
data set. With the assumption that the binding preference
of a TF is the same to all its binding sites, we estimated the
binding preference of each TF with the following heuristic.
Let A denote the set of all known start binding positions of
a TF among all the tested sequences in our test set. For all
the known binding sites in A, we compute counts dC and

sC which are the number of times
∑aj+%j−1

i=aj
G(X, i)/% j ≥ T

and
∑aj+%j−1

i=aj
G(X, i)/% j ≤ 1− T , respectively, where %j is the

width of the verified binding site j in the test set and T is the
threshold specified by quantile q. Then, the TF is assigned to
bind in a double-strand manner if dC > sC, in a single-strand
manner if dC < sC, and in cases dC = sC, random preference
is assigned. In order to make the above heuristic more robust,
we repeated it for three thresholds specified by different
quantiles q = {0.6, 0.7, 0.8} with both raw G(X, i) and
smoothed G(X, i) =

∑i+9
j=i G(X, j)/10 DNA duplex stability

scores. The final binding preference of each TF is made by
taking a vote among these six binding preferences, and again
in case of a tie random binding preference is assigned.

2.3.2. Construction of DNA Duplex Stability Prior. We built
three data sets to construct the DNA duplex stability priors:
one positive single-strand binding data set, one positive
double-strand binding data set, and one background data set.
The positive data sets are constructed from 226 known bind-
ing sites in our test data set by splitting the known binding
sites into single- and double-strand binding sets according to
the binding preference of each TF. The background data set is
generated as follows. For each verified binding site in our test
set, we randomly select 20 genomic locations (from the same
promoter sequence) with the average binding site of length
12, which results in a background set that is 20 times larger
than the test set.

The raw DNA duplex stability scores are converted into
probabilities using a similar method as in [11] with an
extension to account for both single- and double-strand
binding preferences. For each data set, we built a histogram
of the energies, then normalized and smoothed the values
to get a probability distribution. The cumulative distribution
functions (CDFs) of the three data sets are shown in
Figure 3(a), which indicate that DNA duplex stability data
does provide us discriminative information about TFBSs.
All known binding sites, on which the performance is

eventually evaluated, are used to draw Figure 3(a), which
leads to circular reasoning. However, our cross-validation
and randomization simulations show that this biasing effect
is negligible. For every energy value e and binding site X, the
conditional density of the single- and double-strand binding
data are P(G(X) = e | X ∈ sB) and P(G(X) = e |
X ∈ dB), respectively, where sB and dB denote single- and
double-strand TFBSs, respectively. Similarly, for the random
genomic locations we have P(G(X) = e). We also estimated
the frequency of the randomly chosen DNA sites that have a
significant overlap with any of the known single-strand and
double-strand binding sites, P(X ∈ sB) and P(X ∈ dB),
respectively. Bayes’ rule is used to compute the probability
that a DNA site X is a single-strand TFBS given its energy
(similar calculation is also applied to the double-strand case)

P(X ∈ sB | G(X)) = P(G(X) |X ∈ sB)× P(X ∈ sB)
P(G(X))

.

(13)

2.4. Nucleosome Occupation Data

2.4.1. Construction of Nucleosome Occupation Prior. We built
the nucleosome occupation prior in a similar way as what
we did with the DNA stability data, but with only two
data sets: positive and background (see also [11]). The
positive data set consists of the averaged N-scores (the raw
nucleosome occupancy scores obtained using the method
in [2]) of the known binding positions. The background
data set is composed of the averaged N-scores of randomly
selected genomic locations in the same way as above. For
every occupation score o, the conditional probabilities for
binding and nonbinding sites are denoted as P(N(X) = o |
X ∈ B) and P(N(X) = o), respectively. The CDFs of the
two nucleosome data sets are shown in Figure 3(b), which
indicate that the nucleosome positioning information from
[2] is informative of TFBSs. The probability that a DNA
site X is a TFBS given its nucleosome occupation score is
obtained by (13) (with sB replaced by B). Note that P(X ∈
B) = P(X ∈ sB) + P(X ∈ dB).

2.5. Data. We validate our computational methods using the
same mouse data set as in [12], which consists of 47 promoter
sequences (as shown in Table 2), each with a varying number
of annotated binding sites from ABS [3] and ORegAnno
[5] databases (the annotated binding sites are also listed
in Table 2). Sequence lengths are 2 Kbps or vary around
500 bps. PSFM models are taken from TRANSFAC [4]
(professional version 10.2). The additional data sources used
here are conservation, regulatory potential, DNA duplex
stability, and nucleosome positioning. The first two data
sources are the same as what have been used in [12], where
conservation is assessed with the PastCons scores [13] and
regulatory potential is constructed from a set of known
regulatory and nonregulatory sequences using a discrimina-
tory computational analysis (prediction algorithm is named
“ESPERR”) [14]. DNA duplex stability, and nucleosome
positioning are the two new data sources explored in more
detail in this study. We use our computational methods to
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Table 1: AUC scores and scaling parameters for all data sources and their combinations. Data source combinations from 0 to 4 information
sources are colored grey, green, blue, yellow, and magenta, respectively. “a” and “b” are the multiplicative factor and bias term, respectively,
for scaling each additional data source, and “c” is the scaling parameter used for combining multiple information sources into the TF target
gene prediction framework. All the parameters shown here are selected with respect to the largest AUC scores.

Data combination a b c Auc AUC (CV)
npy. 0.01 0.49 0.6986
no prior 0.7449
nuc. + DNA. 0.12 0.7501
nuc. 0.04 0.45 0.7555 0.7464
DNA. 0.06 (s), 0.01 (d) 0.49 0.7580 0.7484
reg. 0.1 0.45 0.7611 0.7465
reg. + nuc. + DNA. 0.06 0.7741
reg. + DNA. 0.05 0.7771
reg. + nuc. 0.06 0.7946
con. 0.08 0.46 0.8038 0.7492
con. + reg. + DNA. 0.06 0.8143
con. + reg. + nuc. + DNA. 0.07 0.8154
con. + DNA. 0.07 0.8174
con. + reg. 0.06 0.8220
con. + nuc. + DNA. 0.09 0.8253
con. + reg. + nuc. 0.06 0.8284
con. + nuc. 0.07 0.8334

predict that whether the promoter of a gene has TFBS(s) or
not.

3. Results and Discussion

In this section, the results of exploring two novel additional
data sources, evaluating the new data fusion method and
comparison among different data source combinations in
TF target gene prediction are sequentially reported and
discussed. The idea of our computational methods is to
probabilistically bias the search of binding sites to those
genomic locations that are more likely to contain binding
site(s) in light of the additional data. The qualities of
the TF target gene prediction results are evaluated by the
ROC curves and the histograms of the estimated binding
probabilities, which are drawn from the probabilities over
all the TFs and the sequences being analyzed. The test data
set used throughout this paper consists of 47 promoter
sequences, each contains a varying number of annotated
binding sites from ABS [3] and ORegAnno [5] databases.

3.1. Novel Informative Data Sources

3.1.1. DNA Duplex Stability Prior. Most sequence-specific
DNA binding proteins contact with the major groove of
double stranded DNA in the B conformation [19], and some
TFs are shown to bind DNA in a double-strand manner
according to their crystal structures [20]. Thus, the DNA
destabilization energies at protein binding sites of these
TFs are expected to be high. This assumption has been
verified in yeast by [11] on improving the accuracy of TFBS
discovery, which is a different topic other than TF target gene
prediction. On the other hand, during transcription, the two
DNA strands must be separated to let RNA polymerase slide

along the DNA molecule and synthesize a nascent mRNA.
Since the binding sites for many general TFs are located in
the proximal promoter regions of the transcribed gene, it
is expected that the DNA double helix of these regions is
low, that is, low DNA duplex stability. Besides, there also
exists experimental evidence showing that some regulatory
proteins bind to DNA in a single-strand manner [21, 22].
Taken together, these suggest that DNA duplex stability data
should be informative of binding sites; whether a lower or
higher DNA duplex stability at specific TF binding sites is
more preferable depends largely on the binding preference
of the TF, that is, whether the TF binds to the the DNA in a
double- or single-strand manner. In our study, we assume
that TFBSs for TFs with single-strand binding preference
occur preferentially in regions with low DNA duplex stability,
and the other way around for double-strand binding TFs.

In the TF target gene prediction analysis, the raw
DNA duplex destabilization energies were converted into
probability values using a Bayesian transformation method,
and each TF’s binding preference is predicted with a heuristic
method (see Section 2 for details).

From the ROC curves shown in Figure 4(a) and supple-
mentary Figure S2(a) we can see that DNA duplex stability
alone can slightly improve the TF target gene prediction
accuracy, and its performance can be remarkably improved
by combining with other priors, such as conservation
(Figure 4(c) and supplementary Figure S2(g)) or regulatory
potential (Figure 4(b) and supplementary Figure S2(d)).
Table 1 also demonstrates that the AUC scores for combining
DNA energy with conservation or regulatory potential are
higher than those obtained with single additional informa-
tion sources. These results indicate that DNA duplex stability
data has the potential of improving TF target gene prediction
depending on how and which data sources it is combined
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Table 2: Sequences used in this study. One “TFBS duplex stability score” is computed as the average of all the raw DNA duplex stability scores
over a given TFBS. The TFBS duplex stability scores are computed for all the binding sites of a promoter sequence. Note that one sequence
can have multiple binding TFs and TFBSs, one TF can bind to more than one site, and one TFBS may be recognized by multiple TFs.

Promoter sequence Length Binding TFs TFBS duplex stability scores

AF093878 501 Sp1, Hnf1 5.44, 6.34
Ache 2000 Sp1, Ap2, Egr1 10.03, 9.98, 9.70, 10.03, 10.10, 9.66
Acta1 2000 Srf, Tef, Sp1, Tead1, Sre, Tbp 7.66, 7.71, 7.31, 7.69, 7.71, 7.94,

7.66, 7.77, 7.46, 6.67, 8.09, 7.73, 5.18
Acta2 2000 Carg-d, Prm, Carg-c 9.70, 10.01, 9.76
Actc1 2000 Sp1, Myod1, Srf, Tbp 9.93, 9.82, 9.73, 9.72, 9.23, 9.94, 9.82, 8.90
Alb1 2000 Tcf1, Cebp, Hnf1, Cebp 9.17, 9.80, 9.44, 9.71, 9.64, 9.20
Chrna1 2000 Myf, E1, E2, E3 9.85, 9.91, 9.93, 9.92, 9.92
Chrnb1 2000 Myf, Tef, E1 9.59, 9.78, 9.77, 9.91
Chrnd 2000 Myf, E1 9.90, 9.88, 9.81, 9.76, 9.55, 9.61
Chrne 2000 E1 9.93
Chrng 2000 Myf, E1, E2, E3, E4 9.74, 9.84, 9.64, 9.28, 9.83, 9.86
Ckm 2000 Srf, Nvl, Mef, Prrx1, Myog, Myod1, 9.78, 9.89, 8.15, 8.63, 8.06, 9.94, 9.94, 9.94, 9.95,

Myf5, Mef1, Ap2, Myf, Carg3, 9.95, 9.35, 9.94, 9.95, 9.80, 9.97, 9.74, 9.94,
Mef2-left (-right), E-left (-right), Trp53 9.69, 8.34, 8.53, 9.80, 9.95, 9.96, 9.87, 9.70

Des 2000 E1, Mef2c, Myod1, Tbp 9.88, 8.23, 6.49, 9.88, 9.88, 8.66
Id2 2000 Cebpb 9.47
Igfbp5 2000 unknown 9.77
M22326 501 Srf 4.69, 4.48, 3.92
M23768 500 Srf, Ap1, Creb 3.99, 5.71, 7.09
M29660 499 Mef2, Caat 5.27, 8.11
M62362 500 Usf, Egr1, Ap2a, Tbp 8.55, 9.60, 9.57, 4.16
M63335 500 Cebp, Nfya, Tbp 2.54, 2.50, 4.34
M86180 514 Sp1 9.97
M86232 428 Srf, Myod1 9.02, 9.87
Mb 2000 Myod1, Mef2, E2, Tbp 8.90, 9.66, 9.73, 8.78, 9.62, 8.34
Myf6 2000 Myf, Myog, Myf5, Myod1 9.62, 9.63, 9.77, 9.63, 9.77, 9.77, 9.63
Myh4 2000 Myf 9.88
Myh6 2000 Mef, Tef, Srf, Mef2, Tead1 7.60, 9.75, 7.60, 8.80, 7.60, 9.75, 8.94
Myl4 2000 E4, E1, Carg 9.97, 9.94, 9.14
Myod1 2000 Ap2, Gc2, Ccaat-box, Sp1, Tbp 9.91, 9.98, 9.55, 9.99, 8.35, 9.55, 9.98
Myog 2000 Myf, Mef, Mef2, E1, Def-2, Myog, Tbp, Myod1 9.03, 7.21, 9.87, 7.00, 9.79, 7.01, 9.79, 9.79,

9.02, 7.00, 7.03, 8.31, 9.79
Q8cfn5 2000 Myf 9.917
Tnnc1 2000 Cef-2, Sp1, Mef2, Mef3, Gata4 9.04, 9.25, 6.54, 9.52, 9.19, 6.54, 9.49, 8.54
Ttr 2000 Cebp, Tcf1, Hnf2, Hnf3, Cebp, Hnf4, Hnf1 9.74, 9.47, 9.50, 9.38, 9.13, 9.74, 9.31, 9.38,

9.50, 9.45, 9.12
U36238 501 Sp1, Cebp, Tbp 10.05, 9.85, 8.78
U69555 505 E2f, Cets 9.92, 9.93
Vim 2000 unknown 9.64, 9.88
X03020 501 Nfkb1, Ap1, Nfat 6.52, 6.63, −0.40, −0.33
X04724 500 Hnf1, Ipf1, Creb, Tbp 5.43, 5.57, 7.27, 8.21
Y18062 500 Hnf1, Cebp 6.38, 0.35, 0.32
NM 010556 500 Oct, Aml, Egr1 2.74, 3.65, 9.77
NM 009715 500 Sp1 9.89, 9.84, 9.81, 9.89, 9.70
NM 008600 500 Sp1, Ap2a, Tbp 9.46, 6.08, 4.55, 3.14, 2.40, 4.10
NM 007398 500 Sp1 10.03, 9.44, 10.02
NM 011358 500 Myb, Caat, Tbp 9.90, 9.74, 6.76, 6.25
NM 023456 500 Sp1, Ap1 10.03, 9.94, 9.92
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Table 2: Continued.

Promoter sequence Length Binding TFs TFBS duplex stability scores

NM 011010 500 Olf1 7.41
NM 009415 500 Sp1 5.42, 8.60, 7.87, 9.87
NM 007743 500 Myod1 8.41, 9.10, 8.80, 1.90

Table 3: Transcription factors used in this study. “1” and “2” each represents that the corresponding TF binds to DNA in a single and double
strand manner, respectively. Empty blank means no literature information is found.

TF Prediction Literature Recognition sequence

AP1 1 1 [22] GCTCCTCCCA, ATTAATCA,
CCCGGGCGTGACTG, TGCGTCA

AP2A 2 2 [23] GCCGGAGG, CCGCCGGGGTGG, CCCAGGG
CEBPB 2 AATGGCAAT
E2F 2 (CC)TTTCGCGC
EGR1 2 2 [24] GCGGGGG(CG), TCCCCCCTGCCCCGCCGGGCCCCGCCC
GATA4 2 AGATAG, TGAGATTACA
HNF3 1 AAGTCAATAATC(A), TTTGTGTAGGTTA
IPF1 1 TCTAAT
MEF1 2 CCCCCCAACACCTGCTGCCTGAGCC
MEF2C 1 CTATAAATAC
MYB 2 GAACGT, ACGTTA
MYF5 2 2 [25, 26] CCCAACACCTGCTGCCTGAGCC, CATCTG, CAGTTG
MYOD1 2 2 [25, 26] CAACTG, (ATTAACCCA)GACATGTGGC(TGCCCC), CATCTG,

(CCCCCCAA)CACCTGCTG(CCTGAGCC), CACTTG, CAGTTG
MYOG 2 2 [25, 26] (C)CCCAACACCTGCTGCCTGAGCC, CATCTG, CAGTTG
NFAT 1 TTTCCTC
NFKB1 2 GGAGATTCCAC, CCACAACTCA
NFYA 1 CAAT
SP1 2 2 [27] (T)TCGGGGCGGTGT(G), GCCCCCCAC(CCCTGCCCC),

CCGCCC, CCCCACCCCCTGCA, GCGCCAGGGCTGGGCTCCT,
CACCTTGGCCACGCCCCTTTGG, CCTGCTTCCCGCCTTTCG,
TTTGGTTCCCGCCTCCCCGCCCCC, CCCCTCC(C),
TCCTGAAGACCCGCCCTTTTTC, GGCAGAG, CAACC,
GGGCGGGGCCGTGGCTCC, GAGCGTGGCGGGCCGCG,
(AGGG)TGGGCAG(TCC), GAGGTGGGGGG, AGCCAG,
(GGGGGGGGGGGGGGGG)GGGCGG(GGCCGTGGCT),
(CCTAAAGTGCTTCCAAA)CTTGGCAAGGGCGAGAGAGGGCGGGTGG

SRF 1 ACCCAAATATGGCT, CCTTACATGG,
CCAAGAATGG, CCAAATAAGG,
GCCCATGTAAGGAG, GAAACGCCATATAAGGAGCAGG,
GCAGCGCCTTATATGGAGTGGC, CTCCAAATTTAGGC,
TGCTTCCCATATATGGCCATGT, CCATATTAGG, CTATTATGG

TBP 1 (C)TATAAA(A), TACAAAT, TTAAA,
ATAAATA, TTAAAT, TATAAG

TCF1 1 GTTATTGGTTAAAGAAGTATA,
GTGTAGGTTACTTATTCTCCTTTTGTTGA

TEAD1 2 (AA)CATTCCTT(CGG), AGGAGGAATGTGC
TRP53 2 GAGCAAGTCA, ATACAAGGCC
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Figure 3: CDFs of novel information sources at known TFBSs and random sites. CDFs of (a) DNA duplex destabilization energies at TFBSs
of single-strand, double-strand binding TFs, and random DNA sites, (b) nucleosome occupation scores at known TFBSs and random DNA
sites. Panels (c) and (d) are similar with (a) and (b), respectively, but with each information scores shifted 100 bps.

with. Further, DNA duplex stabilities are expected to be more
informative in TF target gene prediction if they are obtained
experimentally.

Out of the 23 TFs whose PSFMs are known and studied
here, nine are predicted to bind sequences in a single-strand
manner and 14 bind sequences in a double-strand manner.
Information such as the names and binding promoters
(in mouse genome) of these 23 TFs are listed in Tables
2 and 3, with more detailed information available from
http://www.probtf.org/. Also shown in Table 2 are the DNA
duplex stability scores for all the binding sites in all the

promoter sequences used in this paper, each of which
is averaged over all the raw stability scores of a TFBS.
These TFs include all the (mouse) TFs whose binding site
information can be downloaded from ABS [3] or ORegAnno
[5] databases and whose binding specificity model(s) can
be found from the TRANSFAC database [4] (professional
version 10.2). It is seen from Table 3 that, for the six
TFs whose binding preferences are known, our predicted
binding preferences accord well with the literature-derived
information. In order to avoid the possible bias that could
be introduced when the binding preference of each TF is
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Figure 4: ROC curves for incorporating DNA duplex stability data. ROC curves of the estimated binding probabilities for the proposed data
fusion method when combined with (a) DNA duplex stability data, (b) DNA duplex stability data and regulatory potential, and (c) DNA
duplex stability data and evolutionary conservation data.
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predicted from the same data that is used for validation, we
also performed the standard leave-one-out cross validation
on the binding preference prediction. These results clearly
demonstrate that no significant differences are observed.
Thus, our binding prediction method when integrated with
DNA duplex stability data should have a similar good
predictive performance outside our test data set as well.

3.1.2. Nucleosome Occupation Prior. Chromatin structure
has an important role in regulating the transcriptional
machinery. At the genome level, these mechanisms are
controlled by the basic structural subunits, nucleosomes,
which can limit the access of TFs to their binding sites
[1, 17]. Thus, from the viewpoint of computational TFBS
prediction, the likelihood of a TF binding to nonfunctional
sites can be decreased by locating a stable nucleosome
over those genomic regions while keeping functional sites
accessible for TF binding. The validity of this assumption
can be verified, for example, by the fact that the binding
of SP1, GAL4, and USF to nucleosome cores requires other
proteins such as nucleoplasmin to remove H2A and H2B
which consequently results in nucleosome disassembly [28],
and proven by the evidence that the binding propensity
of glucocorticoid receptor (GR) to the nucleosome core is
much lower than that to the nucleosome free sequence [29].
However, the probability of some TFs binding equally well or
even better to sequences occupied by nucleosomes compared
with nucleosome free regions could not be excluded, where
nucleosome location data alone will not be sufficient and
multiple data sources may be used to improve the prediction
accuracy.

High-resolution genomewide nucleosome positioning
data exist for organisms such as yeast [30] and human [31],
but in the case of mouse, we currently need to rely on
computational predictions. Indeed, this computational pre-
diction problem has attracted lots of interest and improved
methods have been proposed recently. ProbTF method was
previously tested with predicted nucleosome locations from
Segal’s original model which rely on dinucleotide frequencies
[1] and the nucleosome data was not found to be informative
of binding sites. Here we explore the problem that whether
more recent and more accurate nucleosome positioning data
together with a novel data fusion method can improve TF
target gene prediction. In this study, we used a computational
multiresolution method developed in [2] to predict the
nucleosome locations for all the 47 tested sequences. We
decided to use the raw nucleosome positioning data, that
is, without the hidden Markov model (HMM) processing,
and employ the extended sequences to obtain theN-score for
each genomic location. The raw data were further converted
into probabilities using a Bayesian transformation method
(for details see Section 2).

We compared the two different nucleosome data by
integrating them separately into our TF target gene pre-
diction algorithm. It is particularly promising to see that
the use of more accurate nucleosome positioning data from
[2] results in more accurate TF target gene prediction as
shown in supplementary Figure S3(a). Similarly as in the

case of DNA duplex stability data, we combined nucleosome
data with conservation (supplementary Figure S3(e)) or
regulatory potential data (supplementary Figure S3(c)),
and the combined data again improve the TF target gene
predictions. For example, the AUC score of 0.7555 which
is obtained with nucleosome data alone increases to 0.7946
when combined with regulatory potential, and jumps to
0.8334 when combined with conservation.

In order to gain insight into each individual data source
and to assess the extent of possible overfitting problem
stemming from parameter optimization, we also prepared
an additional control simulation. We shifted each additional
data source by 100 base pair positions and then applied
our computational methods as explained above, including
binding preference prediction and optimization of param-
eters, to test performance of randomized data. ROC curves
corresponding to the four shifted information sources are
shown in supplementary Figure S4 and the AUC scores
after shifting for each data source are recorded in Table 1.
For the two novel data sources, we also compared their
CDFs after shifting with the original ones as shown in
Figure 3. The Kolmogorove-Smimov statistic (KS statistic)
for CDFs of DNA duplex stability scores at random sites and
double strand binding sites is 0.3097, and that of random
sites and single strand binding sites is 0.3641 (as depicted
in Figure 3(a)). However, after shifting, the KS statistics
between random locations and double strand binding sites
and between random sites and single strand binding sites
become 0.1905 and 0.1168, respectively, (see Figure 3(c)).
Similarly, the KS statistic between the CDFs of nucleosome
positioning data at random sites and nucleosome binding
sites is 0.1699 (Figure 3(b)) and drops to 0.0379 after
shifting (Figure 3(d)). We also measured the Kullback-
Leibler divergence (KL divergence) between each density
pair. The KL divergence between PDFs of DNA duplex
stability scores at random sites and double and single
strand binding sites are 0.1868 and 0.6617 (Figure 3(a)),
which decreases to 0.1037 and 0.1065, respectively, after
shifting (Figure 3(c)). Likewise, the KL divergence between
PDFs of nucleosome positioning data at random sites and
nucleosome occupied sites drops from 0.1830 to 0.0330 after
shifting, as represented by Figures 3(b) and 3(d), respectively.
These results show that no information is gained from the
shifted data sources. Taken together with the cross-validation
results shown above, this demonstrates that the improved
binding prediction accuracy is not an artifact of overfitting.

We further compared the scaling parameter a (see (11) in
Section 2) when integrating different nucleosome data and
DNA duplex stability data into the TF target gene prediction
framework. The parameter a essentially determines the
weight of each individual information source. As shown
in Table 1, parameter a of nucleosome positioning data
obtained from [2] (0.04) is higher than that obtained with
data from [1] (0.01), which is consistent with results in
supplementary Figure S3(a) where nucleosome data from [2]
clearly provides more information than those obtained from
[1]. Similarly, parameter a of DNA duplex stability data for
TFs with single-strand binding pattern (0.06) is higher than
that for TFs with double-strand binding pattern (0.01). This
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is again consistent with results shown in Figure 3(a), where
DNA stability energies of single-strand binding TFs provide
much better discrimination than those of double-strand
binding TFs. These results show that the scaling parameter
a has an association with data quality, where a higher a
indicates a more informative data.

3.2. Multiple Data Fusion Method. We next briefly demon-
strate the performance of the new data fusion method and
compare it with that of a standard weighting-based scheme
proposed in [12]. Qualitatively, the previous data fusion
method is based on a type of averaging where a genomic
location is suggested to contain a binding site only if a
large majority of the additional data sources indicate a
binding site, whereas the new method can assign more prior
probability to a genomic location if it is indicated as a binding
site by a few (or even a single) more informative data sources
(see Section 2 for a detailed technical description of our data
fusion methods).

The performance of the old and new data fusion methods
are illustrated in supplementary Figure S1, which shows the
ROC curves for finding the verified binding sites in the
gene promoters set using both evolutionary conservation and
regulatory potential. Parameters in supplementary Figures
S1(a) and S1(c) are chosen by the whole AUC and the
AUC30, respectively. Supplementary Figure S1(a) shows
that the new method works better than the old one by
generating higher overall AUC, and supplementary Figure
S1(c) demonstrates that the new method can improve the
prediction accuracy especially in low false positive rate (FPR)
region, which is a highly preferable property in general.

Supplementary Figures S1(b) and S1(d) show the his-
tograms of the predicted binding probabilities for both the
old and new data fusion methods, where the parameters
in Figures S1(b) and S1(d) are selected according to the
whole AUC and AUC30, respectively. Histograms are drawn
separately for negative and positive cases and, hence, these
graphs clearly demonstrate how well the two methods are
able to discriminate the target genes that contain known
binding sites from nontarget genes that do not contain
binding sites. From these graphs, we can see that the new
method improves discrimination by assigning much smaller
binding probabilities for sequences with no known binding
sites (no matter whether AUC or AUC30 is used), which
thus results in much smaller false positive rate. AUC scores
for single and all combinations of multiple data sources
are summarized in an ascending order in Table 1, and their
corresponding data fusion results are shown and discussed
in the following sections.

3.3. Comparison of Combinations of Information Sources.
In order to better understand that which combinations of
additional genome-level data sources are most informative of
TFBSs, we compared the TF target gene prediction accuracy
of all possible combinations among evolutionary conserva-
tion, regulatory potential, nucleosome locations, and DNA
duplex stability. The best combination is conservation and

nucleosome positioning, whose results have already been
shown in supplementary Figure S3(e).

Results for all the six duplets of data sources are reported
in supplementary Figure S5, which shows that most of the
combinations of two data sources work better than their
corresponding single data sources except for the combination
of nucleosome occupation and DNA energy. This suggests
that certain redundancy might exist between nucleosome
occupation and DNA energy, which is not entirely surprising
since a DNA region that is not within a nucleosome is
likely to need less energy to destabilize the two strands
than DNA within a nucleosome. This motivates us to group
the four information sources into two categories, where
group 1 includes evolutionary conservation and regulatory
potential, and group 2 includes nucleosome locations and
DNA duplex stability. Our results indicate that when a
pair of data sources come from different groups, that
is, have little redundancy, their joint performance can be
better than those of their corresponding single data sources.
Moreover, the best performance is achieved with a pair
of additional data sources (supplementary Figure S5(b)),
and adding more information sources into this pair cannot
further improve the accuracy. The above results and analysis
suggest that combining data sources that are redundant
does not necessarily improve the overall performance. In
other words, in order to gain a better prediction accuracy
it is better to combine data sources that provide infor-
mation from different perspectives of the same biological
system.

Results for all four triplets of data sources are shown
in supplementary Figure S6, which all perform better than
their corresponding single data sources. It is seen that
the best result is obtained by combining conservation,
regulatory potential and nucleosome positioning, which
accords well with our expectation since “conservation and
regulatory potential” is the most informative pair in the
lower false positive region (supplementary Figure S5(f)), and
“nucleosome positioning, and regulatory potential” forms
the best pair with respect to higher false positive region
(supplementary Figure S5(d)).

Supplementary Figure S7 shows the ROC curve for the
only quartet. Although one could expect that adding more
information sources into TF target gene prediction always
improves the prediction accuracy, our results show that it is
not always the case. This finding is understood by realizing
the difficulty of combining complex and poorly characterized
genome-level data sources into TF target gene prediction.

4. Conclusions

We have three main contributions in this paper. Firstly, we
have developed a new data integration method for TF target
gene prediction from multiple data sources. The new method
is compared with the one employed in [12] using a TF
target gene prediction algorithm called ProbTF [12], and
the results show that the new data fusion principle improves
the previous method by lower false positive rate. Secondly,
we have demonstrated the use of two novel information
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sources, DNA duplex stability and raw nucleosome occu-
pancy predictions from a method proposed in [2], to guide
TF target gene predictions. Our results show that both nucle-
osome occupancy and DNA stability data can improve TF
target gene prediction accuracy especially when combined
with evolutionary conservation or with conservation and
regulatory potential. Moreover, more accurate nucleosome
predictions result in better TF target gene predictions. It
is also worth noticing that we do not distinguish different
TFs regarding data source usage except for DNA duplex
stabilities, where double or single strand binding proteins
are treated differently and a heuristic method is adopted to
classify them. Thirdly, we have compared all the possible
combinations among conservation, regulatory potential,
nucleosome positioning and DNA stability, whose results
can be availed in data source selection or preparation
when dealing with data integration problem in a particular
application. We grouped the four tested information sources
into two categories based on biological arguments: group 1
contains conservation and regulatory potential, and group 2
consists of nucleosome locations and DNA duplex stability.
We found that combining data from different groups is more
likely to improve TF target gene predictions presumably
because data sources between the two groups are less
redundant.

Although the assumption that all TFs bind to DNA in
double-strand manner works well in yeast [11], it may not
be sufficient in higher organisms, such as mouse, as shown
in this study (see, e.g., Figure 3(a)). Instead, we obtained
informative DNA duplex stability prior by assuming different
binding preferences for different TFs. We constructed the
binding preference of each TF with a simple heuristic which
assesses the binding preference for a TF from a set of
known binding sites. We have used cross-validation and an
additional base pair shifting simulations to show that binding
preference prediction and parameter optimization do not
result in any (optimistic) bias, or overfitting, in binding
prediction accuracy. However, the use of the DNA duplex
stability data is limited because little verified information
about TF binding specificities can be found from the liter-
ature and, therefore, binding specificities need to be learned
from the data as well which currently requires that a set of
verified binding sites is known. Future research goals include
to develop an (unsupervised) algorithm for predicting the
binding preference for TFs without prior knowledge of the
known binding sites. Moreover, it is possible that one TF
may have multiple folding modes, and can bind different
sequences with different patterns. For example, MyoD, a
member of helix-loop-helix protein family, can not only
recognize the double-stranded DNA-binding site (called E-
box) in many muscle and nonmuscle genes, but also bind to
the noncoding strand of an E-box from the muscle-specific
creatine kinase enhancer in a single-stranded manner [25].
To take this possibility into account, a more sophisticated
assumption can be applied; that is, TFs can have different
binding preferences to different sequences or under different
experimental conditions. In this direction, we can also try to
incorporate other data sources, such as ChIP-chip data, into
our data fusion framework.

Nucleosome positioning data is employed in this study
assuming that nucleosomes compete with DNA binding
proteins [1] for target DNA binding sites. Although this
assumption is generally true, we could not exclude the pos-
sibility that some TFs may selectively bind to nucleosome-
occupied regions. Binding sites of such TFs, if exist, can
not be recognized by the method presented here when
employing nucleosome occupancy data, but can be rescued,
for example, by incorporating other information sources.
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