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ABSTRACT

This paper presents a novel Beta-Gaussian mixture model,
BGMM, for clustering genes based on gene expression
data and protein-DNA binding data. An expectation max-
imization (EM) type of algorithm for Beta mixture model
is first developed and then combined with that of Gaus-
sian mixture model. This combined algorithm can jointly
estimate the parameters for both Beta and Gaussian dis-
tributions and is used as the core in the BGMM method.
Four well-studied model selection methods, Akaike infor-
mation criterion (AIC), modified AIC (AIC3), Bayesian
information criterion (BIC), and integrated classification
likelihood-BIC (ICL-BIC) are applied to estimate the num-
ber of clusters, and AIC3 works best for BGMM in our
simulations. Simulations also indicate that combining two
different data sources into a single mixture model can grea-
tly improve the clustering accuracy and stability. The pro-
posed BGMM method differs from other mixture model
based methods in its integration of two different data types
into a single and unified probabilistic modeling frame-
work, which provides a more efficient use of multiple data
sources than methods that analyze different data sources
separately.

1. INTRODUCTION

It has become more and more acknowledged that differ-
ent data sources offer information from different aspects,
and their combination can make the prediction more ro-
bust. Thus how to integrate different data types to make
the results more accurate has become one of the most chal-
lenging problems in the field of system biology. In the
context of gene clustering, gene expression data has been
widely used with the assumption that genes which have
similar expression pattern under different conditions have
similar cellular functions, are likely to be involved in the
same cellular processes [5]. This assumption might be too
ideal considering the complexity of real biological sys-
tems. However, if we could incorporate physical binding
information, such as the probabilities of certain binding
events occurring among gene products and genes (protein-
DNA binding data), into expression data based clustering
framework, the clustering results might be more trustable
with respect to similar cellular functions, processes and
co-regulation. In this study, we developed a clustering al-

gorithm which can cluster genes based on their expression
data and protein-DNA binding data.

Many unsupervised methods have been developed and
widely used in gene clustering. They can be roughly clas-
sified into three categories, which are heuristic, iterative
relocation and model-based methods [3]. The first two
approaches have problems with solving some basic prac-
tical issues such as ‘how to define the number of clusters’
and ‘how to handle outliers’. In model-based methods,
the first question can be recasted as the model selection
problem. For the second problem, the outliers can be han-
dled by adding one or more components which represent
a different distribution for them [3, 4]. Moreover, model-
based clustering methods outweigh approaches within the
other two categories in their statistical nature [3]. So in
this study, we choose model-based clustering as the frame-
work for unsupervised data fusion.

Expectation maximization (EM) algorithm is gener-
ally used to solve the problem of maximum likelihood
estimation with incomplete data, and thus is commonly
adopted in model-based clustering. Although EM algo-
rithm for Gaussian distribution is well-known, less infor-
mation is available about EM algorithm for other distri-
butions, not mentioning combinations of different distri-
butions. In our study, gene expression data and protein-
DNA binding data are integrated into a combined mix-
ture model. We first developed an EM type of algorithm
for beta distribution, and then combined it with that for
Gaussian distribution. Simulation results show that our
joint mixture model can yield better results compared with
either of its component models, which demonstrates the
idea that the more data that are integrated the better the
result turns out to be.

Criteria for model selection can be classified into likeli-
hood-based methods and approximation-based methods,
of which approximation-based methods are widely pre-
ferred by its simplicity and less computational cost [9].
These methods include penalized likelihood, closed-form
approximations to the Bayesian solution, and Monte Carlo
sampling of the Bayesian solution, among which penal-
ized likelihood method is most prevalent. Four well-known
penalized likelihood criteria, Akaike information criterion
(AIC), modified AIC (AIC3), Bayesian information cri-
terion (BIC), and integrated classification likelihood-BIC



(ICL-BIC) were tested in BGMM and its component mod-
els (Beta mixture model ‘BMM’, Gaussian mixture model
‘GMM’) in this study. AIC and BIC are commonly used
as the criterion for GMM [1, 4], and ICL-BIC is reported
to work better for BMM according to [4]. Our simulation
results suggest using AIC and AIC3 in BMM and BGMM
respectively and embrace the tradition of employing BIC
in GMM.

The following sections are organized as ‘Methods’,
‘Results’, and ‘Conclusions’. Section ‘Methods’ is di-
vided into two parts. In the first part, mixture model based
clustering and EM algorithm are discussed, where the clas-
sic EM for GMM, our EM for BMM, and the joint EM for
BGMM are all introduced. The second part of this section
introduces the formulation of four tested model selection
criteria (AIC, AIC3, BIC, ICL-BIC), and how the optimal
criteria for each model was chosen. In section ‘Results’,
we evaluated and compared the performance of BGMM
with BMM and GMM. In section ‘Conclusions’, we sum-
marized this study and discuss its possible extension and
applications to other problems, and mentioned the possi-
ble future work that is related to the proposed BGMM.

2. METHODS

2.1. Mixture model based clustering and EM algorithm

In model-based clustering method, each observation x is
drawn from a finite mixture distributions with the prior
probability πi, component-specific distribution fi and its
parameters θi. The formula is given as

f(x; Θ) =
g∑

i=1

πifi(x; θi), (1)

where Θ = {(πi, θi) : i = 1, . . . , g} is used to denote all
unknown parameters, with the restriction that 0 ≤ πi ≤ 1
for any i and that

∑g
i=1 πi = 1. Note that g is the number

of components in this model.
EM algorithm is then derived for the above model-

based clustering. The data log-likelihood can be written
as

log L(Θ) =
n∑

j=1

log(

[
g∑

i=1

πifi(xj ; θi)

]
), (2)

given X = {xj : j = 1, ..., n}, whose direct maximiza-
tion, however, is difficult.

In order to make the maximization of Equation 2 tracta-
ble, the problem is casted in the framework of incomplete
data. Define zji as the indicator of whether xj is from
component i, i.e., zji = 1 if xj is indeed from compo-
nent i, and zji = 0 otherwise. Then the complete data
log-likelihood becomes

log Lc(Θ) =
n∑

j=1

g∑

i=1

zji log (πifi(xj ; θi)). (3)

In the EM algorithm, E step computes the expectation

of the complete data log-likelihood which is denoted as Q

Q(Θ;Θ(m)) = EΘ(m)(log Lc|X)

=
n∑

j=1

g∑

i=1

τ
(m)
ji log (πifi(xj ; θi)), (4)

where Θ(m) represents the parameter estimates at iteration
m. M step updates the parameter estimates to maximize
Q. The algorithm is iterated until convergence. Note that
zs in Equation 3 are replaced with τs in Equation 4, and
the relationship between these two parameters is

τji = E[zji|xj , θ̂1, ..., θ̂g; π̂1, ..., π̂g]. (5)

The set of parameter estimates
{

θ̂1, ..., θ̂g; π̂1, ..., π̂g

}
is a

maximizer of the expected log-likelihood for given τjis,
and we can assign each xj to its component based on
{i0|τji0 = maxi τji}.

2.1.1. GMM and its EM algorithm

The most widely used and well known model-based clus-
tering method is finite GMM, in which each component
is assumed to follow a Gaussian distribution. In this study
we use the standard p dimensional normal distribution with
mean µi and unconstrained covariance matrix Vi for each
component in GMM [6]. We run the EM algorithm mul-
tiple times with different initial values, where fuzzy c-
means clustering algorithm is used for initialization, to
avoid possible local maxima.

2.1.2. BMM and its EM algorithm

In order to make the model-based method to work for data
within boundaries [0, 1], we developed a BMM with the
assumption that each component is a product of indepen-
dent beta distributions. The probability density function is
defined as

fi(x; αi, βi) =
p∏

j=1

xαij−1(1− x)βij−1

B(αij , βij)
. (6)

The details of our EM type of algorithm for BMM is
described below. First, initialize the parameters. αs and
βs for each component beta distribution k (k ∈ {1, . . . , p})
are initialized by method-of-moments so that their means
are randomly distributed within the range of x1k, . . . , xnk

and variances are equal for all clusters (g); and for πis,
they are initialized with the uniform probability 1/g. Sec-
ond, run E-step. Calculate τji with current parameters, ac-
cording to which xjs are clustered to their corresponding
clusters using zji0s (where {i0|τji0 = maxi τji}). Third,
run M-step to maximize Equation 3. Given the hard clus-
ters obtained in E-step, numerically estimate the new pa-
rameters α̂s and β̂s using the maximum likelihood prin-
ciple (matlab function ‘betafit’ is used here for this pur-
pose), and calculate the new π̂s by

π̂
(m+1)
i =

n∑

j=1

τ
(m)
ji /n, (7)



τ
(m)
ji =

π
(m)
i fi(xj ;α

(m)
i , β

(m)
i )

∑g
i=1 π

(m)
i fi(xj ; α

(m)
i , β

(m)
i )

. (8)

2.1.3. BGMM and its EM algorithm

EMs for BMM and GMM are combined into a single fram-
ework in BGMM with the assumption that, for each com-
ponent i, the expression and binding data are independent.
The procedures of parameter maximization for both data
types are the same as those for BMM and GMM, except
that the calculation of τs is the product of two distribu-
tions

τ
(m)
ji =

π
(m)
i fG

i (xj ; µ
(m)
i , V

(m)
i )fB

i (xj ;α
(m)
i , β

(m)
i )

∑g
i=1 π

(m)
i fG

i (xj ;µ
(m)
i , V

(m)
i )fB

i (xj ; α
(m)
i , β

(m)
i )

.

(9)
Note that the superscripts (G) and (B) of fs mean that
the parameters they represented are from GMM and BMM
respectively.

In this study, for each data set we run each EM al-
gorithm 100 times with different initial values. The con-
vergence threshold (where Q is used to monitor the con-
vergence) and maximum number of iterations were set to
0.0001 and 100 respectively for all the tested models, and
all the simulations have reached their convergences ac-
cording to the statistics stored during the simulations.

2.2. Model Selection

Four well-known approximation-based model selection cri-
teria, AIC [1], AIC3 [1, 2], BIC [7, 8], and ICL-BIC [4]
are compared in BGMM and its component models, ac-
cording to which the optimal criterion for each model is
chosen. Calculations for the above criteria are defined in

AIC = −2 log L(Θ̂) + 2d, (10)
AIC3 = −2 log L(Θ̂) + 3d, (11)
BIC = −2 log L(Θ̂) + d log(nM), (12)

ICL−BIC = −2 log L(Θ̂) + d log(nM)

−2
n∑

j=1

g∑

i=1

τji log(τji), (13)

where d is the number of free parameters in its corre-
sponding model, and M in equations 12 and 13 is the
total dimension of the data (M =

∑W
w=1 Mw, Mw is

the dimension of data set w and W is the number of in-
put data sets). Note that −2

∑n
j=1

∑g
i=1 τji log(τji) is

the estimated entropy of the fuzzy classification matrix
Cji = (τji) [4].

The number of free parameters d are different in dif-
ferent models. In GMM, we have (p2 + p)g/2 σs, pg µs,
and g− 1 free πs (

∑g
i=1 πi = 1), so dG = (p2 + p)g/2 +

pg + g − 1. In BMM, as we have pg αs, pg βs, and also
g − 1 free πs, dB = 2gp + g − 1. In the joint model,
the number of free parameters is the sum of those in its
parents’ models minus one set of free πs, thus we have
dBG = dB + dG − (g − 1).

3. RESULTS

In this study, we compared the performance of BMM,
GMM and BGMM using two artificial datasets, which are
generated by a simplified model (we generate data from
a diagonal covariance model although our model assumes
unconstraint covariance). Both datasets are designed to
have three clusters and 60 by 4 dimensions (n = 60,
p = 4). Parameters for different dimensions within each
cluster are the same in the first data set but different in
the second one, called ‘non-mixed’ and ‘mixed’ cases re-
spectively. We designed two kinds of data for each data
type within each data set, namely ‘gB’, ‘bB’, ‘gG’ and
‘bG’, which are short for ‘good Beta’ (less noisy, Beta
distribution), ‘bad Beta’ (more noisy, Beta distribution),
‘good Gaussian’ (less noisy, Gaussian distribution), and
‘bad Gaussian’ (more noisy, Gaussian distribution) respec-
tively. We also designed two kinds of ‘bG’, ‘bGm’ and
‘bGv’, which are hard to be clustered compared to ‘gG’
with respect to means and variances respectively. Param-
eter settings for the datasets are listed in Table 1, where the
combination of ‘good Gaussian variance’ and ‘bad Gaus-
sian mean’ is ‘bGm’, and the combination of ‘good Gaus-
sian mean’ and ‘bad Gaussian variance’ is the case ‘bGv’.
All the simulations are repeated 20 times with randomly
generated data sets.

In order to choose the optimal model selection crite-
rion (with the highest score) for each model, we summed
up the number of hits of the correct number of clusters for
each data combination in both simulations. The summa-
tion results for AIC, AIC3, BIC, and ICL are 93, 71, 16
and 10 respectively in BMM, 8, 54, 64, 58 respectively
in GMM, and 35, 101, 43, 43 respectively in BGMM, ac-
cording to which AIC, BIC and AIC3 are chosen as the
criteria for BMM, GMM, and BGMM respectively.

We developed one scoring system for evaluating the
clustering accuracy, which is denoted as ‘E score’

ej(r) =
{

1 if ẑji = 1 and ri = Tj

0 otherwise

E = max
r∈R

n∑

j=1

ej(r)/n

R =
{
r = (r1, . . . , rĝ) : ∀i 6= j ri 6= rj ;

ri ∈ {1, . . . , max{ĝ, g}}}, (14)

In this scoring system, Tj denotes the ground truth clus-
tering membership of data j, and ri is the label of data
belonging to component i predicted by the clustering algo-
rithm; r is chosen from labels 1, 2, . . . , max{ĝ, g}, where
ĝ and g are the largest labels in the estimated and ground
truth clustering. Also note that e is the individual score
of each gene, E is the average score of all the genes for
each repetition, ‘E score’ of each repetition is the one cor-
responding to the optimal Q, and the final ‘E score’ of
each data set is the median of the 20 ‘E score’s. This scor-
ing system evaluates the overall performance of the model
since it not only records the accuracy of the results but also
reflects the influence of the criterion for model selection.



Data Data set 1 Data set 2
c1 c2 c3 c1 c2 c3

good alpha 10 20 25 15 20 25 20 20 25 15 5 1 20 1 30
Beta beta 20 10 20 20 15 20 25 20 25 15 5 20 1 30 1

bad alpha 10 15 17 15 10 25 20 10 5 15 12 30 25 30 35
beta 20 20 18 10 15 20 25 5 10 12 15 25 30 35 30

good mean 7 8 9 9 -9 11 -11 10 -10 12 -12 11 -11 13 -13
Gaussian variance 0.3 0.4 0.2 0.7 0.2 0.7 0.2 0.8 0.3 0.8 0.3 0.9 0.4 0.9 0.4

bad mean 7.5 8 8.5 9.5 -9.5 10 -10 9 -9 9.5 -9.5 10 -10 9 -9
variance 1 0.9 0.8 1 1 1.5 1.5 1.5 1.5 2 2 2 2 1 1

Table 1. Data sets designed for simulations
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Figure 1. Performance test of BGMM.

The comparison results of BGMM with its component
models are shown in Fig. 1. For expression data whose
variances are not too large, the joint model can improve
the clustering accuracy regardless of the quality of the data
compared with either of its component models (E scores
for cases ‘gB+gG’, ‘bB+gG’, ‘gB+bGm’ and ‘bB+bGm’
in BGMM are higher than those in GMM or BMM). How-
ever, if the expression data contains too much noise with
respect to large variances(‘gB+bGv’, ‘bB+bGv’), the joint
model does not necessarily yield better results. These re-
sults indicate that BGMM has the power of reinforcing
each component model with information from the other
one in both mixed and non-mixed cases but is sensitive to
the variances of the Gaussian distributed data.

4. CONCLUSIONS

This paper presents a novel method based on Beta-Gaussi-
an mixture model, BGMM, for gene clustering from mul-
tiple data sources. In this study, we integrated gene ex-
pression data and protein-DNA binding data, where ex-
pression data and protein-DNA binding data are assumed
to be of Gaussian and Beta distribution respectively. An
EM type of algorithm for estimating parameters from beta
distribution is developed and combined with the EM for
Gaussian distribution into a single framework, which is
used as the core of BGMM. In principle, this proposed
BGMM is not limited to the data we have used here, and
any data that can be modeled as Gaussian and Beta dis-
tribution could be integrated into this framework. This
work demonstrates one approach of integrating informa-
tion from multiple data sources. Data of other distribu-
tions can also be incorporated by joining EM algorithm of

that particular distribution into this framework in a similar
way. Therefore BGMM is applicable to many problems
and not limited to the particular problem considered here.

For future work, we will first apply our method to real
data, where a possible problem might be the time issue
due to the large dimensions of the data. Many techniques
might be used to handle these problems such as reducing
the dimension of the data or employing a faster EM frame-
work. Second, we will integrate more data types into the
proposed mixture model framework, where the most ob-
vious start is to develope a stratified BGMM [7] which
could incorporate one more data source by constructing
the priors from a third data type.
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