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ABSTRACT

This paper presents a novel mixture model for clustering
genes based on Gaussian and bernoulli distributed data.
One typical application is to cluster genes with gene ex-
pression and protein-protein interaction (PPI) data. The
underlying assumption is that genes within a cluster have
on average more PPIs with a set of genes and share similar
expression profiles than genes from different clusters. The
proposed mixture model, GBMM, differs from its compo-
nent models in its integration of different data types into
a single and unified probabilistic modeling framework.
Moreover, the model can be extended to other parametric
distributions and, therefore, incorporate even more infor-
mation in a coherent manner. We developed the expec-
tation maximization algorithm for GBMM, and used four
well-known approximation-based model selection criteria
to test their performances under different scenarios. The
results verify that combining expression and PPI data can
greatly improve clustering accuracy compared with ana-
lyzing each single data source alone, and the more PPIs
are known for a given set of genes the better performance
improvement the algorithm can have.

1. INTRODUCTION

The most commonly used information in gene clustering
is expression data. However, the assumption that genes in
the same functional group share similar expression pat-
terns is often violated by the varied transcriptional co-
herence (in response to diverse environmental stresses)
and random noise contamination [1]. Therefore, the accu-
racy of methods relying only on gene expression data has
largely been restricted by the over-dependence nature on
the measured expression values of individual genes, espe-
cially when dealing with correlated genes whose expres-
sion similarity is low. Another data type that can deliver
information on functional gene relationship is protein-pro-
tein interactions (PPIs). It is reported that 70 − 80% of
interacting protein pairs share at least one function [2].
However, it is easy to gain over-confidence on intra-func-
tional PPIs, while neglecting inter-functional interactions.
Therefore, it is necessary to incorporate information about

every functional interactions to improve the accuracy of
computational prediction.

Given the particular imperfection of using each sin-
gle data source, gene expression and PPI data are often
coupled together for different applications, such as iden-
tifying molecular pathways [3] and inferring gene func-
tions [1]. It has been demonstrated that protein interac-
tions are reflected in gene expression, and their relation-
ship has been demonstrated in bacteriophage T7 and yeast-
[4]. In this paper, we present a unified probabilistic frame-
work, Gaussian-bernoulli mixture model (GBMM), for fus-
ing data of Gaussian and bernoulli distributions. One typ-
ical application is to cluster genes using expression and
PPI data with the assumption that one gene corresponds
to one protein, and genes within a cluster have on average
more PPIs with a set of genes and share similar expres-
sion profiles than genes from different clusters (e.g., genes
that are clustered together interact with each other). This
method differs from other methods in its extreme flexi-
bility and broad applicability. Not only expression and
PPI data can be modeled by this method, any data that fol-
lows Gaussian distribution (e.g., various other microarray-
based measurements, and bernoulli distribution (such as
promoter binary binding data, or literature-derived inter-
actions) can be fitted into this framework. Additional in-
formation can be easily incorporated by adding more com-
ponent models into this framework. Moreover, the pro-
posed algorithm is a mixture model based method, whose
probabilistic nature guarantees an efficient utilization of
PPI data, avoiding the ‘all-or-none’ attitude that has been
implicitly adopted by many people.

An expectation maximization (EM) algorithm to jointly
estimate parameters of Gaussian and bernoulli distribu-
tions is developed for GBMM, which is then tested by
comparing with its two component models, Gaussian mix-
ture model (GMM) and bernoulli mixture model (BMM).
Four well-known model selection criteria, Bayesian infor-
mation criterion (BIC), integrated classification likelihood-
BIC (ICL-BIC, called ICL for simplicity), Akaike infor-
mation criterion (AIC), and modified AIC (AIC3) were
tested in GBMM and its two component models in this
study. Performance tests were done on GBMM with both



complete and incomplete PPI matrixes, each represent-
ing a different scenario. Complete PPI matrix is a square
symmetric matrix, where information about interactions
among all the interactors is available; while in incom-
plete PPI data only partial interactions among the inter-
ested proteins (protein products of genes that are need to
be clustered) are available, and may or may not include in-
teractions of the interested proteins with other molecules.
Performances were also compared on dealing with data
containing different noise levels. Besides verifying that
combining gene expression and PPI data can highly im-
prove the clustering accuracy compared with analyzing ei-
ther of the single data sources alone, our results also show
that the more PPIs are available the better performance
the algorithm has. According to our study, AIC and AIC3
perform similar in GBMM, and work better than the other
two criteria when bernoulli distributed data is too noisy.

2. METHODS

2.1. Mixture model based clustering

In model-based clustering methods, each observation oj ,
where j = 1, . . . , n and n is the number of genes, is drawn
from a finite mixture distribution with the prior probabil-
ity πi, component-specific distribution f

(g)
i and its param-

eters θi. The formula is given as [5]

f(oj |θ) =
g∑

i=1

πif
(g)
i (oj |θi), (1)

where θ = {(πi, θi) : i = 1, . . . , g} is used to denote
all the unknown parameters, with the restriction that 0 <
πi ≤ 1 for any i and

∑g
i=1 πi = 1. Note that g is the

number of components in this model. In the following
texts, superscript (g) is ignored for simplicity.

2.1.1. GBMM

Define θ = [π, θ1, θ2]
T , θ1 =

[
µ11, . . . , µgp1 , σ

2
1 , . . . , σ2

p1

]T ,
θ2 = [q11, . . . , qgp2 ]

T , and π = [π1, . . . , πg]
T , where

p1 and p2 each represents the dimension of the observa-
tions in Gaussian and bernoulli mixture model, respec-
tively. Denote X and Y as the Gaussian and bernoulli
distributed random variables, respectively, function f of
x, y as their density function, and o = [xT ,yT ]T .

GBMM is a joint mixture model of Gaussian and bern-
oulli distributions, with the assumption that, for each com-
ponent i, data of both distributions are independent, i.e.,
fi(o) = gi(x)hi(y). In the GMM part, each component is
assumed to be the product of p1 independent Gaussian dis-
tributions, whose probability density function is defined as

gi(x|θ1i) =
1

(2π)
p1
2 |V | 12 exp

(−1
2
(x−µi)T V −1(x−µi)

)
,

(2)
where θ1i = [µi, V ], µi = [µi1, . . . µip1 ], V = diag(σ2

1 , σ2
2 , . . . , σ2

p1
)

and |V | =
∏p1

u=1 σ2
u. In the BMM part, each component

is modeled as bernoulli distribution, with the probability

density function for each gene defined as

hi(y|θ2i) =
p2∏

v=1

qyv

iv (1− qiv)(1−yv), (3)

where θ2i = [qi1, . . . , qip2 ]. Note that in complete PPI
matrix p2 = n, and in incomplete case often p2 < n.

We assume diagonal covariance matrix in GMM since
it significantly reduces the number of parameters and thus
the complexity, which is useful in dealing with high-dime-
nsional data.

2.2. EM algorithms

Standard EM algorithm is applied to estimate the param-
eters θ iteratively, where the data log-likelihood (natural
logarithm) can be written as

log L(θ) =
n∑

j=1

log(

[
g∑

i=1

πifi(oj |θi)

]
), (4)

given O = {oj : j = 1, ..., n}, whose direct maximiza-
tion, however, is difficult. The problem is thus solved by
maximizing the complete data log-likelihood as shown in
Equation 5

log Lc(θ) =
n∑

j=1

g∑

i=1

χ(cj = i) log (πifi(oj |θi)), (5)

where cj ∈ {1, . . . , g} is the clustering membership of
oj , and χ(cj = i) is the indicator function of whether oj

is from the ith component or not.
In the EM algorithm, E step computes the expectation

of the complete data log-likelihood, Q(θ|θ(m)), as

Q(θ|θ(m)) =
n∑

j=1

g∑

i=1

τ
(m)
ji log(πifi(xj |θ1i)fi(yj |θ2i)),

(6)
where

τ
(m)
ji =

π
(m)
i fi(xj |θ(m)

1i )fi(yj |θ(m)
2i )

∑g
i′=1 π

(m)
i′ fi′(xj |θ(m)

1i′ )fi′(yj |θ(m)
2i′ )

, (7)

according to Bayes’ rule and θ(m) represents the parame-
ters estimated in the mth iteration. Note that τ

(m)
ji is the

estimated posterior probability of oj coming from com-
ponent i at iteration m, and we can assign each oj to
a component based on {i0|τji0 = maxi τji}. Equation 6
shows that our assumption of the Gaussian and bernoulli
distributed data being independent carries over to the ex-
pected log-likelihood as well.

In the EM algorithm of GBMM, the parameters of the
Gaussian part, µi’s and σ2

u’s, can be estimated by the stan-
dard EM algorithm of GMM with diagonal covariance
matrix, which works by iterating over

µ̂
(m+1)
i =

n∑

j=1

τ
(m)
ji xj/

n∑

j=1

τ
(m)
ji , (8)

σ̂2,(m+1)
u =

n∑

j=1

g∑

i=1

τ
(m)
ji (xju − µ

(m)
iu )2/n. (9)



The parameters of bernoulli part, qiw’s, are updated by

q̂(m+1)
i =

∑n
j=1 τ

(m)
ji yj

∑n
j=1 τ

(m)
ji

and π’s are updated by

π̂
(m+1)
i =

n∑

j=1

τ
(m)
ji /n, (10)

where τ
(m)
ji is calculated from Equation 7. Note that {u =

1, . . . , p1} and {v = 1, . . . , p2}.
From the above equations, it is easy to see that the

standard EM for GBMM will reduce to the standard EM
for Gaussian and bernoulli distribution, respectively, when
the dimensions of the other two distributions go to zero.

The algorithm is run multiple times with different ini-
tial values. The initial parameters µiu’s, σ2

u’s and qiv’s
are obtained from the randomly initialized fuzzy c-means
clustering results, and πi’s are initialized with the uniform
probability 1/g. For each data set, we run each EM al-
gorithm 100 times with different initial values, and for
all the tested models, we set the convergence threshold
(|Q| is used to monitor the convergence) and the maxi-
mum number of iterations to 0.0001 and 100, respectively.
All the simulations have reached convergence according
to the statistics stored during the simulations.

2.3. Model selection

Four well-known approximation-based model selection cri-
teria, BIC [6], ICL [7], AIC [8, 9], and AIC3 [8, 10]
are compared in GBMM, according to which the best-
performing criterion is chosen. Calculations for the above
criteria can be found in [11]. Note that the number of free
parameters in GBMM is p1 + p1g + p2g + g − 1.

3. RESULTS

The data sets designed for the performance test are shown
in Table 1, where each data type falls into two categories
with respect to different noise levels. In Gaussian dis-
tributed data, the noise is determined by the mean and
variance, and in bernoulli distributed data, it is defined
as the ratio between the number of false interactions and
true interactions. Specifically, the designed data are good
Gaussian (‘gG’), bad Gaussian (‘bG’), good bernoulli (‘gB’)
and bad bernoulli (‘bB’). For noisy Gaussian distributed
data, we also consider different noise sources, which are
close means and large variances (denoted as ‘bGm’ and
‘bGv’, respectively), and for bernoulli distributed data,
different data structures are also taken into account for
both good and bad data, which are complete (p2 = n and
symmetric) PPI matrixes (denoted as ‘gBp’ and ‘bBp’),
and incomplete (normally p2 < n) PPI data (denoted as
‘gBb’ and ‘bBb’). In our design, n = 100, p1 = 4, and
p2 = 6 for Bb. All the simulations are repeated 10 times
with randomly generated data sets. The designed expres-
sion data are listed in Table 1, and the sparsity patterns of
two kinds of PPI matrixes are shown in Fig. 1.

cluster 1 cluster 2 cluster 3
5 -8 20 15 10 1 -20 0 -10 8 5 15
1 2 3 2.5 1 2 3 2.5 1 2 3 2.5
3 15 5 11 2 13 6 9 1 14 7 10
1 2 3 2.5 1 2 3 2.5 1 2 3 2.5
5 -8 20 15 10 1 -20 0 -10 8 5 15
10 20 30 25 10 20 30 25 10 20 30 25
Note: ‘‖’ and ‘|’ separate the clusters and the dimensions within
each cluster, respectively. The three 2× 12 boxes downwards list
the parameters of scenarios ‘gG’, ‘bGm’ and ‘bGv’, respectively.
In each box the 1st line shows µ and the 2nd line shows σ.

Table 1. Parameters of expression data.
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p
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p
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Figure 1. Sparsity patterns of PPI data. The noise level is
1/9 in ‘gBp’ and ‘gBb’, and is 1/2 in ‘bBp’ and ‘bBb’.

We employed the same scoring system as developed
in [11], denoted as ‘E score’, for performance evaluation
in simulations, which not only records the clustering ac-
curacy but also reflects the influence of the criterion for
model selection.

We first compared different model selection criteria
under different scenarios, whose results are shown in Ta-
ble 2. It is seen that the choice of model selection crite-
rion is case dependent, and generally, AIC and AIC3 work
slightly better than the other two criteria in GBMM.

The performance of GBMM was compared with GMM
and BMM for all the possible combinations of our test
data sets, whose results are shown in Fig. 2. It is seen that
GBMM outweighs both of its component models under
all the tested scenarios, which demonstrates the power of
utilizing multiple data sources in gene clustering. More-
over, in BMM and GBMM, the larger the second dimen-
sion (given a fixed noise level) of PPI matrix is, the more
PPI information are utilized, and the more accurate the
clustering is.



Model Scenario AIC AIC3 BIC ICL
GBMM gG+gBp 1 1 1 1

gG+bBp 1 1 1 1
bGm+gBp 0.999 0.999 0.999 0.999
bGm+bBp 0.975 0.975 0.787 0.787
bGv+gBp 1 1 1 1
bGv+bBp 0.965 0.965 0.803 0.803
gG+gBb 0.9990 1 1 1
gG+bBb 1 1 1 1

bGm+gBb 0.963 0.963 0.942 0.942
bGm+bBb 0.645 0.648 0.600 0.600
bGv+gBb 0.957 0.957 0.947 0.947
bGv+bBb 0.693 0.774 0.727 0.727

GMM gG 1 1 1 1
bGm 0.508 0.512 0.506 0.506
bGv 0.597 0.577 0.581 0.581

BMM gBp 0.998 0.998 0.998 0.998
bBp 0.814 0.814 0.800 0.800
gBb 0.922 0.922 0.906 0.906
bBb 0.604 0.604 0.604 0.604

Note: The best criterion with respect to the highest average
E scores and used in drawing Fig. 2 are shown in bold face.
All values are rounded to three decimal points.

Table 2. Comparison of different model selection criteria
in GBMM, GMM and BMM.

4. CONCLUSIONS

This paper presents a novel Gaussian-bernoulli mixture
model, GBMM, for gene clustering from Gaussian dis-
tributed and bernoulli distributed data. One typical appli-
cation is to cluster genes from expression and PPI data,
assuming that one gene corresponds to one protein and
genes within a cluster have on average more PPIs with
a set of genes and share similar expression profiles than
genes from different clusters. The results verify that comb-
ing expression and PPI data can make more efficient use of
data than analyzing each single data source, and the larger
the second dimension of PPI matrix is the more accurate
the results are, given a fixed number of genes.

The main contribution of this paper is that we have pre-
sented an extremely flexible clustering framework which
can deal with any data that follow Gaussian and bernoulli
distributions. For example, besides the typical square sym-
metric PPI matrix, the proposed method can also be ap-
plied to incomplete bernoulli distributed data, such as bi-
nary promoter binding states. Moreover, it can be easily
extended to utilize other information source by extending
the current framework to other parametric distribution.

The clustering accuracy of GBMM is shown to be high-
ly improved under all the tested scenarios compared with
its component models. However, the algorithm can be
slow when dealing with large dimensional unstructured
PPI matrix.

In the future, we could extend this joint clustering frame-
work into data of other parametric distributions, and apply
it to solve other problems.
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Figure 2. Comparison of GBMM with GMM and BMM
when PPI data is (a) complete, and (b) incomplete.
1 ∼ 6 each represents ‘gG+gB’, ‘gG+bB’, ‘bGm+gB’,
‘bGm+bB’, ‘bGv+gB’, ‘bGv+bB’ in GBMM; 7 ∼ 9 each
stands for ‘gG’, ‘bGm’ and ‘bGv’ in GMM; 10 ∼ 11 rep-
resent ‘gB’ and ‘bB’, respectively.
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