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Abstract—Cluster analysis is widely applied to discover the
function of previously unannotated genes. This paper presents
a novel stratified Beta-Gaussian mixture model, sBGMM, for
clustering genes based on gene expression data, protein-DNA
binding data and data that can provide information for con-
structing priors such as protein-protein interaction (PPI) data.
An expectation maximization (EM) type of algorithm for Beta
mixture model is first developed and then combined with that
of Gaussian mixture model. This combined algorithm can jointly
estimate the parameters for both Beta and Gaussian distributions
and is used as the core in the sBGMM method. The strat-
ification property of sBGMM is exhibited as Stratum-specific
prior probabilities and is constructed by the pre-cluster results
obtained from PPI data in this study. This proposed sBGMM
method differs from other mixture model based methods in its
integration of two different data types into a single and unified
probabilistic modeling framework and incorporation of prior
information from a third data source. Several well-studied model
selection methods, such as Akaike information criterion (AIC),
modified AIC (AIC3), Bayesian information criterion (BIC), and
integrated classification likelihood-BIC (ICL-BIC) are applied to
estimate the number of clusters, and simulation results show
that AIC3 works best for sBGMM. Simulations also indicate
that combining two different data sources into a single mixture
model can greatly improve the clustering accuracy and stability,
and employing priors to stratify the model can further enhance
its performance. This proposed method provides a more efficient
use of multiple data sources than methods that analyze different
data sources separately.

I. INTRODUCTION

The attitude that different biological data types offer infor-
mation from different perspectives and should be combined
to make predictions more robust has become well accepted in
the field of system biology. Thus how to integrate different
data types to make the results more accurate has become
one of the most challenging problems. In the case of gene
clustering, among the studies done by many researchers,
we have successfully incorporated protein-DNA binding data
with expression data [6], and the significant increase in its
prediction accuracy and stability compared with that obtained
from single data sources demonstrated the power of integrating
more information in the better understanding of the biological
system and encouraged us to dig farther in this direction.

The previous work that we have done is to combine beta
mixture model (BMM) and Gaussian mixture model (GMM)

into a single model based framework, which is named Beta-
Gaussian mixture model (BGMM), for gene clustering [6].
The results are satisfactory, however, there is still much room
left for performance improvement. Inspired by the work done
by Pan [9], where stratum-specific prior probabilities are
put forward and verified to yield better results than uniform
priors, we construct the stratified priors in this study by
converting protein-protein interaction (PPI) data into contact
matrix through which the genes (corresponds to proteins that
it encodes in PPI data) are pre-clustered [13]. Simulations
were done to compare the performance of sBGMM and its
non-stratified form (BGMM), and the results support sBGMM
because of its consistently higher clustering accuracy in all the
tested cases.

Criteria for model selection can be classified into two
main groups, which are likelihood-based methods and
approximation-based methods [11]. Likelihood-based methods
include cross-validation and bootstrap methods, and cross-
validation method can further be divided into many differ-
ent strategies with respect to how the partitions are cho-
sen. As these methods are computationally more expensive,
approximation-based methods are widely preferred by most
people. These methods include penalized likelihood, closed-
form approximations to the Bayesian solution, and Monte
Carlo sampling of the Bayesian solution, among which penal-
ized likelihood method is most prevalent. Penalized likelihood
criteria mainly refers to Akaike information criterion (AIC),
modified AIC (AIC3), Bayesian information criterion (BIC),
integrated classification likelihood-BIC (ICL-BIC), and min-
imum description length (MDL). They are typically derived
from approximations based on asymptotic arguments as the
data size N approaches ∞ [11]. Thus approximation-based
methods can suffer from theoretical limitations on their appli-
cability to mixture problems in small-sample setting, and can
dependent on the accuracy of the underlying approximations or
simulations in a non-transparent manner [11]. AIC and BIC
are often reported to work better than the other criteria for
Gaussian mixture model (GMM) [3], [8]. ICL-BIC is preferred
by Beta mixture model (BMM) according to [8]. Our previous
work suggests using AIC for BMM and AIC3 for BGMM [6]
through comparing four well-known approximation-based cri-
teria (AIC, AIC3, BIC, ICL-BIC), and in this study we choose



AIC3 as the model selection criterion with the same strategy.
The following sections are organized as ‘Methods’, ‘Re-

sults’, and ‘Conclusions’. Section ‘Methods’ is divided into
two parts. In part one, mixture model based clustering and
EM algorithm are discussed (including the short description
of classic GMM, our BMM, and the joint model BGMM
which belongs to our previous work). Part two of this section
introduces how the criteria for model selection (AIC, AIC3,
BIC, ICL-BIC) are formulated, and how the criterion for
sBGMM is chosen. Section ‘Results’ also consists of two
parts. We first compare the performance of sBGMM with its
non-stratified form in dealing with bad quality data, and then
evaluate and compare the abilities of sBGMM and BGMM
in handling with Region 2 data (Regions are divided in
Section III). In section ‘Conclusions’, we first summarize
this study and discuss its possible extension and applications
to other problems; then mention the limitations within the
proposed method; and finally suggest the possible future work
related to the proposed sBGMM.

II. METHODS

A. Mixture model based clustering and EM algorithm

In model-based clustering methods, each observation x
is drawn from a finite mixture distributions with the prior
probability πi, component-specific distribution f

(g)
i and its

parameters θi. The formula is given as

f(x; Θ) =
g∑

i=1

πif
(g)
i (x; θi), (1)

where Θ = {(πi, θi) : i = 1, . . . , g} is used to denote all
unknown parameters, with the restriction that 0 < pii ≤ 1
for any i and that

∑g
i=1 πi = 1. Note that g is the number

of components in this model, and we drop the superscript of
f

(g)
i for notational simplicity in the following text.

EM algorithm is then derived for the above model-based
clustering. The data log-likelihood can be written as

log L(Θ) =
n∑

j=1

log(

[
g∑

i=1

πifi(xj ; θi)

]
), (2)

given X = {xj : j = 1, ..., n}, whose direct maximization,
however, is difficult.

In order to make the maximization of Equation 2 tractable,
the problem is casted in the framework of incomplete data.
Define zji as the indicator of whether xj is from component i,
i.e., zji = 1 if xj is from component i and zji = 0 otherwise.
Then the complete data log-likelihood becomes

log Lc(Θ) =
n∑

j=1

g∑

i=1

zji log (πifi(xj ; θi)). (3)

In the EM algorithm, E step computes the expectation of

the complete data log-likelihood Q

Q(Θ;Θ(m)) = EΘ(m)(log Lc|X)

=
n∑

j=1

g∑

i=1

τ
(m)
ji log (πifi(xj ; θi)), (4)

where Θ(m) represents the parameter estimates at iteration
m). M step updates the parameter estimates to maximize Q.
The algorithm is iterated until convergence. Note that z’s
in Equation 3 are replaced with τ ’s in Equation 4, and the
relationship between these two parameters is

τji = E[zji|xj , θ̂1, ..., θ̂g, π̂1, ..., π̂g]. (5)

The set of parameter estimates
{

θ̂1, ..., θ̂g, π̂1, ..., π̂g

}
is a

maximizer of the expected log-likelihood for given τji’s,
and we can assign each xj to its component based on
{i0|τji0 = maxi τji}. In the following subsections, GMM,
BMM, BGMM, which are the component models of sBGMM,
are first briefly described together with their corresponding
EM algorithms (whose details can be found in our another
paper [6]), and then sBGMM and its EM algorithm are
proposed in detail.

1) GMM and its EM algorithm: The most widely used and
well known model-based clustering method is finite GMM,
in which each component is assumed to follow a Gaussian
distribution. In this study we use the standard p dimensional
normal distribution with mean µi and unconstrained covari-
ance matrix Vi for each component in GMM. We run the EM
algorithm multiple times with different initial values, where
fuzzy c-means clustering algorithm is used for initialization,
to avoid possible local maxima.

2) BMM and its EM algorithm: BMM is developed to
tackle with data within boundaries [0, 1] which is used for
clustering protein-DNA binding data in this study. In this
model, each component is assumed to be the product of
p independent beta distributions, whose probability density
function is defined as

fi(x;αi, βi) =
p∏

j=1

xαij−1(1− x)βij−1

B(αij , βij)
. (6)

In the EM algorithm, τji’s are first calculated with current
parameters, according to which xj’s are clustered to their cor-
responding clusters using zji0’s (where {i0|τji0 = maxi τji})
in E-step. Then M-step is run to maximize Equation 3 instead
of 4 (compared with the standard EM). In this step, new
parameters α̂’s and β̂’s are numerically estimated using the
maximum likelihood principle (matlab function ‘betafit’ is
used here for this purpose) given the hard clusters obtained
in E-step, and the new π̂’s are calculated by

π̂
(m+1)
i =

n∑

j=1

τ
(m)
ji /n, (7)



where

τ
(m)
ji =

π
(m)
i fi(xj ;α

(m)
i , β

(m)
i )

∑g
i=1 π

(m)
i fi(xj ; α

(m)
i , β

(m)
i )

. (8)

The algorithm is run multiple times with randomized initial
values.

3) BGMM and its EM algorithm: EM for BMM and GMM
are combined into a single framework in BGMM with the
assumption that, for each component i, the expression and
binding data are independent. The procedures of parameter
maximization for both data types are the same as those for
BMM and GMM, except that the calculation of τ ’s is the
product of two distributions

τ
(m)
ji =

π
(m)
i fG

i (xj ; µ
(m)
i , V

(m)
i )fB

i (xj ; α
(m)
i , β

(m)
i )

∑g
i=1 π

(m)
i fG

i (xj ; µ
(m)
i , V

(m)
i )fB

i (xj ; α
(m)
i , β

(m)
i )

.

(9)
Note that the superscripts (G) and (B) of f ’s mean that
the parameters they represented are from GMM and BMM
respectively.

4) sBGMM and its EM algorithm: In order to integrate as
many data sources as possible, we proposed a sBGMM

f(k)(xj ; Θ(k)) =
g∑

i=1

π(k),if
(g)
i (xj ; θi), (10)

where 1 ≤ k ≤ K, which means that the genes can be
partitioned into several groups, say G1, ...GK , according to
certain criteria before EM is run.

In Equation 10, K stratified models share the same set of
component distributions while differ in their usage of stratum-
specific prior probabilities. Here in this study, this prior
information is provided by the pre-cluster results obtained
from PPI data [13]. PPI data is first converted into contact
matrix (denoted as A) and then transformed into correlation
matrix (denoted as C). Contact matrix is in the form of

A =

{
1 if i ⇔ j

0 if i < j,
(11)

where i ⇔ j means the existence of a connection between
node i and j while i < j denotes the other way around. Before
obtaining the correlation matrix, the pathlength between nodes
i and j which is denoted as Pij and characterised as the
smallest integer k ≥ 1 such that (Ak)ij 6= 0 is calculated
for all pairs of nodes. Here we imployed and modified the
‘pathlength’ function in the ‘CONTEST’ toolbox in mat-
lab [12] to calculate P . If Pmax was denoted as maxij Pij for
(Ak)ij 6= 0, then the modification is done to set Pij = Pmax

when (Ak)ij = 0 for all k. The pathlength matrix P is then
used to obtain the correlation matrix [2]

C(i, j) = 1− Pij

Pmax
. (12)

We use the correlation matrix to pre-cluster the genes
(corresponding to the proteins they encode) using a simple
hierarchical clustering algorithm which employs Euclidean
distance as the distance matrix and nearest neighbor algorithm

as the linkage construction method. The matlab function
‘clusterdata’ is used here for this purpose. Then we assume
that genes from the same pre-cluster share the same prior
probability π(k),i of coming from the same cluster i, and allow
them coming from different clusters. The priors given to each
clusters in this study are randomly generated.

In E step, updates of µ’s, V ’s, α’s, and β’s are the same as
that in BGMM, but for πs they are updated by

π̂
(m+1)
(k),i =

∑

j∈Gk

τ
(m)
ij /nk, (13)

where nk is the number of the genes in Gk and m stands for
the number of iterations.

In this study, for each data set we run each EM algo-
rithm 100 times with different initial values. The convergence
threshold (where Q is used to monitor the convergence) and
maximum number of iterations were set to 0.0001 and 100
respectively for all the tested models, and all the simulations
have reached their convergences according to the statistics
stored during the simulations.

B. Model Selection

Four well-known approximation-based model selection cri-
teria, AIC [3], [1], AIC3 [3], [5], BIC [9], [10], and ICL-
BIC [8], are compared in sBGMM, whose formulations are
defined as

AIC = −2 log L(Θ̂) + 2d, (14)
AIC3 = −2 log L(Θ̂) + 3d, (15)
BIC = −2 log L(Θ̂) + d log(nM), (16)

ICL−BIC = −2 log L(Θ̂) + d log(nM)

−2
n∑

j=1

g∑

i=1

τji log(τji), (17)

where d is the number of free parameters, and M in
equations 16 and 17 is the total dimension of the data
(M =

∑W
w=1 Mw, Mw is the dimension of data set

w and W is the number of input data sets). Note that
−2

∑n
j=1

∑g
i=1 τji log(τji) is the estimated entropy of the

fuzzy classification matrix Cji = (τji) [8]. The number
of free parameters d is different in different models. As
described in [6], we have dG = (p2 + p)g/2 + pg + g − 1,
dB = 2gp + g − 1, dBG = dB + dG − (g − 1), where the
subindices indicate their corresponding models. In sBGMM,
there are K times π’s as that in its non-stratified form, so we
have dsBG = dsB + dsG −K(g − 1).

III. RESULTS

We compared the performance of sBGMM and BGMM with
three artificial datasets, which are generated by a simplified
model (we generate data from a diagonal covariance model
although our model assumes unconstraint covariance). Data set
1 and 2 are the same as what was used in [6], where the first
data set has the same parameters for all the dimensions within
each cluster (‘non-mixed’ case) while the second data set does
not (‘mixed’ case). The third data set is added in this study,



PPI data 1&2 PPI data 3

Figure 1. Sparsity patterns of the contact matrix of the designed PPI data.
PPI 1&2 is used in Simulation 1 and 2, and PPI 3 is used for Simulation 3

which has different number of components for different data
types (six components for binding data and three components
for expression data). Each artificial data set was designed to
fall into four categories: ‘good Beta’ (gB), ‘bad Beta’ (bB),
‘good Gaussian’ (gG), ‘bad Gaussian’ (bG), where ‘good’
stands for ‘less noisy data’, and ‘bad’ means the opposite. For
the first two simulations, we also designed two kinds of ‘bG’,
‘bGm’ and ‘bGv’, which are hard to be clustered compared
to ‘gG’ with respect to means and variances respectively.
Parameter settings for the datasets are listed in Table I, where
the combination of ‘good Gaussian variance’ and ‘bad Gaus-
sian mean’ is ‘bGm’, and the combination of ‘good Gaussian
mean’ and ‘bad Gaussian variance’ is the case ‘bGv’. Two
PPI datasets were designed to match the dimensionalities and
underlying components of expression and binding data (PPI
data for the third data set is designed to have six components),
whose sparsity patterns are shown in Fig. 1. The dimensions
of the data are n = 60 and p = 4 for all data sets, and all
the simulations are repeated 20 times with randomly generated
data sets.

We used the same scoring system as developed in [6] for
evaluating the clustering accuracy, which is denoted as ‘E
score’

ej(r) =

{
1 if ẑji = 1 and ri = Tj

0 otherwise

E = max
r∈R

n∑

j=1

ej(r)/n (18)

R =
{
r = (r1, . . . , rĝ) : ∀i 6= j ri 6= rj ;

ri ∈ {1, . . . , max{ĝ, g}}}.

In this scoring system, Tj denotes the ground truth cluster-
ing membership of data j, and ri is the label of data belonging
to component i predicted by the clustering algorithm; r is
chosen from labels 1, 2, . . . , max{ĝ, g}, where ĝ and g are
the largest labels in the estimated and ground truth clustering.
Also note that e is the individual score of each gene, E is the
average score of all the genes for each repetition, ‘E score’ of
each repetition is the one corresponding to the optimal Q, and
the final ‘E score’ of each data set is the median of the 20 ‘E
score’s. This scoring system evaluates the overall performance
of the model since it not only records the accuracy of the
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Figure 2. Results of Simulation 1 and Simulation 2. Performance comparison
of sBGMM with all of its component models.

results but also reflects the influence of the criterion for model
selection.

Comparison results of different model selection criteria in
sBGMM are shown in Table II, according to which AIC3 is
chosen for this model. AIC, BIC and AIC3 which are selected
for BMM, GMM and BGMM respectively in [6] are also used
in the following simulations.

Results of the first two simulations are shown in Fig. 2. In
both simulations, E scores of sBGMM are consistently higher
than those of BGMM. Although for Gaussian distributed data
that have large variances the same problem for BGMM still
lies in sBGMM (the performance is even lowered down in
the joint models), it outweighs BGMM under all the tested
circumstances. The performance improvement brought out by
sBGMM compared with BGMM indicates that the clustering
accuracy of BGMM can be increased by adding stratum-
specific priors from another data source.

According to work done in [7], only partial gene expression
and protein-DNA binding data agree with each other (consist-
ing of the same number of clusters), and the data fall into
three regions which are shown in Fig. 3. Data were designed
to have the same number of clusters (Region 1) in the first
two simulations, and adding stratified priors (sBGMM) to the
joint model (BGMM) can consistently improve the clustering
accuracy according to the simulated results obtained in this
study. For data within Region 3, as expression data contains
more information than binding data (expression data gives
more clusters than binding data) and can already give good
performance, there is no need to incorporate protein-DNA
binding data in this case (we only use low quality Gaussian
distributed data in this simulation). To test the performance of
sBGMM and BGMM in handling with data within Region



Data Data set 1 Data set 2 Data set 3
c1 c2 c3 c1 c2 c3 c1 c2 c3 c4 c5 c6

gB α 10 20 25 15 20 25 20 20 25 15 5 1 20 1 30 10 20 1 20 1 100
β 20 10 20 20 15 20 25 20 25 15 5 20 1 30 1 20 10 20 1 100 1

bB α 10 15 17 15 10 25 20 10 5 15 12 30 25 30 35 10 20 15 20 17 18
β 20 20 18 10 15 20 25 5 10 12 15 25 30 35 30 20 10 20 15 18 17

gG µ 7 8 9 9 -9 11 -11 10 -10 12 -12 11 -11 13 -13 5 10 20
σ 0.3 0.4 0.2 0.7 0.2 0.7 0.2 0.8 0.3 0.8 0.3 0.9 0.4 0.9 0.4 0.5 0.8 0.1

bG µ 7.5 8 8.5 9.5 -9.5 10 -10 9 -9 9.5 -9.5 10 -10 9 -9 7 8 9
σ 1 0.9 0.8 1 1 1.5 1.5 1.5 1.5 2 2 2 2 1 1 0.3 0.4 0.2

Note: ‘gB’ and ‘bB’ each stands for ‘Beta’ distributed data that are of ‘good’ and ‘bad’ quality respectively; ‘gG’ and ‘bG’ each represents
‘Gaussian’ distributed data that are of ‘good’ and ‘bad’ quality respectively; ‘α’, ‘β’, ‘µ’, ‘σ’ are the parameters in each corresponding
distribution.

Table I
DATA SETS DESIGNED FOR SIMULATIONS
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Figure 3. Region divisions of input data. In Region 1 gene expression and
protein-DNA binding data have the same number of underlying components;
in Region 2 binding data has more components; in Region 3 expression data
has more components

2, we did Simulation 3 where binding data and PPI data
(both have six clusters) have more components than that
of expression data (three clusters). According to the results
(shown in Fig. 4), where the ‘E score’s are obtained with the
assumption that the real number of underlying clusters was
six, sBGMM outweighs BGMM. This result combined with
those obtained from Simulation 1 and 2 has demonstrated the
power of employing stratified priors for the joint model in
improving the clustering accuracy.

IV. CONCLUSIONS

This paper presents a novel method based on stratified
Beta-Gaussian mixture model, sBGMM, for gene clustering
from multiple data sources. In this study, we integrated gene
expression data, protein-DNA binding data and PPI data,
where expression data and protein-DNA binding data are
assumed to be of Gaussian and Beta distribution respectively,
and PPI data is used to set the prior weights of genes
belonging to each pre-cluster. An EM type of algorithm for
estimating parameters from beta distribution is developed and
combined with the classical EM for Gaussian distribution
into a single framework. This joint EM algorithm is used
as the core for sBGMM as well as its non-stratified form.
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Figure 4. Results of Simulation 3. Performance test and comparison of
‘sBGMM’ and ‘BGMM’ in dealing with Region 2 data.

sBGMM differs from BGMM in its stratified priors, where
prior weights are set equal to genes belonging to the same
cluster according to some prior information. In principle, this
proposed sBGMM is not limited to the data we have used in
this study. Any data that follows the assumption of Gaussian
and Beta distribution could be integrated into this framework,
and any information that can pre-cluster the data might serve
to set the prior weights. This work demonstrates one approach
of integrating information from multiple data sources. Data of
other distributions (other than Gaussian and beta) can also
be incorporated by joining EM algorithm of that particular
distribution into this framework in a similar way. So in a
sense, the method proposed in this paper is applicable to many
problems and not limited to the particular problem considered
here.

However, there are some limitations of this current work.
First, for Gaussian distributed data that has large variances, the
performance improvement of the joint model compared with
BMM and GMM still can not be guaranteed. This might due
to the less optimal pre-clustering method that we have used
for constructing priors from PPI data, which renders the priors
less informative for further clustering. Second, as we are using
EM algorithm with arbitrary covariance matrices as the core
for GMM based on which all the joint models are developed,



sBGMM
Data set d AIC AIC3 BIC ICL

1 2 gB+gG 0 0 0 0
bB+gG 0 0 11 10

gB+bGm 0 0 1 1
bB+bGm 0 0 20 20
gB+bGv 0 0 18 18
bB+bGv 0 2 20 20

3 gB+gG 0 16 20 20
bB+gG 7 18 9 10

gB+bGm 0 15 19 19
bB+bGm 3 13 0 0
gB+bGv 0 13 2 2
bB+bGv 1 11 0 0

4 gB+gG 11 4 0 0
bB+gG 7 2 0 0

gB+bGm 10 5 0 0
bB+bGm 8 7 0 0
gB+bGv 9 7 0 0
bB+bGv 11 7 0 0

5 gB+gG 9 0 0 0
bB+gG 6 0 0 0

gB+bGm 10 0 0 0
bB+bGm 9 0 11 11
gB+bGv 11 0 0 0
bB+bGv 8 0 0 0

2 2 gB+gG 0 0 0 0
bB+gG 0 1 7 7

gB+bGm 0 0 4 4
bB+bGm 0 1 18 18
gB+bGv 0 0 20 20
bB+bGv 2 9 20 20

3 gB+gG 0 12 20 20
bB+gG 15 17 13 13

gB+bGm 0 11 16 16
bB+bGm 12 16 2 2
gB+bGv 0 9 0 0
bB+bGv 5 5 0 0

4 gB+gG 9 8 0 0
bB+gG 4 2 0 0

gB+bGm 6 7 0 0
bB+bGm 8 3 0 0
gB+bGv 5 8 0 0
bB+bGv 11 6 0 0

5 gB+gG 11 0 0 0
bB+gG 1 0 0 0

gB+bGm 14 2 0 0
bB+bGm 0 0 0 0
gB+bGv 15 3 0 0
bB+bGv 2 0 0 0

Note: Values shown here is the number of occurrence out of
the total tests. Notation ‘d’ means the number of components;
‘ICL’ is short for ‘ICL-BIC’.

Table II
COMPARISON OF DIFFERENT MODEL SELECTION CRITERIA IN SBGMM

the inherent drawbacks of this algorithm also exist in our joint
methods. For large-dimensional data, the complexity of the
model increases dramatically and might result in selecting less
optimal model and slow convergence [4].

For future work, we have two directions. First, we could
integrate more data types into the proposed mixture model
framework. In this direction, the most obvious start might

be to incorporate PPI data as part of the joint statistical
mixture model instead of using it only to construct the prior,
and the prior might be obtained from Gene Ontology (GO)
information. Second, we will apply our method to real data.
In this direction, many possible work could be done, including
developing more robust method for pre-clustering PPI data,
reducing the dimensionality of the data, implementing better
EM algorithm into our framework (e.g. implement EM with
diagonal covariance matrix for GMM; develop the standard
EM for BMM), and applying likelihood-based criteria for
model selection in sBGMM such as cross-validated likelihood
method [11].
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