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ABSTRACT 2. METHODS

_ ) In this study, we assume that there are no missing valuesin
In this paper, we test and compare different data mod- the data. We can therefore use the following labeling for

els for finding differential expression in cDNA microarray  gyr data setsi € {1,..., I} corresponds to gene index,
measurements. We use Bayesian hierarchical errormodel; ¢ (1 2} corresponds to biological condition, and the

(HEM) and its variants that are derived by changing the yepjicates are denoted as {1, ..., K}.

functional form of the original HEM variance. In addi- Before using the expression data, we transform it into
tion to heterogeneous variance, we use the HEM with ex- log,-domain [3]. This is done for two reasons: the data
ponential and constant variance functions. The standardyay contain multiplicative biases for different microarra
t-test for finding differential expression is our reference gjiges and. more importantly, the models we use assume
test. For both approaches, false discovery rates (FDR) argjata to contaifiog-normally distributed components.
estimated. With data simulations, we test the accuracy of  \ye it the HEM to cDNA microarray expressions of
variance models and FDR estimators. The fit of exponen-9_cqor cDNA microarrays; one color channel is for a bio-
tial variance function to real data is observed as well. The logical sample under conditioh= 1, and the other chan-

parameters for the Bayesian models are estimated using,g| for a biological sample under conditign= 2. When
Gibbs sampling. biological replicates are missing from the experimést,
, when only technical replicates are available, the HEM
takes the form
1. INTRODUCTION
i i ; ik = Tij + eijie ~ N(2i5,0% 1
For different microarray technologies, data models that b Vo (35, 03;) @)
try to explain sources of variation of measured expressionyhere
have been proposed (see [1] and [2]). One usual set-up for
microarray measurements is to measure gene expression Tij = i+ gi + ¢j + 1ij. (2)
profiles of two or more biological samples under different
conditions, or expression profiles of two or more different In Eq. 1,y;; is the observed data and in Eq./2js the
cell lines. The differences between the biological samplesgrand mean over all slides; is the gene effect;; is the
are then assumed to be characterized by the measured exsondition effect, and-; is the interaction effect of gene
pression profiles that represent expressions proportional ¢ and conditionj. The terme;;, models the error of
the underlying mRNA concentrations [3]. the whole experiment process. Thus, the model is simi-
Biological and technical variations are the primary lar o the standard-way ANOVA, except that HEM uses

sources of variation in the measured data. Other sourcesPrior knowledge for estimating unknown parameters and
e.g., environmental conditions, degradation of mRNA [4], d0€s not, in general, assume constant variance. Different
and labeling of samples [5], also have a significant role. Ways to stabilize the variation of expression value_s have
Thus, without taking the high amount of uncertainty into P&en proposed [6], but one may also give the variance a
account, one may not be able to accurately identify, say, funct!onal form; in this study, we have used the following
differences between conditions, while increasing FDR. functions:
Throughout the study, we (a) try to take the nature of vari- 2

L / . opy ,heterogeneous
ation in the measurements into account, and (b) estimate 2 _ 2 emis 2
S . . o (CUZ']') = a® + be™%ii %, b, c, 5 >0 )
FDR in finding differentially expressed genes. 02 boe—0

In Section 2, we introduce the HEM variants, and give
the formulas for calculating FDR estimates. In Sections where the wordheterogeneou®fers to the original HEM.
2.1 and 2.2, we introduce the used data simulation meth-In the exponential functiony;; is the true expression of
ods, prior distributions, and Gibbs sampling. the gene and conditionj, and the variance is assumed to



—2 .
Tiip ,heterogeneous

0°(Tijp) = § a2 + be~ i exponential . (7)

a? ,constant
i

@ wherep is the permutation indey, € {1, ..., P}, and

We useP = 100 permutations, and for each permutation,
we use the standard sample estimators to calcaigie
(andﬁfjp, if we are assuming heterogeneous variance), as
Bayesian sampling after each permutation would drasti-
cally increase the computation time. It is noteworthy, that

we have modified thély-score calculation in Eq. 6 to take

Figure 1. Model graph with functional variance. E||ipses into account the functional forms for variance. for both
represent stochastic nodes and rectangles represent funéhe H-score andy-score, it is crucial to use similar vari-
tion nodes. For all the ellipses, a prior distribution is as- ance estimators, to reduce FDR estimator bias. See Fig.
signed. 3(a) for illustration of estimation bias: the actual scores
are calculated using the assumed functional model for the
variance, whereas the null scores are calculated using a
sample variance estimator for the permuted data set. The
FDR estimators for the HEM variants and théest (as
proposed in the? implementation document of HEM and

in [8], respectively) are

be intensity-dependent. The parameter$, andc need

to be estimated from the data, andiis negligible com-
pared toa?, or if ¢ is close to zero, the variance shrinks
to constant, which is the special case of the model. The
assumption of functional variance complicates the depen- o #RO(H,)
dency graph of parameters in the model, which can be FDRupm(Hj) = “RUH,)
seen in Fig. 1. Without the functional variance, the vari- ’
ance node itself would be stochastic, and no direct rela-gnd

tionship tox;; would exist. The edge between the vari-

. . _ P 7059 (p.
ance and true expression, in fact, makes the model un FDRy(p;) = 05" (p)) )

(8)

hierarchical. We simplify the dependency by approximat- S(py)
ing the relationship using sample mean over the replicates
k where

N .S RO(H;) = + >0, #:{HY) : H, > H;}

Tij = 5 > ik (4) R(H;) = #;{H,; : H; > H,} (10)

k=t S%(p;) = Ip; '
instead ofr;;. The parameters of the HEM and its variants S(pj) = #i{pi - pi <p;}
can be solved using, for instance, Gibbs sampling (see 2.2 )
for further information). Th(_a#i denotes the number of values, that_fulﬂll the terms
After Bayesian parameter estimation for the models, InSide the braces farc {1,...,I}. The point estimates

we use hypothesis testing methods to find differential ex- PA. Of mo are also calculated as in [7] and [8] using the
pression in the data set. For HEM models, we use thePercentiles\, = 0.01n,n € {1,...,100}, but the es-
H-score [7], a modified version df-statistic, and for the ~ timator form, the proportion of non-significant genes, is
t-test, we use-values. TheH-score for gene is calculated using weighted average. We use the cumulative

distribution function of N(0.1,0.3) to generate weights

2 for each percentile,,:

1 Bij — 24.)2
Hi:—zi( ZEQAZ) (5)
25 0%(@) A — 0.1
C)\n —@(T>, nG{l,,lOO} (11)
where the hat over the letter denotes a Bayesian posterior '
mean parameter estimate, and the dotted subscript denotegy, o weight matrix is a diagonal matrbC =
averaging over that index. Since no null data is available, diag (Cxys- -5 Crroo )y ANAP = [Pr,, - -, DA ]T' The es-
i.e., a reference data with no differential expression from timator;r(’) is therefore P

which to compute nul{-scores is missing, we simulate

such data by permuting the original data set, so that in- o = (1T01)_1 17Cp. (12)
dicesi € {1,...,I} are preservedH-scores of the null
data set is computed with The reason for using’, that gives more weight as in-
9 _ creases, is to compensate the bias and variance of each
H?p — lz (Iifg%xi-ﬂ) (6) point estimate; whem increases, the bias of point esti-
2 = ¢ (Tijp) matep,, decreases, whereas the variance increases [8].



2.1. Simulations o~ U(Oyﬂmaz) Mmaz = 50
gi ~ N(0,02) og=1
In the simulation study, we generate cDNA microarray cj~ N(Ovo'%) g.=1
data with outliers using methods proposed in [9]. The rij ~ N(0,02) o, =1
data consists of = 5000 genes,J = 2 conditions, and eijk ~ N(0,0%(zi;)) Eg. 3
K = 10 replicates. The distributions of the simulator are 01927 a2 ~T(a,B) a=1,3=0.125
b,c~U(0,tmax) tmaz = D
Vi z; ~Exp(XN)
Vi:  0; ~Ber(1 —m) Table 1. Prior and hyperprior distributions for the HEM.

Yo, =1: s; ~Rademacher (13)
Vo, =1: b; ~Beta(d, )
Vi, g ki yige~N (w5, 0% (245

bk g N (@i, 0% (@) 3. RESULTS AND CONCLUSION
the functions of the simulator are The simulation study consisted of data generation with
known parameters, Bayesian and frequentist parameter es-

Vo; = 1: VE=10%" timation, visualization of FDR estimation accuracy for all
Vo; = 1: zan=zi\/ti models (Fig. 3(a) and 3(b)), and visualization of accu-
Vo; = 1: z2=2/ Vb ’ (14) racy (ROC curves) for finding differential expression. The
Vo, = 0 Zi1=Zi2 = % simulations show, that if such exponential variance struc-
Vi, j: z;=logy(2ij) ture exists, the functional form of variance in HEM can

Vi, j: o*(zij)=a® + be= "4 be modified to better fit the data (Fig. 2), thus resulting in

] o more accurate differential expression detection (Fig).)3(c
and the parameters for the functions and distributions areTpe approximation of dependency between the variance
setto function and true expression could reduce the accuracy of
the variance fit drastically, if the amount of replicates was
small. Also, after each perumation for calculating fiig
score, the using of Bayesian estimates instead of sample
estimates would increse the performance of FDR estima-

. . . tion for the HEM variants.
So, the simulation of measurements in short: Generate

A = 1000, 7o = 0.96,
o =17, =48 . (15)
a?=0.2,b=1.0,c=0.4.

I measurements from an exponential distribution. With 4. ACKNOWLEDGEMENTS
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(a) Exponential variance fit using simulated data. The spia)
line is the simulated variance, black dots are the samplance
estimates, and light gray dots are the HEM estimates.
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(b) Exponential variance fit using replicates of E-MEXPE385
mus musculudata. The black dots are sample variance estimates,
and the light gray dots are the HEM estimates.
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Figure 2. Variance plots as functions of intensity.
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(a) FDR estimation accuracy using th&-score without variance
correction; the FDR estimations of HEM models with functibn
variance perform poorly.

FDR estimation accuracy
1 T T T T T T

t-test
0.9r HEM-constV 71
HEM-expV
08r —— HEM-HV ]
07 diagonal i

0<FDR<1

otz | . . . . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05<FDR__ <0.95
est

(b) Variance functionality taken into account; the biaseiduced.
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(c) Increasing the accuracy of variance estimation ine®#se ac-
curacy of finding differentially expressed genes. The HENhwi
exponential variance function performs somewhat bettan the
other models.

Figure 3. FDR estimation accuracy plots and ROC curves.



