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ABSTRACT

In this paper, we test and compare different data mod-
els for finding differential expression in cDNA microarray
measurements. We use Bayesian hierarchical error model
(HEM) and its variants that are derived by changing the
functional form of the original HEM variance. In addi-
tion to heterogeneous variance, we use the HEM with ex-
ponential and constant variance functions. The standard
t-test for finding differential expression is our reference
test. For both approaches, false discovery rates (FDR) are
estimated. With data simulations, we test the accuracy of
variance models and FDR estimators. The fit of exponen-
tial variance function to real data is observed as well. The
parameters for the Bayesian models are estimated using
Gibbs sampling.

1. INTRODUCTION

For different microarray technologies, data models that
try to explain sources of variation of measured expression
have been proposed (see [1] and [2]). One usual set-up for
microarray measurements is to measure gene expression
profiles of two or more biological samples under different
conditions, or expression profiles of two or more different
cell lines. The differences between the biological samples
are then assumed to be characterized by the measured ex-
pression profiles that represent expressions proportionalto
the underlying mRNA concentrations [3].

Biological and technical variations are the primary
sources of variation in the measured data. Other sources,
e.g., environmental conditions, degradation of mRNA [4],
and labeling of samples [5], also have a significant role.
Thus, without taking the high amount of uncertainty into
account, one may not be able to accurately identify, say,
differences between conditions, while increasing FDR.
Throughout the study, we (a) try to take the nature of vari-
ation in the measurements into account, and (b) estimate
FDR in finding differentially expressed genes.

In Section 2, we introduce the HEM variants, and give
the formulas for calculating FDR estimates. In Sections
2.1 and 2.2, we introduce the used data simulation meth-
ods, prior distributions, and Gibbs sampling.

2. METHODS

In this study, we assume that there are no missing values in
the data. We can therefore use the following labeling for
our data sets:i ∈ {1, . . . , I} corresponds to gene index,
j ∈ {1, 2} corresponds to biological condition, and the
replicates are denoted ask ∈ {1, . . . , K}.

Before using the expression data, we transform it into
log2-domain [3]. This is done for two reasons: the data
may contain multiplicative biases for different microarray
slides and, more importantly, the models we use assume
data to containlog-normally distributed components.

We fit the HEM to cDNA microarray expressions of
2-color cDNA microarrays; one color channel is for a bio-
logical sample under conditionj = 1, and the other chan-
nel for a biological sample under conditionj = 2. When
biological replicates are missing from the experiment,i.e.
, when only technical replicates are available, the HEM
takes the form

yijk = xij + eijk ∼ N(xij , σ
2
ij) (1)

where

xij = µ + gi + cj + rij . (2)

In Eq. 1,yijk is the observed data and in Eq. 2,µ is the
grand mean over all slides,gi is the gene effect,cj is the
condition effect, andrij is the interaction effect of gene
i and conditionj. The termeijk models the error of
the whole experiment process. Thus, the model is simi-
lar to the standard2-way ANOVA, except that HEM uses
prior knowledge for estimating unknown parameters and
does not, in general, assume constant variance. Different
ways to stabilize the variation of expression values have
been proposed [6], but one may also give the variance a
functional form; in this study, we have used the following
functions:

σ2(xij) =






σ2
ij ,heterogeneous

a2 + be−cxij ,a2, b, c, xij > 0
a2 ,b, c = 0

(3)

where the wordheterogeneousrefers to the original HEM.
In the exponential function,xij is the true expression of
the genei and conditionj, and the variance is assumed to



Figure 1. Model graph with functional variance. Ellipses
represent stochastic nodes and rectangles represent func-
tion nodes. For all the ellipses, a prior distribution is as-
signed.

be intensity-dependent. The parametersa2,b, andc need
to be estimated from the data, and ifb is negligible com-
pared toa2, or if c is close to zero, the variance shrinks
to constant, which is the special case of the model. The
assumption of functional variance complicates the depen-
dency graph of parameters in the model, which can be
seen in Fig. 1. Without the functional variance, the vari-
ance node itself would be stochastic, and no direct rela-
tionship toxij would exist. The edge between the vari-
ance and true expression, in fact, makes the model un-
hierarchical. We simplify the dependency by approximat-
ing the relationship using sample mean over the replicates
k

xij =
1

K

K∑

k=1

yijk (4)

instead ofxij . The parameters of the HEM and its variants
can be solved using, for instance, Gibbs sampling (see 2.2
for further information).

After Bayesian parameter estimation for the models,
we use hypothesis testing methods to find differential ex-
pression in the data set. For HEM models, we use the
H-score [7], a modified version ofF -statistic, and for the
t-test, we usep-values. TheH-score for genei is

Hi =
1

2

2∑

j=1

(x̂ij − x̂i·)
2

σ̂2(x̂ij)
(5)

where the hat over the letter denotes a Bayesian posterior
mean parameter estimate, and the dotted subscript denotes
averaging over that index. Since no null data is available,
i.e. , a reference data with no differential expression from
which to compute nullH-scores is missing, we simulate
such data by permuting the original data set, so that in-
dicesi ∈ {1, . . . , I} are preserved.H-scores of the null
data set is computed with

H0
ip =

1

2

2∑

j=1

(xijp − xi·p)
2

σ̂2(xijp)
(6)

wherep is the permutation index,p ∈ {1, . . . , P}, and

σ̂2(xijp) =






σ2
ijp ,heterogeneous

â2 + b̂e−ĉxijp ,exponential
â2 ,constant

. (7)

We useP = 100 permutations, and for each permutation,
we use the standard sample estimators to calculatexijp

(andσ2
ijp, if we are assuming heterogeneous variance), as

Bayesian sampling after each permutation would drasti-
cally increase the computation time. It is noteworthy, that
we have modified theH0-score calculation in Eq. 6 to take
into account the functional forms for variance. for both
theH-score andH0-score, it is crucial to use similar vari-
ance estimators, to reduce FDR estimator bias. See Fig.
3(a) for illustration of estimation bias: the actual scores
are calculated using the assumed functional model for the
variance, whereas the null scores are calculated using a
sample variance estimator for the permuted data set. The
FDR estimators for the HEM variants and thet-test (as
proposed in theR implementation document of HEM and
in [8], respectively) are

F̂DRHEM (Hj) =
π̂0R

0(Hj)

R(Hj)
(8)

and

F̂DRT (pj) =
π̂0S

0(pj)

S(pj)
(9)

where

R0(Hj) = 1
P

∑P

p=1 #i{H
0
ip : H0

ip > Hj}

R(Hj) = #i{Hi : Hi > Hj}
S0(pj) = Ipj

S(pj) = #i{pi : pi < pj}

. (10)

The#i denotes the number of values, that fulfill the terms
inside the braces fori ∈ {1, . . . , I}. The point estimates
pλn

of π0 are also calculated as in [7] and [8] using the
percentilesλn = 0.01n, n ∈ {1, . . . , 100}, but the es-
timator forπ0, the proportion of non-significant genes, is
calculated using weighted average. We use the cumulative
distribution function ofN(0.1, 0.3) to generate weights
for each percentileλn:

cλn
= Φ

(
λn − 0.1

0.3

)
, n ∈ {1, . . . , 100} (11)

The weight matrix is a diagonal matrixC =
diag (cλ1

, . . . , cλ100
), andp = [pλ1

, . . . , pλ100
]
T . The es-

timatorπ̂0 is therefore

π̂0 =
(
1

T C1

)
−1

1
T Cp. (12)

The reason for usingC, that gives more weight asn in-
creases, is to compensate the bias and variance of each
point estimate; whenn increases, the bias of point esti-
matepλn

decreases, whereas the variance increases [8].



2.1. Simulations

In the simulation study, we generate cDNA microarray
data with outliers using methods proposed in [9]. The
data consists ofI = 5000 genes,J = 2 conditions, and
K = 10 replicates. The distributions of the simulator are

∀i: zi ∼Exp(λ′)
∀i: oi ∼Ber(1 − π0)

∀oi = 1: si ∼Rademacher
∀oi = 1: bi ∼Beta(α′, β′)
∀i, j, k: yijk∼N(xij , σ

2(xij))

, (13)

the functions of the simulator are

∀oi = 1:
√

ti=10sibi

∀oi = 1: zi1=zi

√
ti

∀oi = 1: zi2=zi/
√

ti
∀oi = 0: zi1=zi2 = zi

∀i, j: xij=log2(zij)
∀i, j: σ2(xij)=a2 + be−cxij

, (14)

and the parameters for the functions and distributions are
set to

λ′ = 1000, π0 = 0.96,
α′ = 1.7, β′ = 4.8

a2 = 0.2, b = 1.0, c = 0.4.
. (15)

So, the simulation of measurements in short: Generate
I measurements from an exponential distribution. With
probability 1 − π0, a measurementi is assigned as dif-
ferentially expressed. With probability0.5 it is an over-
expression, andt is the shifting value between the condi-
tions j = 1 and j = 2. The expressions are thelog2-
transformed, and variance is generated from the exponen-
tial function, using thelog2-transformed measurements.
Finally, for each replicatek, normally distributed noise is
added.

2.2. Prior specification and Gibbs sampling

We have built the Gibbs samplers with WinBUGS
(Bayesian inference Using Gibbs Sampling for Windows)
[10]. The software is suitable for generating Gibbs sam-
plers for models, where the parameter dependencies form
a directed acyclic graph (DAG). WinBUGS can be down-
loaded fromhttp://www.mrc-bsu.cam.ac.uk/
bugs/.

The used prior and hyperprior distributions for all pa-
rameters are tabulated in Table 1. The priors are on the
left-hand side and the used parameters for the distribu-
tions are on the right-hand side. The chosen parame-
ter and distribution values are similar as in [7]. We use
Gibbs sampling posterior mean to calculate the estimates
for each parameter in the model, we generate a600-point
sample after a300-point burn-in period. We noticed, that
in this study such amount of iterations is sufficient for the
Markov chains to converge.

µ ∼ U(0, µmax) µmax = 50
gi ∼ N(0, σ2

g) σg = 1
cj ∼ N(0, σ2

c ) σc = 1
rij ∼ N(0, σ2

r) σr = 1
eijk ∼ N(0, σ2(xij)) Eq. 3

σ−2
ij , a−2 ∼ Γ(α, β) α = 1, β = 0.125

b, c ∼ U(0, tmax) tmax = 5

Table 1. Prior and hyperprior distributions for the HEM.

3. RESULTS AND CONCLUSION

The simulation study consisted of data generation with
known parameters, Bayesian and frequentist parameter es-
timation, visualization of FDR estimation accuracy for all
models (Fig. 3(a) and 3(b)), and visualization of accu-
racy (ROC curves) for finding differential expression. The
simulations show, that if such exponential variance struc-
ture exists, the functional form of variance in HEM can
be modified to better fit the data (Fig. 2), thus resulting in
more accurate differential expression detection (Fig. 3(c)).
The approximation of dependency between the variance
function and true expression could reduce the accuracy of
the variance fit drastically, if the amount of replicates was
small. Also, after each perumation for calculating theH0-
score, the using of Bayesian estimates instead of sample
estimates would increse the performance of FDR estima-
tion for the HEM variants.
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(a) Exponential variance fit using simulated data. The solidgrey
line is the simulated variance, black dots are the sample variance
estimates, and light gray dots are the HEM estimates.
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(b) Exponential variance fit using4 replicates of E-MEXP-1385
mus musculusdata. The black dots are sample variance estimates,
and the light gray dots are the HEM estimates.
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(a) FDR estimation accuracy using theH0-score without variance
correction; the FDR estimations of HEM models with functional
variance perform poorly.
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(b) Variance functionality taken into account; the bias is reduced.
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(c) Increasing the accuracy of variance estimation increases the ac-
curacy of finding differentially expressed genes. The HEM with
exponential variance function performs somewhat better than the
other models.

Figure 3. FDR estimation accuracy plots and ROC curves.


