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Abstract—Active learning methods aim at identifying measure-
ments that should be done in order to benefit a learning problem
maximally. We use Bayesian networks as models of biological
systems and show how active learning can be used to select new
measurements to be incorporated via structure priors. Improved
performance of the methods is demonstrated with both simulated
and real datasets.

I. INTRODUCTION

Bayesian networks (BN) are models often used for model-
ing, e.g., genetic regulatory and signaling networks. BNs can
be learned from multiple types of data since it is possible to
include additional datasets using structure priors, as long as
the measurement data can be transformed to prior probabilities.
This is usually possible because statistical significance of most
of the measurements can be assessed using p-values, and they
can be changed to probabilities of edges, as done e.g. in [1].

Here we are interested in selecting measurements to be
incorporated through network structure priors so that they
maximally benefit the learning of the BN model, which is
called active learning. The proposed methods and simula-
tions mimic biological experiments, where setting up the
measurements and performing them can be difficult, slow
and expensive, thus motivating selection of the measurements
carefully. The proposed methods are demonstrated to perform
better than randomly selecting experiments.

II. METHODS
A. Bayesian networks

A Bayesian network is defined as a pair (g, 6), where g is
a directed acyclic graph (DAG), which is a graphical repre-
sentation of the conditional independencies between random
variables {X1, ..., Xn}, and 0 is the set of parameters for the
conditional probability distributions of these variables. DAG g
allows factorization of the joint distribution over the random
variables as
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where Pay(X;) denotes the set of parents of node X, in g,
and 6; are the parameters for the distribution of X; conditional
on its parents.

Structure learning tries to identify the BN structure of
the network that most probably generated the data. Thus,
the aim is to find the DAG (or a set of DAGs) with the
highest posterior probability given the data, which is given
as P(g|D) = P(D|g)P(g)/P(D), where P(g) is the prior
probability of g, P(D) = ., P(Dl|g') P(g) is the prior
probability of data (summing over all possible DAG struc-
tures), and P (Dl|g) = [, P (Dlg,0) P (6g) df.

Often the goal in structure learning is to find a single best
network that maximizes the posterior probability and would
represent the underlying true network as well as possible.
However, for most applications (like prediction) it is gener-
ally more reasonable to instead utilize the whole posterior
probability distribution and to perform a Bayesian analysis.
Though exhaustive evaluation of the posterior distribution is
possible for only the smallest structure spaces (say N < 6) due
to number of DAGs growing super-exponentially with number
of nodes, sampling from posterior distribution is possible with
Markov chain Monte Carlo (MCMC), which is utilized also
in our study.

B. Active learning

Active learning methods aim at choosing which queries or
measurements should be done next, given the current data,
so as to learn as efficiently as possible. Such methods are
of particular interest in scenarios where measurements can be
difficult and/or expensive to make.

We separate between two types of data: one we call ex-
pression data but instead of gene expression values it can
as well be any other kind of data about the state of the
nodes, e.g., concentrations of the molecules represented by the
nodes, and the other type of data we call binding data, which
measures (regulatory) relationships between nodes, i.e. gives
more direct evidence for the edges of the network. The type of
binding measurements we consider here is such that doing a
measurement for node is actually measuring all outward links
from this node. Such measurements could be, e.g., chromatin
immunoprecipitation sequencing (ChIP-seq) for transcription
factors or protein interaction measurements.

In learning BN structure from purely expression type of
data, it is generally not possible to find the correct BN



structure with only observational data but instead perturbations
to (some of) the node states are required in order to break
so called equivalence classes, which are comprised of more
than one structure producing the same combined probability
distribution. On the other hand, structure priors are another
way of breaking equivalence classes, which is what happens
in the scenario of this study.

Methods of active learning have been presented for BN
structure learning by utilizing expression type of data, such
as in [2], [3], [4], [5]. Learning from binding type of mea-
surements has been studied e.g. in the context of protein-
protein interactions, such as [6], but not in BN context. Next
we present two methods suited for this.

C. Active learning through structural priors

Binding information is included through the prior and
expression data is included through the likelihood as usual.
The posterior probability of a graph structure g is thus
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where D is the expression data and A is the adjacency
probability matrix (i.e., A(i,j) = P(n; — n;)) that is used
in constructing the prior P(g|A) over DAG structures, which
we define as follows
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We assume no other prior information is available about the
structure so initially all the elements of A are 0.5.

The utilization of additional binding data goes in principle
as follows: 1) selection of node i for which measurement
is done, 2) obtaining measurement vector ¢; (containing p-
values), 3) updating probabilities of edges based on the p-
values, and 4) updating P(g|A) by incorporating the new
calculated probabilities to A. Active learning tries to address
step 1) so as to make the learning maximally beneficial.

The binding measurements are assumed to be given as p-
values. Carrying out a measurement for node 7 thus gives a
vector ¢; = [pi1 pi2 -+ Pin|, Where p;j is the p-value of
measurement of binding of gene 7 to gene k.

As in [1], we assume the measurement p-values to be
exponentially distributed in case the edge is found in the
underlying network structure and, by definition, uniformly
distributed if the edge is not present:
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The measurements p; j, can be assumed to be independent
of D, A and each other so
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After an observation ¢;, the values of A can be updated by
calculating the probability of an edge from a p-value in the
same way as in [1]:
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where o = A\e™*Pii and B = P(n; — n;) is the prior of
an edge (i.e., before observation) and marginalization over the
scale parameter A is done to avoid selecting only a single
value. The integral must be solved numerically, for which we
use recursive adaptive Simpson quadrature.

Probability of a structure after observing a new binding
measurement is given by

d), (10)
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where A is A where A(i, j),Vj € {1... N} have been updated
with ¢; using (10).

1) KL method: We utilize the approach in [2], which
was presented for gene expression data, and modify it to
cover binding measurements. Selection of the most “valuable”
node to be measured is made based on the maximal ex-
pected Kullback-Leibler divergence between the distributions
of graph structures before and after the measurement, i.e.,
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where V,,, denotes the set of nodes available for measurement.
The calculation of this equation cannot be done analytically so
we use a numerical solution, namely Monte Carlo integration.

2) Entropy minimization method: As the inference of net-
work structure can be seen to aim at minimizing uncertainty
about presence of edges, we decided to simply choose the node
for which the sum of entropies for outward edges is highest,
ie.,

N
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where P(ni — n;) are the posterior probability estimates for
the edges estimated from the sampled DAGs.

This method is very fast to evaluate but on the downside
the selection of the measures node is not guaranteed to be the
one minimizing global entropy maximally. This problem is



due to dependencies introduced by acyclicity constraints. For
example, if measuring node 7 and thus receiving probability for
edge ¢ — j, we would need to set P(j — i) to 1 — P(i — j)
in matrix A. However, in biological systems cycles are very
common so doing this is likely to cause worse performance
than leaving the priors of unmeasured nodes untouched and
we therefore use the approximate method.

III. RESULTS

A. Simulated gene regulatory networks

To test the performance of the two active learning methods,
we generated random networks with 8 nodes and random
parameters. Both 30 simulated gene expression measurements
as well as artificial ChIP-seq measurements for all nodes were
generated. To get an estimate for the “true” edge posterior
probability, we used MCMC with burn-in of 2,000,000 and
sample size of 25,000 DAGs. The simulated learning pro-
cedure consisted of initial learning with MCMC using only
the expression measurements (burn-in 200,000, sample size
5,000). This sample was then given to both active learners,
which suggested nodes to be measured and after measurement
the samples were updated with the new data. To measure the
performance of the active learners, L1 error is used, which is
calculated as in [2], [3]
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where P;(-) = P(-|Dy.;) is the posterior marginal probability
of an edge given data points up to index ¢, and I - (z) is the
indicator function which takes value 1 if x is present in the
true structure g* and O otherwise.

Results over 100 iterations are shown in Fig. 1 and Fig. 2,
which demonstrate that active learning can achieve a consistent
improvement in learning the BN network structure. Results
with other node counts N were similar and in general the
differences between the results of KL and entropy methods
were small.

B. Signaling network

As another slightly different test case we used phosphopro-
tein measurements from [7], which are made from a signal-
ing network of 11 proteins. From the dataset we randomly
selected 100 observational datapoints as the initial data. As
the “true” network we used the maximum a posteriori DAG
obtained by learning using the whole dataset. High-throughput
“binding” measurements for signaling networks correspond to
measurements of protein-protein interactions, which can be
obtained e.g. using mass-spectrometry based protein-protein
interactions using tagged proteins as baits. In this case the
data being generated is not directional but just tells that the
proteins interact. Therefore we generated the binding data so
that A(7,j) = A(j,4) for every true edge n; = n; € g.
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Fig. 1. L3 median errors for the KL method from 100 runs, each with a
random true DAG having 8 nodes and random parameters.
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Fig. 2. L1 median errors for the entropy method from 100 runs, each with
a random true DAG having 8 nodes and random parameters.

As the network has 11 nodes and using KL method proved
quite slow, Fig. 3 and Fig. 4 present results only for the
entropy method. Performance of active learning was measured
calculating Euclidean distances between the current edge pos-
terior probabilities and the “true” ones estimated using the
whole dataset. Parameters for the MCMC simulations were as
follows:

o edge posterior probability estimation: burn-in 500,000,

sample size 50,000

o initial learning: burn-in 500,000, sample size 10,000

o update rounds: burn-in: 50,000, sample size 10,000.

As with simulated data, active learning for signaling network
data via structure priors provides substantial improvement in
learning performance.

Although on average the utilization of active learning meth-
ods result in improved learning (Figs. 1-4), they are not
guaranteed to do so all the time, given randomness in data.
Fig. 5 shows difference of L; errors between a random and
active learner. Even though the vast majority of trajectories
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Fig. 3. L1 median errors for the entropy method from 100 runs, for the PPI
network.
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Fig. 4. Edge posterior probability median errors from the same 100 runs as
in Figure 3.

show better performance for active learning, there are still
some that do worse at least during some measurements.
Nevertheless, active learning achieves better expected learning
performance.

IV. CONCLUSION

Reducing the amount of resources needed for obtaining
useful information about a (biological) system is the main
motivation for active learning methods. We presented how
active learning can be utilized with the ability of Bayesian
networks to incorporate additional measurements through
structure priors.

The problems associated with acyclicity are an obvious
limitation for learning many types of biological networks and
also methods presented here. These problems can be overcome
by considering dynamic Bayesian networks (DBNs) but a
problem with applying them to biological problems is the
scarcity of time-series data. Even though learning DBNs from
static data has been studied [8], we decided to utilize static
BN due to greater applicability.
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Fig. 5.
mean.

L1 error differences for the iterations in Fig. 3. Black line is the

The simulated binding measurements give data for all out-
ward edges at the same time. Using data from measurements
where only a selected edge is probed at a time (such as yeast
two-hybrid assays) is easy to include with small modifications.
Combining both expression-type measurements and binding
measurements in active learning is also easily possible in
our framework but requires a cost function for both types of
measurements.
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