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ABSTRACT

One of the most important regulation steps of gene expres-
sion is transcriptional regulation, which is to a large extent
controlled by transcription factors binding to DNA. Many
models of transcription factor binding have been proposed
but most of them model binding of a single transcription
factor at a time. Existing prediction methods for multiple
TFs base mainly on searching for clustered binding sites
or cis-regulatory modules. We have developed a proba-
bilistic model that predicts simultaneously binding of sev-
eral transcription factors. Our method considers the tran-
scription factor binding process as a competition between
factors which is realistic from the biological point of view.
Modeling results show a remarkable improvement com-
pared to the cases where individual binding prediction re-
sults of separate TFs have been combined.

1. INTRODUCTION

Gene expression is regulated in several steps of which
transcription regulation is one of the most important ones.
Thus, understanding the transcription factor (TF) bind-
ing on DNA is of great importance as it is the main step
in transcription control. Existing methods such as chro-
matin immunoprecipitation-chip (ChIP-chip) or -sequenc-
ing (ChIP-seq) techniques allow us to study TF binding
experimentally. Nevertheless, these methods allow to study
binding of only one TF at a time in certain conditions. Fur-
ther, experimental methods are time consuming and can-
not be used to screen all TFs because specific antibodies
do not exist. As a consequence, predicting transcription
factor binding sites (TFBSs) computationally is important
in order to understand the whole transcription and gene
expression regulation processes.

Many TFBS prediction methods exists but most of them
predict the binding sites of only a single TF at a time.
This kind of prediction methods perform usually with a
good sensitivity but they lack specificity and, thus, give a
large set of false TFBS predictions. This makes it hard
to determine the real binding sites, especially because the
real TFBS can be strong or weak ones. Further, transcrip-
tion of a single gene is controlled by several TFs and thus
one needs to perform individual prediction for each of

these regulating TFs — this complicates the problem fur-
ther and increases the number of false positive predictions.
However, predicting individually the binding of each TF
is not realistic as it does not consider the interactions be-
tween different proteins and other molecules present in
the cell. These other factors can interrupt already bound
TFs or they can prevent binding of some TFs even though
it has a strong affinity to its binding site. Thus predict-
ing the binding of all different TFs at the same time al-
lows considering DNA binding as a competition between
the factors and mimics the biology in the cell better than
combining the predictions of individual predictions.

In addition to the methods for predicting a single TF
at a time, some models predicting TFBS of multiple TFs
also exist. These methods can usually be divided into
two categories [1]. As two different methods presented in
[2, 3], the first category consists of methods that search for
TFBS that are located close to each other. The basic prin-
ciple behind this kind of methods is the fact that proximal
binding sites makes the interactions between TFs possi-
ble which is can be essential for the transcription process.
The second category of methods search for so called cis-
regulatory modules which are clusters of binding sites of
cooperative TFs. This kind of methods are presented for
example in [4, 5].

In this paper, we propose a new method that predicts
TFBS of several TFs simultaneously. This method builds
on the standard probabilistic sequence specificity mod-
els, combines them into an integrated model and makes
Bayesian inference for binding sites [6]. Modeling results
show remarkable improvement compared to the cases where
the individual prediction results of separate TF binding
have been combined.

2. METHODS

We formulate a probabilistic model for competitive TF
binding prediction. The goal is to develop a realistic model
that takes into account simultaneous binding of several
TFs to the same DNA sequence and hence explicitly model
competition of binding sites by several TFs. Instead of us-
ing deterministic binding sites, our approach makes use of
the known fact that almost all TFs can bind to any DNA



sequence stretch, the strength of binding being determined
by the sequence affinity of each TF. Thus, the method au-
tomatically models both weak and strong binding sites,
both of which are known to be important for transcrip-
tion regulation. Our modeling framework is probabilistic
and all quantities and phenomena, including the TF bind-
ing itself, can be answered in terms of probabilities which
naturally represents our belief in TFBSs.

First, we model the binding ofm TFs to a wholeℓ-
length promoter sequenceS = (S1, . . . , Sℓ), whereSi ∈
{A, C, G, T}. Binding affinity of each TFi is represented
by a position specific frequency matrix (PSFM)Θi and
non-binding sites are represented by the standardd-order
Markovian background modelφ (we used = 3). PSFMs
for m TFs are collectively denoted byΘ = (Θ1, . . . ,Θm).
To model binding of multiple TFs simultaneous, letA =
{a1, . . . , ac} denote the starting positions ofc non-over-
lapping binding sites onS, and vectorπ = (π1, . . . , πc)
specifies the numerical labels of bound TFs (i.e.,πi ∈
{1, . . . ,m}). Using these definitions alone, it is straight-
forward to compute the conditional probability of a se-
quenceP (S|A, π,Θ, φ).

Instead of the standard frequentist computation, we
implement a Bayesian alternative that associates the PSFMs
and the Markovian background model with Dirichlet pri-
ors, integrates out the model parameters and computes the
posterior binding probability of the given TFBSsP (A, π|S)
∝ P (S|A, π)P (A, π). Instead of searching for the max-
imum a posteriori (MAP) binding site configuration, we
compute Bayesian posterior probabilities for all TFBS lo-
cations, resulting in the full posteriorP (A, π|S) over A

andπ. We sum the probabilities of relevant locations as

P (“TF k binds the promoter sequenceS”) =
∑

(A,π)∈Ak

P (A, π|S), where

Ak = {(A, π) : ∃i : πi = k}.

This gives a straightforward way of computing posterior
binding probabilities for any TF-promoter pair. Note that
although binding sites are non-overlapping for a fixed(A, π),
in the above equation we sum over all possible pairs(A, π).
In other words, for a promoterS, we consider all possi-
ble numbers of binding sites in any possible configura-
tion. This implicitly takes into account the possibility that
two or more TFs can bind the same genomic location but
binding cannot happen simultaneously (i.e., competition
for the binding sites).

Direct computation of the Bayesian probability for all
TFBS locations is intractable. To this end, we devise our
model with a flexible Markov chain Monte Carlo (MCMC)
estimation method. This model allows modeling compet-
itive binding of any number of TFs to DNA. We use a
similar Metropolis Hastings (MH) algorithm as in [6] but
adapted to the problem of multiple TFs. The MH algo-
rithm iteratively proposes to either add a new TFBS or
delete an existing TFBS, and the proposed moves are ac-
cepted with the probability that satisfies the detailed bal-
ance condition.

SP1
cEBP

TBP
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-100              -75              -50               -25              TSS

Figure 1. Known binding sites for mouse leptin (U36238)
promoter. TSS=transcription starting site.

The test set used in the study was obtained by filter-
ing the test set used in [6]. This test set was collected
from ABS [7] and ORegAnno[8] databases. To get a test
set suitable for this study, we removed the sequences for
which we had only one binding site or the PSFMs for the
TFs were known only for one TF. After this we had 29
promoter sequences. Promoter sequences were cut 50 nu-
cleotides before the first known TFBS and 50 nucleotides
after the last one. The lengths of sequences varied be-
tween 110 and 1322 nucleotides.

We collected a set of non-redundant PSFMs from
TRANSFAC [9] (Release 10.3) which were used to con-
struct the Dirichlet priors for the TFs. For the 29 promoter
sequences,m = 27 different TFs had binding sites and
this TF set was used for every promoter. Note that, for a
specific promoter, this set typically contains several TFs
that do not bind the promoter. Markov model parameters
were estimated from an additional set of250 nucleotides
long upstream non-coding sequences (both strands) [6].

3. RESULTS

We computed the TFBS predictions for our test set with
our competitive model integrating all 27 TFs in one pre-
diction and compared the results with the results where in-
dividual predictions for each TF [6] were combined. The
results showed remarkable improvement as with combined
individual predictions one got many TFs to bind to the
same DNA sequence which is usually physically impos-
sible. An example shown in Figure 1 illustrates a part of
the mouse leptin promoter and its known TFBSs. Three
different TFs are known to bind to this promoter, SP1
to region -100/-95 (relative to transcription starting site),
cEBP to region -58/-28 and TBP to the region -33/-28
[10]. Other TFs also have high affinity to the cEBP bind-
ing site, namely MYB, SP1 and TEAD.

Binding predictions for the region -145/-1 of the leptin
promoter are shown in Figure 2 which show the TFBS pre-
dictions for those TFs that are known to have binding sites
on the promoter or are predicted to bind. With individual
predictions, one predicts right the SP1 binding site but for
cEBP binding site predictions suggest that in addition to
cEBP, also MYB, SP1 and TEAD could indeed bind this
site (see Figure 2a). Note well that combining individ-
ual predictions for several TFs generates a complicated
end result where a number of TFs bind to the gene pro-
moter, and the problem becomes increasingly severe with
the increasing number of TFs. This problem is one of the



Figure 2. Predictions for mouse leptin promoter. Predic-
tions are presented for those TFs that bind with affinity
more than 0.1. Known binding sites are shaded. a) Indi-
vidual predictions b) Competitive model.

reasons why traditional TFBS prediction methods have
an overwhelming number of false positives. When using
the proposed model which explicitly models competitive
binding, the binding of cEBP is predicted correctly (see
Figure 2b). Perhaps more importantly, with competitive
model one also gets only two false TFBS predictions (and
few very weak binding sites) whilst with combined indi-
vidual predictions there exists over ten false TFBS predic-
tions and it is impossible to say which of them are correct.
Either of the methods could not predict TBP’s binding site
which is most probably because of an incompatible bind-
ing specificity model. With other sequences the results
were similar. Combined individual predictions showed
the same binding site predictions than the multiTF but also
a large number of other predictions that overlapped and
contradicted.

We have also evaluated the comprehensive usefulness
of our methods with receiver operating characteristic curv-
es (ROC) and the area under the curve (AUC). The ROC
curves (in Figure 3) show a large improvement in the per-
formance of the competitive method relative to the com-
bined individual predictions. Especially with small false
positive rates (FPR) (which are the most preferable ones)
the competitive method show to be far more discrimina-
tive from the random case than the individual predictions.
The same result can be found from the AUC scores in Ta-
ble 1. For FPR 0.1 the AUC of the competitive model is
over 40% bigger than that for combined individual pre-
dictions. In Figure 3 and in Table 1 are also presented the
values and plots for predictions that are obtained by nor-
malizing the sum of the individual prediction affinities to
be at most one.

4. CONCLUSION

In this paper, we have presented a probabilistic method
for predicting the binding of many TFs simultaneously.
Our probabilistic method assumes that TFs compete for
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Figure 3. ROC curves for different methods. Only binding
for promoter matters.

the binding on DNA, which mimics the situation in the
cell. Our method provides a useful tool when predicting
the regulating set of TFs. With the method realistic pre-
diction results are achieved even though the set of TFs reg-
ulating a given gene is not known. To a large extent, this
method overcomes the standard problems in TFBS predic-
tion, such as a considerable amount of false positives and
overlapping TFBSs.

Our method is also applicable in the situations when
some knowledge of binding conditions is available. One
can use in prediction only those TFs that are known to
regulate the gene or those that are known to be present
in the cell, for example results of protein or expression
microarrays can be added to the model. At the moment
one can add this information only by varying the set of
TFs included in the prediction but in the future adding the
TFs’ concentration information to the model would give
more accurate predictions. However, if some preferences
of sequence positions are known (for example, if some po-
sition in sequence is known to be inaccessible), these can
be added to the prior of the model as is done in [6]. With
similar data integration one can integrate the knowledge of
existing TF-DNA interactions or nucleosomes from ChIP-
chip or ChIP-seq measurements as this kind of informa-
tion improves the de novo motif discovery [11]. In the
future, the existing protein-protein interactions will also
be integrated into the model.

Our modeling results showed also some problems such
as some of the binding sites were not found at all. We used
TRANSFAC data to construct the priors for the PSFMs.
Although our method implements Bayesian computation,
prior information for some TFs can be too weak or even
wrong. Besides, the quality of PSFMs varies significantly
which can lead to weak binding affinities for some of the
TFs. However, the binding affinity can be increased a
lot by incorporating protein-protein interactions and by
removing other interfering factors. To get more precise
prediction results, more accurate knowledge of binding
specificity in different conditions is needed. Such knowl-



Table 1. AUCs, when only binding for promoter matters.
False positive rate 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Individual 0.0127 0.0253 0.0421 0.0651 0.0919 0.1214 0.1524 0.1865 0.2228
Individual normalized 0.0104 0.0237 0.0412 0.0644 0.0904 0.1194 0.1503 0.1845 0.2213

Competitive model 0.0185 0.0370 0.0606 0.0884 0.1179 0.1513 0.1849 0.2201 0.2578

edge can be achieved for example with protein binding mi-
croarray technique that covers all binding sites of a given
length [12].
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