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ABSTRACT

The two main interests in gene expression data, differen-
tial expression and transcriptional regulatory effects, are
usually difficult to separate from each other. We propose
a method for decomposing observed gene expression data
into i) a part explainable directly by transcription factor
(TF) mRNA level, and ii) a part attributable to other ef-
fects induced by experimental setting. The method fits a
Bayesian hierarchical linear model to the expression data
given prior information about transcriptional regulatory
mechanisms. Our primary source of prior information
are TF binding probabilities, derived from a probabilistic
model for TF binding to gene regulatory sequences. The
proposed method can be easily extended to include ad-
ditional and other types of prior information (ChIP-chip,
other gene expression data), and the same modeling frame-
work can be used to make inference regarding a large va-
riety of questions. Simulation results show that, relative
to standard approaches, the proposed method can better
detect regulatory relations and that it is also able to dis-
tinguish general differential expression from the effectsof
direct regulatory mechanisms.

1. INTRODUCTION

Detection of differential gene expression induced by the
chosen experimental setting is the primary focus in most
microarray gene expression studies. In addition to pure
differential expression, key interests are the gene regu-
lation effects taking place during the experiment. While
gene regulation can happen in various stages, one of the
most important of these stages is direct transcriptional reg-
ulation by transcription factor (TF) proteins. Approxi-
mate protein levels of TFs can in principle be monitored
through the expression levels of the genes coding the fac-
tor proteins. However, estimating these regulatory effects
from gene expression data is not a trivial task. The most
important challenges include problems in estimation due

to small number of samples, regulatory relations is con-
founded with co-expression of genes and TFs, and differ-
ential expression of a gene might be induced by other TFs
than the known regulating TFs.

Discovering regulatory relations from high-throughput
gene expression data has been in focus since the emer-
gence of microarrays. The earliest and most common at-
tempts for finding relations between genes were based on
detecting genes with similar behaviour in the experiments
[1]. Naturally, this results in a set of genes consisting
both the regulators, the target genes, and the co-expressed
genes with no means to distinguish between them. More
focused approaches have been presented as well which
rely on prior knowledge about the potential regulators. For
example, Bayesian networks have also been applied to es-
timate regulatory relations between a set of known TFs
and the rest of the genes as groups (see [2]). However,
practically all these approaches by-pass the actual interest
of a single microarray gene expression experiment: differ-
ential expression in the given situation.

Statistical models for differential expression range from
early fold-change based approaches to classical ANOVA
based models, and their Bayesian variants (see [3, 4]).
But, analogously to regulation models, differential expres-
sion models largely disregard the estimation of the regu-
latory effects.

We propose here a model that integrates gene expres-
sion data with transcriptional regulatory knowledge, such
as transcription factor binding site location information.
Using the binding probabilities from a probabilistic model
for transcription factor binding to gene promoter region
as a prior, the proposed model can in principle distinguish
which genes are transcriptionally regulated by known TFs
in any given experiment, based on the observed expression
data. In particular, the model is capable of distinguishing
whether some known, differentially expressed TF is caus-
ing its target genes to be differentially expressed in the



given experiment. In addition, the model is able to dis-
cover differential expression of target genes due to other
reasons than the known TF, in case the regulatory TF is
not differentially expressed. The model is formulated in
Bayesian framework enabling a natural way to handle the
uncertainty in the data and small sample size problem.

The results show that the proposed model can detect
regulatory relations taking place during the experiment
more efficiently than mere co-expression based approaches,
and at the same time detect differential expression induced
by the experiment.

2. METHODS

Our approach is closely related to a Bayesian hierarchical
model for gene expression allowing heterogenous errors
(HEM) [4]. HEM separates the technical noise from the
biological noise, and is shown the perform favorably in
the analysis of gene expression data. We extend the stan-
dard HEM by incorporating an additional regression term
that allows explicit modeling of direct transcriptional reg-
ulation. Further, the regression term allows to incorporate
prior knowledge about transcriptional regulation into the
hierarchical error model. The prior information can come
from a variety of different sources, such as sequence-based
TF binding predictions [5], ChIP-chip data [6], other gene
expression data.

We propose to model the observed expressionyi,j,k

for ith gene,jth condition, andkth replicate with a linear
model as

yi,j,k = µ + gi + dj + ri,j + ai · zi · xTF,j + ǫi,j,k, (1)

whereµ is the general mean,gi is the effect ofith gene,dj

is the effect of thejth condition,ri,j is their joint effect,
zi ·ai ·xTF,j describes the regulatory effect of the given TF
with TF’s expression levelxTF,j = µ+gTF +dj +rTF,j ,
regulation strengthai and a binary indicatorzi of whether
the TF regulates theith gene. The residual variance is
described withǫi,j,k. For the expression measurements of
the TF we use the same model but without the regression
term, i.e.yTF,j,k = xTF,j + ǫi,j,k.

We assume the following prior distributions with fixed
parameters:

µ ∼ N(µµ, σ2
µ) (2)

gi, gTF ∼ N(µg, σ
2
g) (3)

dj ∼ N(µd, σ
2
d) (4)

ri,j , rTF,j ∼ N(µr, σ
2
r ) (5)

ai ∼ N(µa, σ2
a) (6)

zi ∼ Bernoulli(θi) (7)

ǫi,j,k ∼ N(0, τ2
i,j) (8)

τ−2
i,j , τ−2

TF,j ∼ Gamma(α, β). (9)

Note that the error variance is allowed to be heteroge-
neous, i.e. different for each gene and condition. Prior
information about transcriptional regulation can easily be
incorporated viaθi parameters. The proposed model is

Figure 1. A graphical representation of the proposed
model. The boxes indicate loops over samplesi, condi-
tionsj, and replicatesk.

able to analyze only one TF at a time. The graphical
model is presented in Figure 1.

The unknown model parameters are estimated with
Gibbs sampling in WinBUGS [7]. Convergence to the
posterior is assessed using the potential scale reduction
factor method of Gelman et al. [8]. Posterior mean is used
as the final estimate for each parameter.

3. RESULTS

In simulations, our primary aim is to demonstrate that the
proposed model can detect the regulatory relations based
on prior information. The proposed model is also com-
pared to a simplified HEM [4], where the hierarchy dis-
tinguishing technical noise from the biological noise has
been dropped away. Note that the error hierarchy could be
added analogously to both models.

The proposed model is tested with simulated data gen-
erated from a model similar to the proposed model. We
consider a model that consists of 100 genes (i), 2 condi-
tions (j) and a single TF. The Gibbs sampling is initial-
ized with sample mean values and is run for 1000 burn-in
steps after which a sample of size 2000 is collected. The
potential scale reduction factor convergence diagnostic in-
dicates that this is typically sufficient for the Gibbs sam-
pling to converge. Parameters are set as follows:µg =
µd = µr = µa = 0, σ2

µ = 100, σ2
g = 1, σ2

d = 1, σ2
r = 1,

σ2
a = 1, α = 1, β = 0.5. For theµµ parameter we

use the empirical sample mean of all the measurements.
Data is generated from the above model (priors) except
that µ = 0 andai = ±1.5, the additive noiseǫ is sam-
pled from the standard normal, and 10% ofzi terms are
uniformly randomly set to 1, others are 0. In the first sim-
ulation we assume to have three replicates (k) and vary
θi ∈ {0.5, 0.55, 0.6, 0.65} for thosei that corresponds to
the underlying regulatory mechanisms (i.e., truezi = 1)
and θi ∈ {0.5, 0.45, 0.4, 0.35} for the others (i.e., true
zi = 0). In the second simulation we setθi = 0.5 for all i
and vary the number of replicatesk ∈ {2, 3, 5, 10}. Both



simulations are repeated 50 times and average results are
reported. Each individual simulation with 100 genes and
varying number of replicates takes only about (on the or-
der of) minutes to run in WinBUGS and, thus, the method
should be fast enough to analyze thousands of genes.

Figure 2 (a) shows how the proposed model can de-
tect the true regulatory relations from the simulated data
with varying degrees of prior information. For the receiver
operating characteristic (ROC) curves the potential target
genes for the TF are estimated by ranking the genes based
on the absolute magnitude ofai · zi term (averaged over
posterior samples). The same figure additionally com-
pares the performance of the model to a naive approach
where the regulatory relations are estimated by computing
the correlations between the estimated TF expression and
all the other genes’ expression measurements and picking
the most strongly correlating genes as potential targets for
TF regulation. While the comparison is slightly artificial,
it serves as demonstration about the potential of principled
data fusion approaches.

Figure 2 (b) demonstrates that as the number of repli-
cates increases the model performance increases as well.
This provides further evidence about the correct function-
ing of the model, but on the other hand also reveals in
part that it is somewhat prone to small sample sizes. Fig-
ure 2 (b) also suggests that prior information can be more
valuable than having more replicates of expression mea-
surements.

The second important difference of the proposed model
to the simplified HEM is its ability to detect differential
expression that is confounded by a strongly regulating TF.
In the proposed model the termrij captures the changes
in gene expression due other reasons than the potential
regulating TF. Since the comparison model, the simplified
HEM, does not take into account any direct regulation,
its estimates ofrij should be erroneus in the cases where
there some confounding TF regulator is present. Figure 3
presents the difference between the estimates ofrijs from
the proposed model and the comparison model in such
cases.

4. DISCUSSION

We have proposed a statistical model for gene expression
that can estimate separately the expression changes due
to TF regulation, and the expression changes due to other
reasons (unknown regulators etc.) The model is formu-
lated in Bayesian framework and integrates the knowledge
of about the potential regulators as prior data. We showed
with simulated data that the model i) detects the true reg-
ulatory relations better than simple alternatives, and ii)is
able to estimate the differential expression better than the
comparison models in the presence of the confounding TF
regulation. When there is no TF regulation present the
proposed model performs equivalently to the comparison
model.

The key aspect of the model is its ability to integrate
prior data, such as one that describes binding probabilities
of the TF proteins to the promoter regions of the genes.
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Figure 2. ROCs presenting the effect of (a) the prior
strength and (b) the sample size to the model’s ability to
detect the true regulatory relations, in comparison to a co-
expression based model.

Since the mechanism of integration of prior information
is desigend to be as simple as possible, model is versa-
tile enough to incorporate many kinds of binding informa-
tion, including for example ChIP-chip data and sequence
based computationally derived binding probabilities. In
particular, in the next stage, the proposed model is going
to be extended to utilize a novel probabilistic model pro-
viding binding probabilities based directly on the TF mo-
tifs and promoter sequence. Since the promoter sequence
is known practically for every gene for which expression
can be measured, this will enable the discovery of regula-
tory relations for any TFs whose motifs are known, in the
given experiment.

The priors we have used here represent sensible but ar-
bitrary choices. It is clear that they have strong effects on
the estimates, especially regarding the discovery of regu-



(a) The proposed model (b) The comparison model (c) Difference

Figure 3. The better ability of the proposed model to estimate differential expression in the presence of a confounding TF
regulation, in comparison to the simplified HEM. Subfigures (a) and (b) show the errors in estimates from the proposed
model and the comparison model for varying levels of regulation and expression changes due to other reasons (the true
rij ). The figures reveal the errors inrij are smaller for the proposed model than for the comparison model. Both models
also make some errors in the high absolute values of truerij , which is due to selected prior centered around value zero.
Subfigure (c) emphasizes how the difference between the models is largest when there is either a large positive or negative
TF regulation present by showing directly the difference between the estimates of the models. Note also that the difference
between the models’ estimates is zero when the true regulatory effect is zero. The estimates are computed from simulated
data sets including five replicates, by averaging over posterior samples and by fitting a plan for visualization purposes.

latory relations, but also with respect to other parameters.
In the next stage the model will be validated more thor-
oughly for suitable prior distributions.

While this work focused on studying the functionality
of the new model as such, the next stage will be applying
the model to real gene expression data with real prior in-
formation about the binding probabilities of TFs to gene
promoter regions.
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