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ABSTRACT to small number of samples, regulatory relations is con-

The two main interests in gene expression data, di1’“feren—f0unded with co-expression of genes and TFs, and differ-

tial expression and transcriptional regulatory effects, a ential expression of a gene might be induced by other TFs
usually difficult to separate from each other. We propose than the known regulating TFs.
a method for decomposing observed gene expression data  Discovering regulatory relations from high-throughput
into i) a part explainable directly by transcription factor 9ene expression data has been in focus since the emer-
(TF) mRNA level, and ii) a part attributable to other ef- 9ence of microarrays. The earliest and most common at-
fects induced by experimental setting. The method fits a teémpts for finding relations between genes were based on
Bayesian hierarchical linear model to the expression datadetecting genes with similar behaviour in the experiments
given prior information about transcriptional regulatory [1]- Naturally, this results in a set of genes consisting
mechanisms. Our primary source of prior information both the regulators, the target genes, and the co-expressed
are TF binding probabilities, derived from a probabilistic 9enes with no means to distinguish between them. More
model for TF binding to gene regulatory sequences. Thefocused approaches have been presented as well which
proposed method can be easily extended to include adJely on prior knowledge about the potential regulators. For
ditional and other types of prior information (ChIP-chip, €Xample, Bayesian networks have also been applied to es-
other gene expression data), and the same modeling framdimate regulatory relations between a set of known TFs
work can be used to make inference regarding a large va-@nd the rest of the genes as groups (see [2]). However,
riety of questions. Simulation results show that, relative Practically all these approaches by-pass the actual sttere
to standard approaches, the proposed method can bette?f @ Single microarray gene expression experiment: differ-
detect regulatory relations and that it is also able to dis- €ntial expression in the given situation.
tinguish general differential expression from the effedts Statistical models for differential expression range from
direct regulatory mechanisms. early fold-change based approaches to classical ANOVA
based models, and their Bayesian variants (see [3, 4]).
1. INTRODUCTION But, analogously to regulation models, differential exgare

Detection of differential gene expression induced by the Sion models largely disregard the estimation of the regu-
chosen experimental setting is the primary focus in most latory effects.

microarray gene expression studies. In addition to pure  We propose here a model that integrates gene expres-
differential expression, key interests are the gene regu-sion data with transcriptional regulatory knowledge, such
lation effects taking place during the experiment. While as transcription factor binding site location information
gene regulation can happen in various stages, one of thdJsing the binding probabilities from a probabilistic model
most important of these stages is direct transcriptiormgl re  for transcription factor binding to gene promoter region
ulation by transcription factor (TF) proteins. Approxi- as a prior, the proposed model can in principle distinguish
mate protein levels of TFs can in principle be monitored which genes are transcriptionally regulated by known TFs
through the expression levels of the genes coding the fac-in any given experiment, based on the observed expression
tor proteins. However, estimating these regulatory effect data. In particular, the model is capable of distinguishing
from gene expression data is not a trivial task. The mostwhether some known, differentially expressed TF is caus-
important challenges include problems in estimation due ing its target genes to be differentially expressed in the



given experiment. In addition, the model is able to dis- -~
cover differential expression of target genes due to other
reasons than the known TF, in case the regulatory TF is
not differentially expressed. The model is formulated in
Bayesian framework enabling a natural way to handle the
uncertainty in the data and small sample size problem.
The results show that the proposed model can detect
regulatory relations taking place during the experiment
more efficiently than mere co-expression based approaches el
and at the same time detect differential expression induced 7 7
TFIK

gTF

estTF([] !

TauTF el

by the experiment. i D!
2. METHODS g

for(jIN 1:J)

Our approach is closely related to a Bayesian hierarchical
model for gene expression allowing heterogenous errors
(HEM) [4]. HEM separates the technical noise from the
biological noise, and is shown the perform favorably in
the analysis of gene expression data. We extend the stan
dard HEM by incorporating an additional regression term
that allows explicit modeling of direct transcriptionagre
ulation. Further, the regression term allows to incorporat gpje to analyze only one TF at a time. The graphical
prior knowledge about transcriptional regulation into the \,q4el is presented in Figure 1.

hierarchical error model. The prior information can come The unknown model parameters are estimated with
from.a vgriety of_differentsources, s.uch as sequence-basegsipg sampling in WinBUGS [7]. Convergence to the
TF binding predictions [5], ChIP-chip data [6], other gene terior is assessed using the potential scale reduction

for(iIN 1:1)

Figure 1. A graphical representation of the proposed
model. The boxes indicate loops over samplesondi-
tionsj, and replicates.

expression data. _ factor method of Gelman et al. [8]. Posterior mean is used
We propose to model the observed expressiojy as the final estimate for each parameter.

for ith gene,jth condition, andkth replicate with a linear

model as 3. RESULTS

In simulations, our primary aim is to demonstrate that the
proposed model can detect the regulatory relations based

wherey is the general meay; is the effect ofith gene; on prior information. The proposed model is also com-
is the effect of thejth condition,r; ; is their joint effect, ~ Ppared to a simplified HEM [4], where the hierarchy dis-
z;-a;-x7r; describes the regulatory effect of the given TF tinguishing technical noise from the biological noise has

Yigh =1+ Gi +dj + 755+ ai- 2 - 7F; + €k (1)

with TF’s expression levetrp ; = p+grr +dj+r7rr been dropped away. Note that the error hierarchy could be
regulation strength; and a binary indicator; of whether ~ added analogously to both models.
the TF regulates théh gene. The residual variance is The proposed model is tested with simulated data gen-

described witl¥; ; . For the expression measurements of erated from a model similar to the proposed model. We
the TF we use the same model but without the regressionconsider a model that consists of 100 gengsZ condi-

term, i.eyrr ik = TTr; + €ijk- tions (j) and a single TF. The Gibbs sampling is initial-
We assume the following prior distributions with fixed ized with sample mean values and is run for 1000 burn-in
parameters: steps after which a sample of size 2000 is collected. The

potential scale reduction factor convergence diagnastic i

o~ N(p, aﬁ) (2) d:_cates that this is t)F/)picaIIy sufficient for thefz (|3|ibbs sam-
ing to converge. Parameters are set as follows:=
9i,gTr ™~ N(Msho-;) (3) P g o g 2 2 2 gwf
) pd = ftr = pa = 0,0, =100,05 = 1,05 = 1,0, =1,
dj ~ N(ua,03) (40 62 =1,a0 =1,3 = 05. For they, parameter we
TijstrE; ~ N(r,02) (5) use the empirical sample mean of all the measurements.
a; ~ N(ta,0?) (6) Data is generated from the above_ r_nodel_(pri_ors) except
. B 11(6) 7 thaty = 0 anda; = £1.5, the additive noise is sam-
zi emog Wi pled from the standard normal, and 10%:gfterms are
€k~ N(0,77;) (8)  uniformly randomly setto 1, others are 0. In the first sim-
T;j?, ng,j ~  Gammal(a, 3). (9) ulation we assume to have three replicatesgnhd vary

0; € {0.5,0.55,0.6,0.65} for thosei that corresponds to
Note that the error variance is allowed to be heteroge-the underlying regulatory mechanisms (i.e., tege= 1)
neous, i.e. different for each gene and condition. Prior and8; € {0.5,0.45,0.4,0.35} for the others (i.e., true
information about transcriptional regulation can easéy b  z; = 0). In the second simulation we s&t= 0.5 for all 4
incorporated vigd; parameters. The proposed model is and vary the number of replicatése {2, 3,5,10}. Both



simulations are repeated 50 times and average results are
reported. Each individual simulation with 100 genes and
varying number of replicates takes only about (on the or-
der of) minutes to run in WinBUGS and, thus, the method
should be fast enough to analyze thousands of genes.
Figure 2 (a) shows how the proposed model can de-
tect the true regulatory relations from the simulated data
with varying degrees of prior information. For the receiver
operating characteristic (ROC) curves the potential targe
genes for the TF are estimated by ranking the genes based
on the absolute magnitude of - z; term (averaged over ’

posterior samples). The same figure additionally com- P T e e ation method
pares the performance of the model to a naive approach 02 s prior = 0.55
where the regulatory relations are estimated by computing S :g: prior =0.6
- ) . . g prior = 0.65

the correlations between the estimated TF expression and K random
all the other genes’ expression measurements and picking o 02 oz 06 o8 1
the most strongly correlating genes as potential targets fo (@
TF regulation. While the comparison is slightly artificial,
it serves as demonstration about the potential of prindiple 1 , , , s
data fusion approaches. ol a2 ’

Figure 2 (b) demonstrates that as the number of repli- ' a ar P
cates increases the model performance increases as well. 08 AT -
This provides further evidence about the correct function- o7l A/ ///f g
ing of the model, but on the other hand also reveals in -y ’/
part that it is somewhat prone to small sample sizes. Fig- 061 // 7%
ure 2 (b) also suggests that prior information can be more ost V ’
valuable than having more replicates of expression mea- ,‘,’/‘
surements. 0.4y

The second important difference of the proposed model 4 _ ]
to the simplified HEM is its ability to detect differential ~ =~ freps=2
expression that is confounded by a strongly regulating TF. ~ ©2 — — —nreps=3 |1
In the proposed model the terry; captures the changes o1l o e 1ol
in gene expression due other reasons than the potential o random
regulating TF. Since the comparison model, the simplified ) 0.2 04 0.6 08 1
HEM, does not take into account any direct regulation, (b)

its estimates of;; should be erroneus in the cases where

there some co_nfounding TF regulator is_ present. Figure 3Figure 2. ROCs presenting the effect of (a) the prior
presents the difference between the estimateg;from  gyrength and (b) the sample size to the model's ability to
the proposed model and the comparison model in suchgetect the true regulatory relations, in comparison to a co-
cases. expression based model.

4. DISCUSSION

We have proposed a statistical model for gene expressiorSince the mechanism of integration of prior information
that can estimate separately the expression changes dué desigend to be as simple as possible, model is versa-
to TF regulation, and the expression changes due to othefile enough to incorporate many kinds of binding informa-
reasons (unknown regulators etc.) The model is formu-tion, including for example ChIP-chip data and sequence
lated in Bayesian framework and integrates the knowledgebased computationally derived binding probabilities. In
of about the potential regulators as prior data. We showedparticular, in the next stage, the proposed model is going
with simulated data that the model i) detects the true reg-to be extended to utilize a novel probabilistic model pro-
ulatory relations better than simple alternatives, antsii) ~ viding binding probabilities based directly on the TF mo-
able to estimate the differential expression better than th tifs and promoter sequence. Since the promoter sequence
comparison models in the presence of the confounding TFis known practically for every gene for which expression
regulation. When there is no TF regulation present the can be measured, this will enable the discovery of regula-
proposed model performs equivalently to the comparison tory relations for any TFs whose motifs are known, in the
model. given experiment.

The key aspect of the model is its ability to integrate The priors we have used here represent sensible but ar-
prior data, such as one that describes binding probaskilitie bitrary choices. It is clear that they have strong effects on
of the TF proteins to the promoter regions of the genes. the estimates, especially regarding the discovery of regu-
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Figure 3. The better ability of the proposed model to estndiiferential expression in the presence of a confoundifg T
regulation, in comparison to the simplified HEM. Subfigur@sdnd (b) show the errors in estimates from the proposed

model and the comparison model for varying levels of reguteand expression changes due to other reasons (the true
ri;). The figures reveal the errorsiigy are smaller for the proposed model than for the comparisatein®oth models
also make some errors in the high absolute values ofriryevhich is due to selected prior centered around value zero.
Subfigure (¢) emphasizes how the difference between thelmisdargest when there is either a large positive or negativ
TF regulation present by showing directly the differenceveen the estimates of the models. Note also that the diféere

between the models’ estimates is zero when the true regyleffect is zero. The estimates are computed from simulated
data sets including five replicates, by averaging over piosteamples and by fitting a plan for visualization purposes

latory relations, but also with respect to other parameters [5] H. Lahdesmaki, A. G. Rust, and |. Shmulevich,

In the next stage the model will be validated more thor-

oughly for suitable prior distributions.

of the new model as such, the next stage will be applying 6
the model to real gene expression data with real prior in- [6]

While this work focused on studying the functionality

formation about the binding probabilities of TFs to gene

pro
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