

Minimizing submodular functions

Nikolaj Tatti

- Assume that *f* is a set function.
- Given two sets $A \subseteq B$ and $z \notin B$, we have

$$f(A\cup z)-f(A)\geq f(B\cup z)-f(B)$$
 .

• diminishing returns: the gains of adding z do not increase with the base set.

- Assume that *f* is a set function.
- Given two sets $A \subseteq B$ and $z \notin B$, we have

$$f(A\cup z)-f(A)\geq f(B\cup z)-f(B)$$
 .

- diminishing returns: the gains of adding z do not increase with the base set.
- Alternative definition:

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

• We will assume throughout the whole presentation that $f(\emptyset) = 0$.

- Unlike maximization, minimization can be done in polynomial time
- ...but most algorithms are not practical
- We will show an algorithm based on minimal norm theorem
- Even though it's not polynomial...it's more practical
- An iterative algorithm where each step is polynomial
- ...but the number of steps can be large

- We can assume that $U = 1, \ldots, n$.
- This allows us to write x_u , where $x \in \mathbb{R}^n$ and $u \in U$.
- Given, $x \in \mathbb{R}^n$ and a set $A \subseteq U$, we define

$$x(A) = \sum_{a \in A} x_a$$

.

Polyhedra, Base polyhedra, Tight sets

Polyhedra P(f) is a set of points $x \in \mathbb{R}^n$ such that

 $x(A) \leq f(A)$ for every $A \subseteq U$.

Base polyhedra B(f) is a subset of P(f) such that x(U) = f(U).

Given $x \in P(f)$ we say that a set A is tight for x if x(A) = f(A).

If S and T are tight for $x \in P(f)$, then $S \cup T$ and $S \cap T$ are tight for x.

If S and T are tight for $x \in P(f)$, then $S \cup T$ and $S \cap T$ are tight for x.

Proof.

$$egin{aligned} &x(S\cup T)+x(S\cap T)\leq f(S\cup T)+f(S\cap T)\ &\leq f(S)+f(T)=x(S)+x(T)=x(S\cup T)+x(S\cap T) \end{aligned}$$

That is,

$$f(S \cup T) + f(S \cap T) = x(S \cup T) + x(S \cap T)$$
.

If S and T are tight for $x \in P(f)$, then $S \cup T$ and $S \cap T$ are tight for x.

Proof.

$$\begin{aligned} x(S\cup T) + x(S\cap T) &\leq f(S\cup T) + f(S\cap T) \\ &\leq f(S) + f(T) = x(S) + x(T) = x(S\cup T) + x(S\cap T) \end{aligned}$$

That is,

$$f(S \cup T) + f(S \cap T) = x(S \cup T) + x(S \cap T)$$

Since $x(S \cup T) \le f(S \cup T)$ and $x(S \cap T) \le f(S \cap T)$, we have $x(S \cup T) = f(S \cup T)$ and $x(S \cap T) = f(S \cap T)$.

Fix $x \in B(f)$. Let $u \in U$. There is a tight set D_u such that $u \in D_u$ and any tight set containing u is a superset of D_u .

Fix $x \in B(f)$. Let $u \in U$. There is a tight set D_u such that $u \in D_u$ and any tight set containing u is a superset of D_u .

Proof.

Since $x \in B(f)$, U is a tight set for x. If there are two tight sets A and B containing u, then $A \cap B$ is also tight set containing u.

There is a minimal tight set containing u.

Theorem Let

$$x^* = \arg \min_{x} \{ \|x\|_2 \mid x \in B(f) \}$$
.

Define

 $A=\{i\mid x_i^*<0\}\quad.$

Then A minimizes f.

We prove two claims

- $x^*(A) \leq f(S)$ for any S.
- $x^*(A) = f(A)$.

$$x^*(A) \leq x^*(A \cap S) \leq x^*(S) \leq f(S)$$
 .

- first inequality: $x_a^* < 0$ for $a \in A$,
- second inequality: $x_a^* \ge 0$ for $a \notin A$,
- third inequality: $x^* \in P(f)$.

Select $a \in A$. Let D_a be the smallest tight set using x^* . We claim that $D_a \subseteq A$.

Select $a \in A$. Let D_a be the smallest tight set using x^* . We claim that $D_a \subseteq A$.

Assume otherwise: there is $b \in D_a$ such that $x_b^* \ge 0$.

We can increase x_a^* and decrease x_b^* by $\epsilon > 0$. Let x' be the new vector.

- Let S a non-tight set for x^{*}. Then x'(S) ≤ x^{*}(S) + ε < f(S), if we select ε small enough.
- Let S a tight set for x^* . If $a \in S$, then since $D_a \subseteq S$, we have $x'(S) = x^*(S) = f(S)$. If $a \notin S$, then $x'(S) \leq x^*(S)$.

Select $a \in A$. Let D_a be the smallest tight set using x^* . We claim that $D_a \subseteq A$.

Assume otherwise: there is $b \in D_a$ such that $x_b^* \ge 0$.

We can increase x_a^* and decrease x_b^* by $\epsilon > 0$. Let x' be the new vector.

- Let S a non-tight set for x^{*}. Then x'(S) ≤ x^{*}(S) + ε < f(S), if we select ε small enough.
- Let S a tight set for x^* . If $a \in S$, then since $D_a \subseteq S$, we have $x'(S) = x^*(S) = f(S)$. If $a \notin S$, then $x'(S) \leq x^*(S)$.

That is, $x' \in B(f)$, also $||x'|| < ||x^*||$.

So, we must have $D_a \subseteq A$.

Note that

$$A \subseteq \bigcup_{a \in A} D_a \subseteq \bigcup_{a \in A} A = A$$

Each D_a is a tight set, the so the union is also tight. Thus, $f(A) = x^*(A)$.

Solving miminal norm problem

Testing for the optimal point

- How to test whether $x \in B(f)$ has the smallest norm.
- B(f) is a convex shape and the norm is a convex function.
- The local minimum is a global minimum.
- x is a local minimum if there is no vector $y \in B(f)$ such that

$$rac{\partial}{\partial\lambda} \left\|x+\lambda(y-x)
ight\|^2 < 0 \quad ext{at} \quad \lambda=0$$
 .

• ...otherwise move slightly towards y from x to get a better point.

Note that at $\lambda = 0$, we have

$$\frac{\partial}{\partial \lambda} \|x + \lambda(y - x)\|^2 = 2(x + \lambda(y - x))^T (y - x) = 2x^T (y - x) = 2x^T y - 2x^T x$$

- Find $\min_{y} x^{T} y$ such that $y \in B(f)$.
- If $x^T y \ge x^T x$, then x is optimal.
- Otherwise, there is a better point between x and y.
- We will solve finding y later but for now assume it's possible.

- B(f) is a polytope, so there is a finite number of corner points such that B(f) lies between these points.
- Write m(S) to be the vector with the smallest norm in the affine space spanned by S
- Key insight: there is a set of corner points S such that m(S) is the optimal solution.
- Enumerate sets of corner points such that
 - 1. m(S) is in convex hull of S (and also in B(f))
 - 2. ||m(S)|| is decreasing
- There are finite number of sets of corner points so we will converge

Algorithm maintains:

- A candidate set S of corner points
- A point x in convex hull of S that in the end will be optimal

Algorithm maintains:

- A candidate set S of corner points
- A point x in convex hull of S that in the end will be optimal

Step (a): test for optimality of x

- Compute $y = \arg \min x^T y$ such that $y \in B(f)$
- either x will be optimal
- ...or we have a new corner point y

Algorithm maintains:

- A candidate set S of corner points
- A point x in convex hull of S that in the end will be optimal

Step (a): test for optimality of x

- Compute $y = \arg \min x^T y$ such that $y \in B(f)$
- either x will be optimal
- ...or we have a new corner point y

Step (b): find new x

- Compute m(S)
- If inside the simplex, set x = m(S) repeat Step (a)
- ...otherwise, find face S' intersecting with the segment x m(S)
- Set S to S'. Set x to the intersection point. Repeat Step (b).

Solving linear program

We need compute $y = \arg \min x^T y$ such that $y \in B(f)$

- This is an example of linear program...
- ...and there are many solvers for linear programs
- ...but we cannot use any of them
- ...because we have exponential number of constraints.
- Luckily, there is a closed solution due to submodularity.

Order x such that

$$x_{i_1} \leq x_{i_2} \leq \cdots \leq x_{i_n}$$

Define

$$y_j = f(i_1,\ldots,i_j) - f(i_1,\ldots,i_{j-1})$$

Corner case: $y_1 = f(i_1) - f(\emptyset) = f(i_1)$ (we assume wlog that $f(\emptyset) = 0$)

We claim that y is optimal and in B(f). The optimality follows from Langrange duality, doesn't rely on submodularity

 $Lemma \\
 y(U) = f(U)$

Proof.

$$y(U) = \sum_{j=1}^{n} y_j = \sum_{j=1}^{n} f(i_1, \ldots, i_j) - f(i_1, \ldots, i_{j-1}) = f(i_1, \ldots, i_n) - f(\emptyset) = f(U)$$
.

The point y is valid Lemma $y(B) \le f(B)$ for any $B \subseteq U$ Proof. Write $B_i = B \cap \{i_1, \dots, i_i\}$.

The point y **is valid** Lemma $y(B) \le f(B)$ for any $B \subseteq U$ Proof.

Write $B_j = B \cap \{i_1, \ldots, i_j\}$. Then

$$egin{aligned} y(B) &= \sum_{j \in B} f(i_1, \dots, i_j) - f(i_1, \dots, i_{j-1}) \ &\leq \sum_{j \in B} f(B_{j-1} \cup i_j) - f(B_{j-1}) \ &= \sum_{j \in B} f(B_j) - f(B_{j-1}) \ &= f(B) \quad . \end{aligned}$$

Minimum norm approach

- Find $x \in B(f)$ with the smallest norm
- Negative components of x minimize f
- Wolfe's algorithm: iterative algorithm, looks like gradient descent
- ...but stops in finite number of steps
- Requires solving linear program
- ...which can be done easily since f is submodular

Encore: optimality of *y*

Minimize p(z) such that $q_i(z) \leq 0$ and $r_j(z) = 0$.

Minimize p(z) such that $q_i(z) \le 0$ and $r_j(z) = 0$. Define Langrangian

$$\Lambda(z,\lambda,\mu) = p(z) + \sum_i \lambda_i q_i(z) + \sum_j \mu_j r_j(z)$$

Minimize p(z) such that $q_i(z) \le 0$ and $r_j(z) = 0$. Define Langrangian

$$\Lambda(z,\lambda,\mu) = p(z) + \sum_i \lambda_i q_i(z) + \sum_j \mu_j r_j(z)$$
.

Define dual

$$d(\lambda,\mu) = \min_{z} \Lambda(z,\lambda,\mu)$$

.

Minimize p(z) such that $q_i(z) \le 0$ and $r_j(z) = 0$. Define Langrangian

$$\Lambda(z,\lambda,\mu) = p(z) + \sum_{i} \lambda_i q_i(z) + \sum_{j} \mu_j r_j(z)$$
.

Define dual

$$d(\lambda,\mu) = \min_{z} \Lambda(z,\lambda,\mu)$$
 .

Let y such that $q_i(z) \leq 0$ and $r_j(y) = 0$ and let $\lambda \geq 0$ and μ . Then

 $p(y) \ge d(\lambda, \mu)$

If we can find y, λ and μ such that $p(y) = d(\lambda, \mu)$, then y is optimal.

$$\Lambda(z,\lambda,\mu) = x^T z + \mu \left[z(U) - f(U) \right] + \sum_{B \subset U} \lambda_B \left[z(B) - f(B) \right]$$
$$= -\mu f(U) - \sum_{B \subset U} f(B) + \sum_{i=1}^n z_i (x_i + \mu + \sum_{i \in B \subset U} \lambda_B)$$

$$\Lambda(z,\lambda,\mu) = x^T z + \mu \left[z(U) - f(U) \right] + \sum_{B \subset U} \lambda_B \left[z(B) - f(B) \right]$$
$$= -\mu f(U) - \sum_{B \subset U} f(B) + \sum_{i=1}^n z_i (x_i + \mu + \sum_{i \in B \subset U} \lambda_B)$$

The dual is

$$d(\lambda,\mu) = \min_{z} -\mu f(U) - \sum_{B \subset U} \lambda_B f(B) + \sum_{i=1}^{n} z_i (x_i + \mu + \sum_{i \in B \subset U} \lambda_B) \quad .$$

$$\Lambda(z,\lambda,\mu) = x^T z + \mu \left[z(U) - f(U) \right] + \sum_{B \subset U} \lambda_B \left[z(B) - f(B) \right]$$
$$= -\mu f(U) - \sum_{B \subset U} f(B) + \sum_{i=1}^n z_i (x_i + \mu + \sum_{i \in B \subset U} \lambda_B)$$

The dual is

$$d(\lambda,\mu) = \min_{z} -\mu f(U) - \sum_{B \subset U} \lambda_{B} f(B) + \sum_{i=1}^{n} z_{i}(x_{i} + \mu + \sum_{i \in B \subset U} \lambda_{B}) \quad .$$

If $x_{i} + \mu + \sum_{i \in B \subset U} \lambda_{B} = 0$ for every *i*, then
$$d(\lambda,\mu) = -\mu f(U) - \sum_{B \subset U} \lambda_{B} f(B)$$

Otherwise, $d(\lambda,\mu) = -\infty$ (that is λ, μ are not optimal).

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

We need to find $\lambda \geq 0$ and μ such that for every i

$$x_i + \mu + \sum_{i \in T \subset U} \lambda_T = 0$$
 .

and

$$x^T y = -\mu f(U) - \sum_{T \subset U} \lambda_T f(T)$$
.

We need to find $\lambda \geq 0$ and μ such that for every i

$$x_i + \mu + \sum_{i \in T \subset U} \lambda_T = 0$$
 .

and

$$x^T y = -\mu f(U) - \sum_{T \subset U} \lambda_T f(T)$$
.

Set

$$\mu = -x_n, \quad \lambda_{i_1,\dots,i_j} = x_{i_{j+1}} - x_{i_j}$$

and $\lambda_T = 0$ for the remaining sets.

🔆 Langrangian for our case

First, since x_{i_j} are ordered, $\lambda_{i_1,...,i_j} = x_{i_{j+1}} - x_{i_j} \ge 0$.

🔆 Langrangian for our case

First, since x_{i_j} are ordered, $\lambda_{i_1,...,i_j} = x_{i_{j+1}} - x_{i_j} \ge 0$. Next,

$$\sum_{i_k \in T \subset U} \lambda_T = \sum_{j=k}^{n-1} x_{i_{j+1}} - x_{i_j} = x_n - x_{i_k} = -\mu - x_{i_k}.$$

🔆 Langrangian for our case

First, since x_{i_j} are ordered, $\lambda_{i_1,...,i_j} = x_{i_{j+1}} - x_{i_j} \ge 0$. Next,

$$\sum_{i_k \in T \subset U} \lambda_T = \sum_{j=k}^{n-1} x_{i_{j+1}} - x_{i_j} = x_n - x_{i_k} = -\mu - x_{i_k}.$$

Finally,

$$\mu f(U) + \sum_{T \subset U} \lambda_T f(T) = -x_n f(U) + \sum_{j=1}^{n-1} (x_{i_{j+1}} - x_{i_j}) f(i_1, \dots, i_j)$$

= $\sum_{j=1}^{n-1} x_{i_{j+1}} f(i_1, \dots, i_j) - \sum_{j=1}^n x_{i_j} f(i_1, \dots, i_j)$
= $\sum_{j=1}^n x_j (f(i_1, \dots, i_{j-1}) - f(i_1, \dots, i_j)) = -\sum_{j=1}^n x_j y_j$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Minimizingsubmodular functions / Tatti