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Submodular function

• Assume that f is a set function.
• Given two sets A ⊆ B and z /∈ B, we have

f (A ∪ z) − f (A) ≥ f (B ∪ z) − f (B) .

• diminishing returns: the gains of adding z do not increase with the base set.

• Alternative definition:

f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B)

• We will assume throughout the whole presentation that f (∅) = 0.
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Submodular minimization

• Unlike maximization, minimization can be done in polynomial time
• ...but most algorithms are not practical
• We will show an algorithm based on minimal norm theorem
• Even though it’s not polynomial...it’s more practical
• An iterative algorithm where each step is polynomial
• ...but the number of steps can be large

Minimizingsubmodular functions / Tatti February 17, 2023 2 / 26



Vector notations

• We can assume that U = 1, . . . , n.
• This allows us to write xu, where x ∈ Rn and u ∈ U.
• Given, x ∈ Rn and a set A ⊆ U, we define

x(A) =
∑
a∈A

xa .
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Polyhedra, Base polyhedra, Tight sets

Polyhedra P(f ) is a set of points x ∈ Rn such that

x(A) ≤ f (A) for every A ⊆ U .

Base polyhedra B(f ) is a subset of P(f ) such that x(U) = f (U).

Given x ∈ P(f ) we say that a set A is tight for x if x(A) = f (A).
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Tight set lattice
Lemma
If S and T are tight for x ∈ P(f ), then S ∪ T and S ∩ T are tight for x.

Proof.

x(S ∪ T ) + x(S ∩ T ) ≤ f (S ∪ T ) + f (S ∩ T )
≤ f (S) + f (T ) = x(S) + x(T ) = x(S ∪ T ) + x(S ∩ T )

That is,
f (S ∪ T ) + f (S ∩ T ) = x(S ∪ T ) + x(S ∩ T ) .

Since x(S ∪ T ) ≤ f (S ∪ T ) and x(S ∩ T ) ≤ f (S ∩ T ), we have x(S ∪ T ) = f (S ∪ T )
and x(S ∩ T ) = f (S ∩ T ).
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Smallest tight set

Lemma
Fix x ∈ B(f ). Let u ∈ U. There is a tight set Du such that u ∈ Du and any tight set
containing u is a superset of Du.

Proof.
Since x ∈ B(f ), U is a tight set for x .
If there are two tight sets A and B containing u, then A ∩ B is also tight set containing
u.
There is a minimal tight set containing u.
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Minimum norm theorem

Theorem
Let

x∗ = arg min
x

{∥x∥2 | x ∈ B(f )} .

Define
A = {i | x∗

i < 0} .

Then A minimizes f .
We prove two claims
• x∗(A) ≤ f (S) for any S.
• x∗(A) = f (A).
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Proof of Claim 1

x∗(A) ≤ x∗(A ∩ S) ≤ x∗(S) ≤ f (S) .

• first inequality: x∗
a < 0 for a ∈ A,

• second inequality: x∗
a ≥ 0 for a /∈ A,

• third inequality: x∗ ∈ P(f ).

Minimizingsubmodular functions / Tatti February 17, 2023 8 / 26



Proof of Claim 2
Select a ∈ A. Let Da be the smallest tight set using x∗.
We claim that Da ⊆ A.

Assume otherwise: there is b ∈ Da such that x∗
b ≥ 0.

We can increase x∗
a and decrease x∗

b by ϵ > 0. Let x ′ be the new vector.
• Let S a non-tight set for x∗. Then x ′(S) ≤ x∗(S) + ϵ < f (S), if we select ϵ small

enough.
• Let S a tight set for x∗. If a ∈ S, then since Da ⊆ S, we have

x ′(S) = x∗(S) = f (S). If a /∈ S, then x ′(S) ≤ x∗(S).
That is, x ′ ∈ B(f ), also ∥x ′∥ < ∥x∗∥.

So, we must have Da ⊆ A.
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Proof of Claim 2

Note that
A ⊆

⋃
a∈A

Da ⊆
⋃
a∈A

A = A .

Each Da is a tight set, the so the union is also tight.
Thus, f (A) = x∗(A).

Minimizingsubmodular functions / Tatti February 17, 2023 10 / 26



Solving miminal norm problem
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Testing for the optimal point

• How to test whether x ∈ B(f ) has the smallest norm.
• B(f ) is a convex shape and the norm is a convex function.
• The local minimum is a global minimum.
• x is a local minimum if there is no vector y ∈ B(f ) such that

∂

∂λ
∥x + λ(y − x)∥2 < 0 at λ = 0 .

• ...otherwise move slightly towards y from x to get a better point.
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Finding direction

Note that at λ = 0, we have

∂

∂λ
∥x + λ(y − x)∥2 = 2(x + λ(y − x))T (y − x) = 2xT (y − x) = 2xT y − 2xT x .

• Find miny xT y such that y ∈ B(f ).
• If xT y ≥ xT x , then x is optimal.
• Otherwise, there is a better point between x and y .
• We will solve finding y later but for now assume it’s possible.
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Wolfe’s algorithm

• B(f ) is a polytope, so there is a finite number of corner points such that B(f ) lies
between these points.

• Write m(S) to be the vector with the smallest norm in the affine space spanned by S
• Key insight: there is a set of corner points S such that m(S) is the optimal solution.
• Enumerate sets of corner points such that

1. m(S) is in convex hull of S (and also in B(f ))
2. ∥m(S)∥ is decreasing

• There are finite number of sets of corner points so we will converge
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Wolfe’s algorithm
Algorithm maintains:
• A candidate set S of corner points
• A point x in convex hull of S that in the end will be optimal

Step (a): test for optimality of x
• Compute y = arg min xT y such that y ∈ B(f )
• either x will be optimal
• ...or we have a new corner point y

Step (b): find new x
• Compute m(S)
• If inside the simplex, set x = m(S) repeat Step (a)
• ...otherwise, find face S ′ intersecting with the segment x – m(S)
• Set S to S ′. Set x to the intersection point. Repeat Step (b).
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Solving linear program
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Solving linear program

We need compute y = arg min xT y such that y ∈ B(f )
• This is an example of linear program...
• ...and there are many solvers for linear programs
• ...but we cannot use any of them
• ...because we have exponential number of constraints.
• Luckily, there is a closed solution due to submodularity.
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Solution

Order x such that
xi1 ≤ xi2 ≤ · · · ≤ xin

Define
yj = f (i1, . . . , ij) − f (i1, . . . , ij−1) .

Corner case: y1 = f (i1) − f (∅) = f (i1) (we assume wlog that f (∅) = 0)

We claim that y is optimal and in B(f ).
The optimality follows from Langrange duality, doesn’t rely on submodularity
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The point y is valid

Lemma
y(U) = f (U)

Proof.

y(U) =
n∑

j=1
yj =

n∑
j=1

f (i1, . . . , ij) − f (i1, . . . , ij−1) = f (i1, . . . , in) − f (∅) = f (U) .
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The point y is valid
Lemma
y(B) ≤ f (B) for any B ⊆ U

Proof.
Write Bj = B ∩ {i1, . . . , ij}.

Then

y(B) =
∑
j∈B

f (i1, . . . , ij) − f (i1, . . . , ij−1)

≤
∑
j∈B

f (Bj−1 ∪ ij) − f (Bj−1)

=
∑
j∈B

f (Bj) − f (Bj−1)

= f (B) .
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Summary

Minimum norm approach
• Find x ∈ B(f ) with the smallest norm
• Negative components of x minimize f
• Wolfe’s algorithm: iterative algorithm, looks like gradient descent
• ...but stops in finite number of steps
• Requires solving linear program
• ...which can be done easily since f is submodular
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Encore: optimality of y
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Langrange duality
Minimize p(z) such that qi(z) ≤ 0 and rj(z) = 0.

Define Langrangian

Λ(z , λ, µ) = p(z) +
∑

i
λiqi(z) +

∑
j

µj rj(z) .

Define dual
d(λ, µ) = min

z
Λ(z , λ, µ) .

Let y such that qi(z) ≤ 0 and rj(y) = 0 and let λ ≥ 0 and µ. Then

p(y) ≥ d(λ, µ)

If we can find y , λ and µ such that p(y) = d(λ, µ), then y is optimal.
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Langrangian for our case

Λ(z , λ, µ) = xT z + µ [z(U) − f (U)] +
∑

B⊂U
λB [z(B) − f (B)]

= −µf (U) −
∑

B⊂U
f (B) +

n∑
i=1

zi(xi + µ +
∑

i∈B⊂U
λB)

The dual is

d(λ, µ) = min
z

−µf (U) −
∑

B⊂U
λBf (B) +

n∑
i=1

zi(xi + µ +
∑

i∈B⊂U
λB) .

If xi + µ +
∑

i∈B⊂U λB = 0 for every i , then

d(λ, µ) = −µf (U) −
∑

B⊂U
λBf (B)

Otherwise, d(λ, µ) = −∞ (that is λ, µ are not optimal).
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Langrangian for our case

We need to find λ ≥ 0 and µ such that for every i

xi + µ +
∑

i∈T⊂U
λT = 0 .

and
xT y = −µf (U) −

∑
T⊂U

λT f (T ) .

Set
µ = −xn, λi1,...,ij = xij+1 − xij

and λT = 0 for the remaining sets.
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Langrangian for our case
First, since xij are ordered, λi1,...,ij = xij+1 − xij ≥ 0.

Next,

∑
ik∈T⊂U

λT =
n−1∑
j=k

xij+1 − xij = xn − xik = −µ − xik .

Finally,

µf (U) +
∑

T⊂U
λT f (T ) = −xnf (U) +

n−1∑
j=1

(xij+1 − xij )f (i1, . . . , ij)

=
n−1∑
j=1

xij+1f (i1, . . . , ij) −
n∑

j=1
xij f (i1, . . . , ij)

=
n∑

j=1
xj(f (i1, . . . , ij−1) − f (i1, . . . , ij)) = −

n∑
j=1

xjyj .
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