

Minimizing submodular functions

Nikolaj Tatti

Submodular function

- Assume that f is a set function.
- Given two sets $A \subseteq B$ and $z \notin B$, we have

$$
f(A \cup z)-f(A) \geq f(B \cup z)-f(B)
$$

- diminishing returns: the gains of adding z do not increase with the base set.

Submodular function

- Assume that f is a set function.
- Given two sets $A \subseteq B$ and $z \notin B$, we have

$$
f(A \cup z)-f(A) \geq f(B \cup z)-f(B)
$$

- diminishing returns: the gains of adding z do not increase with the base set.
- Alternative definition:

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

- We will assume throughout the whole presentation that $f(\emptyset)=0$.

Submodular minimization

- Unlike maximization, minimization can be done in polynomial time
- ...but most algorithms are not practical
- We will show an algorithm based on minimal norm theorem
- Even though it's not polynomial...it's more practical
- An iterative algorithm where each step is polynomial
- ...but the number of steps can be large

Vector notations

- We can assume that $U=1, \ldots, n$.
- This allows us to write x_{u}, where $x \in \mathbb{R}^{n}$ and $u \in U$.
- Given, $x \in \mathbb{R}^{n}$ and a set $A \subseteq U$, we define

$$
x(A)=\sum_{a \in A} x_{a}
$$

Polyhedra, Base polyhedra, Tight sets

Polyhedra $P(f)$ is a set of points $x \in \mathbb{R}^{n}$ such that

$$
x(A) \leq f(A) \quad \text { for every } \quad A \subseteq U
$$

Base polyhedra $B(f)$ is a subset of $P(f)$ such that $x(U)=f(U)$.

Given $x \in P(f)$ we say that a set A is tight for x if $x(A)=f(A)$.

Tight set lattice

Lemma
If S and T are tight for $x \in P(f)$, then $S \cup T$ and $S \cap T$ are tight for x.

Tight set lattice

Lemma
If S and T are tight for $x \in P(f)$, then $S \cup T$ and $S \cap T$ are tight for x.
Proof.

$$
\begin{aligned}
x(S \cup T)+x(S \cap T) & \leq f(S \cup T)+f(S \cap T) \\
& \leq f(S)+f(T)=x(S)+x(T)=x(S \cup T)+x(S \cap T)
\end{aligned}
$$

That is,

$$
f(S \cup T)+f(S \cap T)=x(S \cup T)+x(S \cap T)
$$

Tight set lattice

Lemma
If S and T are tight for $x \in P(f)$, then $S \cup T$ and $S \cap T$ are tight for x.
Proof.

$$
\begin{aligned}
x(S \cup T)+x(S \cap T) & \leq f(S \cup T)+f(S \cap T) \\
& \leq f(S)+f(T)=x(S)+x(T)=x(S \cup T)+x(S \cap T)
\end{aligned}
$$

That is,

$$
f(S \cup T)+f(S \cap T)=x(S \cup T)+x(S \cap T)
$$

Since $x(S \cup T) \leq f(S \cup T)$ and $x(S \cap T) \leq f(S \cap T)$, we have $x(S \cup T)=f(S \cup T)$ and $x(S \cap T)=f(S \cap T)$.

Smallest tight set

Lemma

Fix $x \in B(f)$. Let $u \in U$. There is a tight set D_{u} such that $u \in D_{u}$ and any tight set containing u is a superset of D_{u}.

Smallest tight set

Lemma

Fix $x \in B(f)$. Let $u \in U$. There is a tight set D_{u} such that $u \in D_{u}$ and any tight set containing u is a superset of D_{u}.

Proof.

Since $x \in B(f), U$ is a tight set for x.
If there are two tight sets A and B containing u, then $A \cap B$ is also tight set containing u.

There is a minimal tight set containing u.

Minimum norm theorem

Theorem

Let

$$
x^{*}=\arg \min _{x}\left\{\|x\|_{2} \mid x \in B(f)\right\} .
$$

Define

$$
A=\left\{i \mid x_{i}^{*}<0\right\} .
$$

Then A minimizes f.
We prove two claims

- $x^{*}(A) \leq f(S)$ for any S.
- $x^{*}(A)=f(A)$.

Proof of Claim 1

$$
x^{*}(A) \leq x^{*}(A \cap S) \leq x^{*}(S) \leq f(S)
$$

- first inequality: $x_{a}^{*}<0$ for $a \in A$,
- second inequality: $x_{a}^{*} \geq 0$ for $a \notin A$,
- third inequality: $x^{*} \in P(f)$.

Proof of Claim 2

Select $a \in A$. Let D_{a} be the smallest tight set using x^{*}. We claim that $D_{a} \subseteq A$.

Proof of Claim 2

Select $a \in A$. Let D_{a} be the smallest tight set using x^{*}.
We claim that $D_{a} \subseteq A$.
Assume otherwise: there is $b \in D_{a}$ such that $x_{b}^{*} \geq 0$.
We can increase x_{a}^{*} and decrease x_{b}^{*} by $\epsilon>0$. Let x^{\prime} be the new vector.

- Let S a non-tight set for x^{*}. Then $x^{\prime}(S) \leq x^{*}(S)+\epsilon<f(S)$, if we select ϵ small enough.
- Let S a tight set for x^{*}. If $a \in S$, then since $D_{a} \subseteq S$, we have $x^{\prime}(S)=x^{*}(S)=f(S)$. If $a \notin S$, then $x^{\prime}(S) \leq x^{*}(S)$.

Proof of Claim 2

Select $a \in A$. Let D_{a} be the smallest tight set using x^{*}.
We claim that $D_{a} \subseteq A$.
Assume otherwise: there is $b \in D_{a}$ such that $x_{b}^{*} \geq 0$.
We can increase x_{a}^{*} and decrease x_{b}^{*} by $\epsilon>0$. Let x^{\prime} be the new vector.

- Let S a non-tight set for x^{*}. Then $x^{\prime}(S) \leq x^{*}(S)+\epsilon<f(S)$, if we select ϵ small enough.
- Let S a tight set for x^{*}. If $a \in S$, then since $D_{a} \subseteq S$, we have $x^{\prime}(S)=x^{*}(S)=f(S)$. If $a \notin S$, then $x^{\prime}(S) \leq x^{*}(S)$.
That is, $x^{\prime} \in B(f)$, also $\left\|x^{\prime}\right\|<\left\|x^{*}\right\|$.

So, we must have $D_{a} \subseteq A$.

Proof of Claim 2

Note that

$$
A \subseteq \bigcup_{a \in A} D_{a} \subseteq \bigcup_{a \in A} A=A
$$

Each D_{a} is a tight set, the so the union is also tight.
Thus, $f(A)=x^{*}(A)$.

Solving miminal norm problem

Testing for the optimal point

- How to test whether $x \in B(f)$ has the smallest norm.
- $B(f)$ is a convex shape and the norm is a convex function.
- The local minimum is a global minimum.
- x is a local minimum if there is no vector $y \in B(f)$ such that

$$
\frac{\partial}{\partial \lambda}\|x+\lambda(y-x)\|^{2}<0 \quad \text { at } \quad \lambda=0 .
$$

- ...otherwise move slightly towards y from x to get a better point.

Finding direction

Note that at $\lambda=0$, we have

$$
\frac{\partial}{\partial \lambda}\|x+\lambda(y-x)\|^{2}=2(x+\lambda(y-x))^{T}(y-x)=2 x^{T}(y-x)=2 x^{T} y-2 x^{T} x
$$

- Find $\min _{y} x^{\top} y$ such that $y \in B(f)$.
- If $x^{T} y \geq x^{T} x$, then x is optimal.
- Otherwise, there is a better point between x and y.
- We will solve finding y later but for now assume it's possible.

Wolfe's algorithm

- $B(f)$ is a polytope, so there is a finite number of corner points such that $B(f)$ lies between these points.
- Write $m(S)$ to be the vector with the smallest norm in the affine space spanned by S
- Key insight: there is a set of corner points S such that $m(S)$ is the optimal solution.
- Enumerate sets of corner points such that

1. $m(S)$ is in convex hull of S (and also in $B(f)$)
2. $\|m(S)\|$ is decreasing

- There are finite number of sets of corner points so we will converge

Wolfe's algorithm

Algorithm maintains:

- A candidate set S of corner points
- A point x in convex hull of S that in the end will be optimal

Wolfe's algorithm

Algorithm maintains:

- A candidate set S of corner points
- A point x in convex hull of S that in the end will be optimal

Step (a): test for optimality of x

- Compute $y=\arg \min x^{T} y$ such that $y \in B(f)$
- either x will be optimal
- ...or we have a new corner point y

Wolfe's algorithm

Algorithm maintains:

- A candidate set S of corner points
- A point x in convex hull of S that in the end will be optimal

Step (a): test for optimality of x

- Compute $y=\arg \min x^{T} y$ such that $y \in B(f)$
- either x will be optimal
- ...or we have a new corner point y

Step (b): find new x

- Compute $m(S)$
- If inside the simplex, set $x=m(S)$ repeat Step (a)
- ...otherwise, find face S^{\prime} intersecting with the segment $x-m(S)$
- Set S to S^{\prime}. Set x to the intersection point. Repeat Step (b).

Solving linear program

Solving linear program

We need compute $y=\arg \min x^{T} y$ such that $y \in B(f)$

- This is an example of linear program...
- ...and there are many solvers for linear programs
- ...but we cannot use any of them
- ...because we have exponential number of constraints.
- Luckily, there is a closed solution due to submodularity.

Solution

Order x such that

$$
x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{n}}
$$

Define

$$
y_{j}=f\left(i_{1}, \ldots, i_{j}\right)-f\left(i_{1}, \ldots, i_{j-1}\right)
$$

Corner case: $y_{1}=f\left(i_{1}\right)-f(\emptyset)=f\left(i_{1}\right)$ (we assume wlog that $f(\emptyset)=0$)

We claim that y is optimal and in $B(f)$.
The optimality follows from Langrange duality, doesn't rely on submodularity

The point y is valid

Lemma
$y(U)=f(U)$
Proof.

$$
y(U)=\sum_{j=1}^{n} y_{j}=\sum_{j=1}^{n} f\left(i_{1}, \ldots, i_{j}\right)-f\left(i_{1}, \ldots, i_{j-1}\right)=f\left(i_{1}, \ldots, i_{n}\right)-f(\emptyset)=f(U)
$$

The point y is valid

Lemma
$y(B) \leq f(B)$ for any $B \subseteq U$
Proof.
Write $B_{j}=B \cap\left\{i_{1}, \ldots, i_{j}\right\}$.

The point y is valid

Lemma
$y(B) \leq f(B)$ for any $B \subseteq U$

Proof.

Write $B_{j}=B \cap\left\{i_{1}, \ldots, i_{j}\right\}$. Then

$$
\begin{aligned}
y(B) & =\sum_{j \in B} f\left(i_{1}, \ldots, i_{j}\right)-f\left(i_{1}, \ldots, i_{j-1}\right) \\
& \leq \sum_{j \in B} f\left(B_{j-1} \cup i_{j}\right)-f\left(B_{j-1}\right) \\
& =\sum_{j \in B} f\left(B_{j}\right)-f\left(B_{j-1}\right) \\
& =f(B)
\end{aligned}
$$

Summary

Minimum norm approach

- Find $x \in B(f)$ with the smallest norm
- Negative components of x minimize f
- Wolfe's algorithm: iterative algorithm, looks like gradient descent
- ...but stops in finite number of steps
- Requires solving linear program
- ...which can be done easily since f is submodular

Encore: optimality of y

Langrange duality

Minimize $p(z)$ such that $q_{i}(z) \leq 0$ and $r_{j}(z)=0$.

Langrange duality

Minimize $p(z)$ such that $q_{i}(z) \leq 0$ and $r_{j}(z)=0$. Define Langrangian

$$
\Lambda(z, \lambda, \mu)=p(z)+\sum_{i} \lambda_{i} q_{i}(z)+\sum_{j} \mu_{j} r_{j}(z) .
$$

Langrange duality

Minimize $p(z)$ such that $q_{i}(z) \leq 0$ and $r_{j}(z)=0$. Define Langrangian

$$
\Lambda(z, \lambda, \mu)=p(z)+\sum_{i} \lambda_{i} q_{i}(z)+\sum_{j} \mu_{j} r_{j}(z) .
$$

Define dual

$$
d(\lambda, \mu)=\min _{z} \Lambda(z, \lambda, \mu)
$$

Langrange duality

Minimize $p(z)$ such that $q_{i}(z) \leq 0$ and $r_{j}(z)=0$. Define Langrangian

$$
\Lambda(z, \lambda, \mu)=p(z)+\sum_{i} \lambda_{i} q_{i}(z)+\sum_{j} \mu_{j} r_{j}(z) .
$$

Define dual

$$
d(\lambda, \mu)=\min _{z} \Lambda(z, \lambda, \mu)
$$

Let y such that $q_{i}(z) \leq 0$ and $r_{j}(y)=0$ and let $\lambda \geq 0$ and μ. Then

$$
p(y) \geq d(\lambda, \mu)
$$

If we can find y, λ and μ such that $p(y)=d(\lambda, \mu)$, then y is optimal.

Langrangian for our case

$$
\begin{aligned}
\Lambda(z, \lambda, \mu) & =x^{\top} z+\mu[z(U)-f(U)]+\sum_{B \subset U} \lambda_{B}[z(B)-f(B)] \\
& =-\mu f(U)-\sum_{B \subset U} f(B)+\sum_{i=1}^{n} z_{i}\left(x_{i}+\mu+\sum_{i \in B \subset U} \lambda_{B}\right)
\end{aligned}
$$

Langrangian for our case

$$
\begin{aligned}
\Lambda(z, \lambda, \mu) & =x^{\top} z+\mu[z(U)-f(U)]+\sum_{B \subset U} \lambda_{B}[z(B)-f(B)] \\
& =-\mu f(U)-\sum_{B \subset U} f(B)+\sum_{i=1}^{n} z_{i}\left(x_{i}+\mu+\sum_{i \in B \subset U} \lambda_{B}\right)
\end{aligned}
$$

The dual is

$$
d(\lambda, \mu)=\min _{z}-\mu f(U)-\sum_{B \subset U} \lambda_{B} f(B)+\sum_{i=1}^{n} z_{i}\left(x_{i}+\mu+\sum_{i \in B \subset U} \lambda_{B}\right)
$$

Langrangian for our case

$$
\begin{aligned}
\Lambda(z, \lambda, \mu) & =x^{\top} z+\mu[z(U)-f(U)]+\sum_{B \subset U} \lambda_{B}[z(B)-f(B)] \\
& =-\mu f(U)-\sum_{B \subset U} f(B)+\sum_{i=1}^{n} z_{i}\left(x_{i}+\mu+\sum_{i \in B \subset U} \lambda_{B}\right)
\end{aligned}
$$

The dual is

$$
d(\lambda, \mu)=\min _{z}-\mu f(U)-\sum_{B \subset U} \lambda_{B} f(B)+\sum_{i=1}^{n} z_{i}\left(x_{i}+\mu+\sum_{i \in B \subset U} \lambda_{B}\right)
$$

If $x_{i}+\mu+\sum_{i \in B \subset U} \lambda_{B}=0$ for every i, then

$$
d(\lambda, \mu)=-\mu f(U)-\sum_{B \subset U} \lambda_{B} f(B)
$$

Otherwise, $d(\lambda, \mu)=-\infty$ (that is λ, μ are not optimal).

Langrangian for our case

We need to find $\lambda \geq 0$ and μ such that for every i

$$
x_{i}+\mu+\sum_{i \in T \subset U} \lambda_{T}=0
$$

and

$$
x^{T} y=-\mu f(U)-\sum_{T \subset U} \lambda_{T} f(T)
$$

Langrangian for our case

We need to find $\lambda \geq 0$ and μ such that for every i

$$
x_{i}+\mu+\sum_{i \in T \subset U} \lambda_{T}=0
$$

and

$$
x^{T} y=-\mu f(U)-\sum_{T \subset U} \lambda_{T} f(T)
$$

Set

$$
\mu=-x_{n}, \quad \lambda_{i_{1}, \ldots, i_{j}}=x_{i_{j+1}}-x_{i_{j}}
$$

and $\lambda_{T}=0$ for the remaining sets.

Langrangian for our case

First, since $x_{i_{j}}$ are ordered, $\lambda_{i_{1}, \ldots, i_{j}}=x_{i_{j+1}}-x_{i_{j}} \geq 0$.

Langrangian for our case

First, since $x_{i j}$ are ordered, $\lambda_{i_{1}, \ldots, i_{j}}=x_{i_{j+1}}-x_{i j} \geq 0$. Next,

$$
\sum_{i_{k} \in T \subset U} \lambda_{T}=\sum_{j=k}^{n-1} x_{i_{j+1}}-x_{i_{j}}=x_{n}-x_{i_{k}}=-\mu-x_{i_{k}} .
$$

Langrangian for our case

First, since $x_{i j}$ are ordered, $\lambda_{i_{1}, \ldots, i_{j}}=x_{i_{j+1}}-x_{i j} \geq 0$. Next,

$$
\sum_{i_{k} \in T \subset U} \lambda_{T}=\sum_{j=k}^{n-1} x_{i_{j+1}}-x_{i_{j}}=x_{n}-x_{i_{k}}=-\mu-x_{i_{k}} .
$$

Finally,

$$
\begin{aligned}
\mu f(U)+\sum_{T \subset U} \lambda_{T} f(T) & =-x_{n} f(U)+\sum_{j=1}^{n-1}\left(x_{i_{j+1}}-x_{i_{j}}\right) f\left(i_{1}, \ldots, i_{j}\right) \\
& =\sum_{j=1}^{n-1} x_{i_{j+1}} f\left(i_{1}, \ldots, i_{j}\right)-\sum_{j=1}^{n} x_{i j} f\left(i_{1}, \ldots, i_{j}\right) \\
& =\sum_{j=1}^{n} x_{j}\left(f\left(i_{1}, \ldots, i_{j-1}\right)-f\left(i_{1}, \ldots, i_{j}\right)\right)=-\sum_{j=1}^{n} x_{j} y_{j}
\end{aligned}
$$

