HELSINKI INSTITUTE FOR

HELSINGIN
YLIOPISTO INFORMATION TECHNOLOGY

HIIT FOUNDATIONS FRIDAY

ON COUNTING PROPOSITIONAL LOGIC AND WAGNER’S HIERARCHY

melissa.antonelli@helsinki.fi

CONTENTS

1. On Wagner’s Hierarchy|

2. On (Univariate) Counting Propositional Logic|
3. Characterizing the Counting Hierarchy

M Tnferested in Further Defails?

[References]

5. Additional Materiall

[5.1. Proof Theory of CPLg

B2 Multivariate CPL]

1. ON WAGNER’'S HIERARCHY

A counting Turing machine is a standard nondeterministic TM with an auxiliary out-
put device that (magically) prints in binary notation on a special tape the number of
accepting computations induced by the input [I7, p. 191]

Probabilistic and Counting Computational Models and Classes
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...there are many natural computational problems whose complexity cannot be mod-
elized in terms of existential and universal quantifiers; on the other hand this complexity
is captured by other complexity classes, more adapted to the idea of counting. [I5] p.

213]
Definition 1 (Counting Hierarchy, Oracle Characterization [15], 16, [d]). Let n > 0,
CH, = P
CH,,, = PPCH"
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2 ON COUNTING PROPOSITIONAL LOGIC AND WAGNER’S HIERARCHY

2. ON (UNIVARIATE) COUNTING PROPOSITIONAL LoOGIC

Definition 2 (Formulas of CPLy). Formulas of CPLy are defined by the grammar below:
Fu=i|~F|FAF|FVF|C'F |D'F

where © € N and q € Qpo,1]-

Let o(%) be the o-algebra generated by €, namely the set of all cylinders, (i.e. the smallest

o-algebra containing ¢ and which is Borel), and p denote the standard cylinder measure over

o(€) (i.e. the unique measure on o(¢) such that p(Cyl(i)) = 3), see [8].

Definition 3 (Semantics of CPLg). For each CPLg-formula, F, its interpretation is the mea-
surable set, [F] € #(2N) inductively defined as follows:

[i] = Cy1(3) (C1F] = {2“ if n([A]) > ¢
[-F] := 2N — [F] 0 otherwise

[F A G] = [F N [C] poppo 2 H(lAD <
[FV@E]:=[F]Uld] R otherwise.

3. CHARACTERIZING THE COUNTING HIERARCHY

Complete Problems and Classical Logic
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Is there a logical system characterizing CH in the same way?

1. [19, Theorem 7]: For each level CH}, there is a complete problem W* defined due to
counting operators over languages.
2. From univariate CPLy to multivariate CPL.:
i~ i,
CF ~ CIF
3. Every formula of CPL can be converted into positive prenex normal form (PPNF), where
a formula of CPL is in PPNF if it is both in PNF and D-free.

Theorem 1 ([4, [7]). The wvalidity problem for formulas of CPL with k nested quantifiers is
complete for CHy,.

4. INTERESTED IN FURTHER DETAILS?

On what partially introduced today,

e Counting propositional logics and Wagner’s hierarchy [4} [7].
e Preliminary study on the expressive power of CPLy as a model for stochastic experi-
ments [2].
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Other studies we are conducting on measure-quantified logics and probabilsitic computation:

e Probabilistic Curry-Howard correspondence: intuitionistic iCPLy and counting-typed
randomized A-calculus [6].

e Extended measure-quantified language for arithmetic and its relations with randomized
computation [5].

e A randomized bounded theory to capture BPP (under review, abstract available [3]).
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5. ADDITIONAL MATERIAL
5.1. Proof Theory of CPL,.
Definition 4 (Boolean Formula). The grammar of Boolean formulas is as below:
bi=x | T|L|-b|bAb|bVb,

where © € N. The interpretation of a Boolean formula b is defined in an inductive way:

[xi] = Cyli [-b] = 2" — ]
[T =2" [oAc] = [e] N e]
[L] =0 [bve] = [p] U e].

Definition 5 (Labelled Formula). A labelled formula is an expression of one of the formsb — F
and b «— F, where b is a Boolean formula and F is a counting one. A labelled sequent is a
sequent of the form & L, where L is a labelled formula.

The proof system LKcp, is defined by the rules illustrated in Figure

Initial Sequents

bF x, X, EDb
Toon Axl Toe—n Ax2
Set Rules
Fcr— F Fd— F bEcVd R
Fb— I ©
Fc—F Fd—F cANdED R
Fb«—F n

Logical Rules

Fec—F bE —c

Fecr— F -cFEDb

Fb— —F = Fb——F &
Fbro F - Fb— G _
Fb— FVG RI Fb— FVG R2y
Fb«— F Fb—G R Fb— F Fb— G R=
Fb—~FVG v Fb— FAG A
Fb—F — Fb—~G —
Fob—~FAG RIx Fb—FAG R2,
Counting Rules
p([p]) =0 B p(e)) =1 .
Fb— F w b« F w
Fec— F p(lcl) > q R Fc—F p(lcl) <q R
Fbr— CIF c Fbe« CIF c
Fec—F p(lel) <q e Fec— F p([c]) > ¢ R
Fb— DIF b F b« DIF b

FIGURE 1. Sequent Calculus LKcp|,
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FI1GURE 2. Skeleton of LKcpy,-Completeness Proof

5.2. Multivariate CPL.
Language of CPL.

Definition 6 (Formulas of CPL). Formulas of CPL are defined by the grammar below:
F:=i, |-F|FANF|FVF|CIF|DIF
where i € N, a is a name, and q € Q[o,1)-

The intuitive meaning of named quantifiers is that they count models relative to the correspond-
ing bounded variables. Named quantifiers, CZ, D¢, bind the occurrences of name a in A. Given a
formula A, FN(A) denotes the set of names occurring free in A. Names can be used to distinguish
between distinct groups of propositional variables.

Semantics of CPL. The interpretation of a formula A now depends on the choice of a finite set
of names X O FN(A) and is a measurable set [A]x belonging to the Borel algebra, Z((2V)X).
The quantifiers CZ, DY correspond to operations allowing one to pass from Z((2V)XY{e}) to
Z((2N)X). To define such operations we need the following technical notation:

Definition 7 (f-projection). Let X,Y be two disjoint finite sets of names and f € (2N)X. For
all X C (2N)XYY | the f-projection of X is the set:

(X)) ={ge V) | frgex}c (V)"
where (f + g)(a) is f(a), ifa € X and g(a) ifa €Y.

Suppose X,Y are disjoint sets of names, with FN(A) C X UY. Then, if we fix a valuation
f € (2N)X of the variables of A with names in X, the set II;([A]xuy) describes the set of
valuations of the variables of A with names in Y which extend f.

Definition 8 (Semantics of CPL). For each formula A of CPL, and finite set of names such
that X D FN(A), the interpretation of A, [A]x C (2V)¥, is inductively defined as follows:

[ia]x = {f | f(a)(i) =1} [-Alx = (2")* - [4]x
[AAB]x =[Alx N[Blx [CIAlx ={f | p(ILs([A] xUa})) = a}
[AV B]x = [A]lx U[B]x [DIAlx = {f | u(;([A]x01ay)) < q}-

Example 1. Let F be the formula of CPL:
F: (20N (525 A3)) A (720 A (20 A=30)) V(524 A 34) A 3s)

The valuations f € (2N} belonging to [[C}L/ZF]]{Z,} are those which can be extended to valuations
of all Boolean variables in F', satisfying in at least half of the cases. Let us list all possible cases:

(1) f(b)(2) = f(b)(3) =1, then F has % chances of being true, as both =2, and 3, must be
true.
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(2) f(b)(2) =1 and f(b)(3) =0, then F has § chances of being true, as =2, must be true.

(3) f(b)(2) =0 and f(b)(3) = 1, then F has 2 chances of being true, as either 2, or both
-2, and 3, must be true.

(4) f(b)(2) = f(b)(3) =0, then F' has no chances of being true.
Clearly, [[C}L/QF]]{Z,} only contains the valuations which agree with cases 2. and 3. Therefore

[[Cl/QC}Z/QF]]@ =2N - that is Cl/2bC(11/2F is valid — since half of the valuations of b has at least
% chances of being extended to a model for F.
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