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1. On Wagner’s Hierarchy

A counting Turing machine is a standard nondeterministic TM with an auxiliary out-
put device that (magically) prints in binary notation on a special tape the number of
accepting computations induced by the input [17, p. 191]

Probabilistic and Counting Computational Models and Classes
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. . . there are many natural computational problems whose complexity cannot be mod-
elized in terms of existential and universal quantifiers; on the other hand this complexity
is captured by other complexity classes, more adapted to the idea of counting. [15, p.
213]

Definition 1 (Counting Hierarchy, Oracle Characterization [15, 16, 1]). Let n ≥ 0,

CH0 = P

CHn+1 = PPCHn .
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2 ON COUNTING PROPOSITIONAL LOGIC AND WAGNER’S HIERARCHY

2. On (Univariate) Counting Propositional Logic

Definition 2 (Formulas of CPL0). Formulas of CPL0 are defined by the grammar below:

F ::= i | ¬F | F ∧ F | F ∨ F | CqF | DqF

where i ∈ N and q ∈ Q[0,1].

Let σ(C ) be the σ-algebra generated by C , namely the set of all cylinders, (i.e. the smallest
σ-algebra containing C and which is Borel), and µ denote the standard cylinder measure over
σ(C ) (i.e. the unique measure on σ(C ) such that µ(Cyl(i)) = 1

2 ), see [8].

Definition 3 (Semantics of CPL0). For each CPL0-formula, F , its interpretation is the mea-
surable set, JF K ∈ B(2N) inductively defined as follows:

JiK := Cyl(i)

J¬F K := 2N − JF K
JF ∧GK := JF K ∩ JGK
JF ∨GK := JF K ∪ JGK

JCqF K :=

{
2N if µ(JAK) ≥ q

∅ otherwise

JDqF K :=

{
2N if µ(JAK) < q

∅ otherwise.

3. Characterizing the Counting Hierarchy

Complete Problems and Classical Logic

1970 1975 1980 1985 1990

C
oo
k
an
d
Le
vi
n:
SA
T
is
N
P
-c
om
pl
et
e

M
ey
er
an
d
St
oc
km
ey
er
’s:

QPL
an
d
P
H

W
ag
er
’s,
Pa
rb
er
ry
an
d
Sc
hn
itg
er
’s
C
H

Is there a logical system characterizing CH in the same way?

1. [19, Theorem 7]: For each level CHk there is a complete problem W k defined due to
counting operators over languages.

2. From univariate CPL0 to multivariate CPL:

i ; ia

CqF ; Cq
aF.

3. Every formula of CPL can be converted into positive prenex normal form (PPNF), where
a formula of CPL is in PPNF if it is both in PNF and D-free.

Theorem 1 ([4, 7]). The validity problem for formulas of CPL with k nested quantifiers is
complete for CHk.

4. Interested in Further Details?

On what partially introduced today,

• Counting propositional logics and Wagner’s hierarchy [4, 7].
• Preliminary study on the expressive power of CPL0 as a model for stochastic experi-
ments [2].
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Other studies we are conducting on measure-quantified logics and probabilsitic computation:

• Probabilistic Curry-Howard correspondence: intuitionistic iCPL0 and counting-typed
randomized λ-calculus [6].

• Extended measure-quantified language for arithmetic and its relations with randomized
computation [5].

• A randomized bounded theory to capture BPP (under review, abstract available [3]).
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5. Additional Material

5.1. Proof Theory of CPL0.

Definition 4 (Boolean Formula). The grammar of Boolean formulas is as below:

b ::= xi | ⊤ | ⊥ | ¬b | b ∧ b | b ∨ b,

where i ∈ N. The interpretation of a Boolean formula b is defined in an inductive way:

JxiK = Cyli

J⊤K = 2N

J⊥K = ∅

J¬bK = 2N − JbK
Jb ∧ cK = JbK ∩ JcK
Jb ∨ cK = JbK ∪ JcK.

Definition 5 (Labelled Formula). A labelled formula is an expression of one of the forms b ↣ F
and b ↢ F , where b is a Boolean formula and F is a counting one. A labelled sequent is a
sequent of the form ⊢ L, where L is a labelled formula.

The proof system LKCPL0
is defined by the rules illustrated in Figure 1.

Initial Sequents

b ⊨ xn
Ax1⊢ b ↣ n

xn ⊨ b
Ax2⊢ b ↢ n

Set Rules

⊢ c ↣ F ⊢ d ↣ F b ⊨ c ∨ d
R↣

∪⊢ b ↣ F

⊢ c ↢ F ⊢ d ↢ F c ∧ d ⊨ b
R↢

∩⊢ b ↢ F
Logical Rules

⊢ c ↢ F b ⊨ ¬c
R↣

¬⊢ b ↣ ¬F
⊢ c ↣ F ¬c ⊨ b

R↢
¬⊢ b ↢ ¬F

⊢ b ↣ F
R1↣∨⊢ b ↣ F ∨G

⊢ b ↣ G
R2↣∨⊢ b ↣ F ∨G

⊢ b ↢ F ⊢ b ↢ G
R↢

∨⊢ b ↢ F ∨G
⊢ b ↣ F ⊢ b ↣ G

R↣
∧⊢ b ↣ F ∧G

⊢ b ↢ F
R1↢∧⊢ b ↢ F ∧G

⊢ b ↢ G
R2↢∧⊢ b ↢ F ∧G

Counting Rules

µ(JbK) = 0
R↣

µ⊢ b ↣ F

µ(JbK) = 1
R↢

µ⊢ b ↢ F
⊢ c ↣ F µ(JcK) ≥ q

R↣
C⊢ b ↣ CqF

⊢ c ↢ F µ(JcK) < q
R↢

C⊢ b ↢ CqF
⊢ c ↢ F µ(JcK) < q

R↣
D⊢ b ↣ DqF

⊢ c ↣ F µ(JcK) ≥ q
R↢

D⊢ b ↢ DqF

Figure 1. Sequent Calculus LKCPL0
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⊨ L

Existential-Preservation

of Validity

⊨ Ψ
Ψ normal form of {⊢ L}

Derivability and Validity for NF

⊢ Ψ

⊢ L

Back-Preservation

of Derivability

Figure 2. Skeleton of LKCPL0
-Completeness Proof

5.2. Multivariate CPL.
Language of CPL.

Definition 6 (Formulas of CPL). Formulas of CPL are defined by the grammar below:

F ::= ia | ¬F | F ∧ F | F ∨ F | Cq
aF | Dq

aF

where i ∈ N, a is a name, and q ∈ Q[0,1].

The intuitive meaning of named quantifiers is that they count models relative to the correspond-
ing bounded variables. Named quantifiers, Cq

a,D
q
a, bind the occurrences of name a in A. Given a

formula A, FN(A) denotes the set of names occurring free in A. Names can be used to distinguish
between distinct groups of propositional variables.
Semantics of CPL. The interpretation of a formula A now depends on the choice of a finite set
of names X ⊇ FN(A) and is a measurable set JAKX belonging to the Borel algebra, B((2N)X).
The quantifiers Cq

a,D
q
a correspond to operations allowing one to pass from B((2N)X∪{a}) to

B((2N)X). To define such operations we need the following technical notation:

Definition 7 (f -projection). Let X,Y be two disjoint finite sets of names and f ∈ (2N)X . For
all X ⊆ (2N)X∪Y , the f -projection of X is the set:

Πf (X ) = {g ∈ (2N)Y | f + g ∈ X} ⊆ (2N)Y ,

where (f + g)(α) is f(α), if α ∈ X and g(α) if α ∈ Y .

Suppose X,Y are disjoint sets of names, with FN(A) ⊆ X ∪ Y . Then, if we fix a valuation
f ∈ (2N)X of the variables of A with names in X, the set Πf

(
JAKX∪Y

)
describes the set of

valuations of the variables of A with names in Y which extend f .

Definition 8 (Semantics of CPL). For each formula A of CPL, and finite set of names such
that X ⊃ FN(A), the interpretation of A, JAKX ⊆ (2N)X , is inductively defined as follows:

JiaKX = {f | f(a)(i) = 1}
JA ∧BKX = JAKX ∩ JBKX
JA ∨BKX = JAKX ∪ JBKX

J¬AKX = (2N)X − JAKX
JCq

aAKX = {f | µ(Πf (JAKX∪{a})) ≥ q}
JDq

aAKX = {f | µ(Πf (JAKX∪{a})) < q}.

Example 1. Let F be the formula of CPL:

F :
(
2a ∧ (¬2b ∧ 3b)

)
∧
(
¬2a ∧ (2b ∧ ¬3b)

)
∨
(
(¬2a ∧ 3a) ∧ 3b

)
The valuations f ∈ (2N){b} belonging to JC1/2

a F K{b} are those which can be extended to valuations
of all Boolean variables in F , satisfying in at least half of the cases. Let us list all possible cases:

(1) f(b)(2) = f(b)(3) = 1, then F has 1
4 chances of being true, as both ¬2a and 3a must be

true.
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(2) f(b)(2) = 1 and f(b)(3) = 0, then F has 1
2 chances of being true, as ¬2a must be true.

(3) f(b)(2) = 0 and f(b)(3) = 1, then F has 3
4 chances of being true, as either 2a or both

¬2a and 3a must be true.
(4) f(b)(2) = f(b)(3) = 0, then F has no chances of being true.

Clearly, JC1/2
a F K{b} only contains the valuations which agree with cases 2. and 3. Therefore

JC1/2C
1/2
a F K∅ = 2N – that is C1/2bC

1/2
a F is valid – since half of the valuations of b has at least

1
2 chances of being extended to a model for F .
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