HIIT FOUNDATIONS FRIDAY

ON COUNTING PROPOSITIONAL LOGIC AND WAGNER'S HIERARCHY

melissa.antonelli@helsinki.fi

Contents

1. On Wagner's Hierarchy 1
2. On (Univariate) Counting Propositional Logic 2
3. Characterizing the Counting Hierarchy 2
4. Interested in Further Details? 2
References 3
5. Additional Material 4
5.1. Proof Theory of $\mathbb{C P L}_{0}$ 4
5.2. Multivariate $\mathbb{C P L}$ 5

1. On Wagner's Hierarchy

A counting Turing machine is a standard nondeterministic TM with an auxiliary output device that (magically) prints in binary notation on a special tape the number of accepting computations induced by the input [17, p. 191]

Probabilistic and Counting Computational Models and Classes

...there are many natural computational problems whose complexity cannot be modelized in terms of existential and universal quantifiers; on the other hand this complexity is captured by other complexity classes, more adapted to the idea of counting. [15, p. 213]

Definition 1 (Counting Hierarchy, Oracle Characterization [15, 16, 1]). Let $n \geq 0$,

$$
\begin{aligned}
\mathbf{C H}_{0} & =\mathbf{P} \\
\mathbf{C H}_{n+1} & =\mathbf{P P}^{\mathbf{C H}} .
\end{aligned}
$$

Date: April 21, 2023.

2. On (Univariate) Counting Propositional Logic

$$
F::=\mathbf{i}|\neg F| F \wedge F|F \vee F| \mathbf{C}^{q} F \mid \mathbf{D}^{q} F
$$

where $i \in \mathbb{N}$ and $q \in \mathbb{Q}_{[0,1]}$.
Let $\sigma(\mathscr{C})$ be the σ-algebra generated by \mathscr{C}, namely the set of all cylinders, (i.e. the smallest σ-algebra containing \mathscr{C} and which is Borel), and μ denote the standard cylinder measure over $\sigma(\mathscr{C})$ (i.e. the unique measure on $\sigma(\mathscr{C})$ such that $\left.\mu(\operatorname{Cyl}(i))=\frac{1}{2}\right)$, see [8].

Definition 3 (Semantics of $\mathbb{C P L}_{0}$). For each $\mathbb{C P L}_{0}$-formula, F, its interpretation is the measurable set, $\llbracket F \rrbracket \in \mathscr{B}\left(2^{\mathbb{N}}\right)$ inductively defined as follows:

$$
\begin{aligned}
\llbracket \mathbf{i} \rrbracket & :=\mathrm{Cyl}(i) & \llbracket \mathbf{C}^{q} F \rrbracket:= \begin{cases}2^{\mathbb{N}} & \text { if } \mu(\llbracket A \rrbracket) \geq q \\
\emptyset & \\
\text { otherwise }\end{cases} \\
\llbracket F \neg \rrbracket:=2^{\mathbb{N}}-\llbracket F \rrbracket & & \llbracket \mathbf{D}^{q} F \rrbracket:= \begin{cases}2^{\mathbb{N}} & \text { if } \mu(\llbracket A \rrbracket)<q \\
\emptyset & \text { otherwise. }\end{cases}
\end{aligned}
$$

3. Characterizing the Counting Hierarchy

Complete Problems and Classical Logic

Is there a logical system characterizing $\mathbf{C H}$ in the same way?

1. [19, Theorem 7]: For each level $\mathbf{C H}_{k}$ there is a complete problem W^{k} defined due to counting operators over languages.
2. From univariate $\mathbb{C P L}_{0}$ to multivariate $\mathbb{C P L}$:

$$
\begin{aligned}
\mathbf{i} & \sim \mathbf{i}_{a} \\
\mathbf{C}^{q} F & \sim \mathbf{C}_{a}^{q} F .
\end{aligned}
$$

3. Every formula of $\mathbb{C P L}$ can be converted into positive prenex normal form (PPNF), where a formula of $\mathbb{C P L}$ is in PPNF if it is both in PNF and \mathbf{D}-free.

Theorem 1 ([4, 7]). The validity problem for formulas of $\mathbb{C P L}$ with k nested quantifiers is complete for $\mathbf{C H}_{k}$.

4. Interested in Further Details?

On what partially introduced today,

- Counting propositional logics and Wagner's hierarchy [4, 7.
- Preliminary study on the expressive power of $\mathbb{C P L}_{0}$ as a model for stochastic experiments [2].

Other studies we are conducting on measure-quantified logics and probabilsitic computation:

- Probabilistic Curry-Howard correspondence: intuitionistic $\mathbb{i} \mathbb{C P} \mathbb{L}_{0}$ and counting-typed randomized λ-calculus [6.
- Extended measure-quantified language for arithmetic and its relations with randomized computation (5).
- A randomized bounded theory to capture BPP (under review, abstract available [3]).

References

[1] E.W. Allender and K.W. Wagner. Counting Hierarchies: Polynomial Time and Constant Depth Circuits. In Current Trends in Theoretical Computer Science, pages 469-483, 1993.
[2] M. Antonelli. Two Remarks on Counting Propositional Logic. In Proc. BEWARE, AIxIA Conference, pages 20-32, 2023.
[3] M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone. Towards Randomized Bounded Arithmetic. In Proc. AILA (Book of Abstract), 2022.
[4] M. Antonelli, U. Dal Lago, and P. Pistone. On Counting Propositional Logic and Wagner's Hierarchy. In Proc. ICTCS, pages 107-121, 2021.
[5] M. Antonelli, U. Dal Lago, and P. Pistone. On Measure Quantifiers in First-Order Arithmetic. In Proc. CiE, pages 12-24, 2021.
[6] M. Antonelli, U. Dal Lago, and P. Pistone. Curry and Howard Meet Borel. In Proc. LICS, pages 1-13, 2022.
[7] M. Antonelli, U. Dal Lago, and P. Pistone. Towards Logical Foudations for Probabilistic Computation. Annals of Pure and Applied Logic, to appear (we hope).
[8] P. Billingsley. Probability and Measure. Wiley, 1995.
[9] J.T. Gill. Computational Complexity of Probabilistic Turing Machines. In Proc. STOC, pages 91-95, 1974.
[10] J.T. Gill. Computational Complexity of Probabilistic Turing Machines. SIAM Journal on Computing, 6(4):675-695, 1977.
[11] A.R. Meyer and L.J. Stockmeyer. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space. In Proc. SWAT, pages 125-129, 1972.
[12] A.R. Meyer and L.J. Stockmeyer. Word Problems Requiring Exponential Time (Preliminary Report). In Proc. STOC, pages 1-9, 1973.
[13] I. Parberry and G. Schnitger. Parallel Computation with Threshold Functions. JCSS, 36:278-302, 1988.
[14] J. Simon. On Some Central Problems in Computational Complexity. PhD thesis, Cornell University, 1975.
[15] J. Torán. An Oracle Characterization of the Counting Hierarchy. In Proc. Structure in Complexity Theory Third Annual Conference, pages 213-223, 1988.
[16] J. Torán. Complexity Classes defined by Counting Quantifiers. Journal of the ACM, 38(3):753-774, 1991.
[17] L.G. Valiant. The Complexity of Computing the Permanent. TCS, 8(2):189-201, 1979.
[18] K.W. Wagner. Compact Descriptions and the Counting Polynomial-Time Hierarchy. In Frege Conference 1984: Proc. International Conference held at Schwerin, pages 383-392, 1984.
[19] K.W. Wagner. The Complexity of Combinatorial Problems with Succinct Input Representation. Acta Informatica, 23:325-356, 1986.

5. Additional Material

5.1. Proof Theory of $\mathbb{C P L}_{0}$.

Definition 4 (Boolean Formula). The grammar of Boolean formulas is as below:

$$
\mathrm{b}::=\mathrm{x}_{i}|\top| \perp|\neg \mathrm{b}| \mathrm{b} \wedge \mathrm{~b} \mid \mathrm{b} \vee \mathrm{~b},
$$

where $i \in \mathbb{N}$. The interpretation of a Boolean formula b is defined in an inductive way:

$$
\begin{aligned}
& \llbracket \mathrm{x}_{i} \rrbracket=\text { Cyli } \\
& \llbracket \top \rrbracket=2^{\mathbb{N}} \\
& \llbracket \perp \rrbracket=\emptyset
\end{aligned}
$$

$$
\begin{aligned}
\llbracket \neg \mathrm{b} \rrbracket & =2^{\mathbb{N}}-\llbracket \mathrm{b} \rrbracket \\
\llbracket \mathrm{~b} \wedge \mathrm{c} \rrbracket & =\llbracket \mathrm{b} \rrbracket \cap \llbracket \mathrm{c} \rrbracket \\
\llbracket \mathrm{~b} \vee \mathrm{c} \rrbracket & =\llbracket \mathrm{b} \rrbracket \cup \llbracket \mathrm{c} \rrbracket .
\end{aligned}
$$

Definition 5 (Labelled Formula). A labelled formula is an expression of one of the forms $\mathrm{b} \mapsto F$ and $\mathrm{b} \longleftarrow F$, where b is a Boolean formula and F is a counting one. A labelled sequent is a sequent of the form $\vdash L$, where L is a labelled formula.

The proof system $\mathbf{L K}_{\mathbb{C P L}_{0}}$ is defined by the rules illustrated in Figure 1 .

Figure 1. Sequent Calculus $\mathbf{L K}_{\mathbb{C P L}_{0}}$

Figure 2. Skeleton of $\mathbf{L K}_{\mathbb{C P L}_{0}}$-Completeness Proof

5.2. Multivariate $\mathbb{C P L}$.

Language of $\mathbb{C P L}$.

Definition 6 (Formulas of $\mathbb{C P L}$). Formulas of $\mathbb{C P L}$ are defined by the grammar below:

$$
F::=\mathbf{i}_{a}|\neg F| F \wedge F|F \vee F| \mathbf{C}_{a}^{q} F \mid \mathbf{D}_{a}^{q} F
$$

where $i \in \mathbb{N}$, a is a name, and $q \in \mathbb{Q}_{[0,1]}$.
The intuitive meaning of named quantifiers is that they count models relative to the corresponding bounded variables. Named quantifiers, $\mathbf{C}_{a}^{q}, \mathbf{D}_{a}^{q}$, bind the occurrences of name a in A. Given a formula $A, \operatorname{FN}(A)$ denotes the set of names occurring free in A. Names can be used to distinguish between distinct groups of propositional variables.
Semantics of $\mathbb{C P L}$. The interpretation of a formula A now depends on the choice of a finite set of names $X \supseteq \operatorname{FN}(A)$ and is a measurable set $\llbracket A \rrbracket_{X}$ belonging to the Borel algebra, $\mathscr{B}\left(\left(2^{\mathbb{N}}\right)^{X}\right)$. The quantifiers $\mathbf{C}_{a}^{q}, \mathbf{D}_{a}^{q}$ correspond to operations allowing one to pass from $\mathscr{B}\left(\left(2^{\mathbb{N}}\right)^{X \cup\{a\}}\right)$ to $\mathscr{B}\left(\left(2^{\mathbb{N}}\right)^{X}\right)$. To define such operations we need the following technical notation:
Definition 7 (f-projection). Let X, Y be two disjoint finite sets of names and $f \in\left(2^{\mathbb{N}}\right)^{X}$. For all $\mathcal{X} \subseteq\left(2^{\mathbb{N}}\right)^{X \cup Y}$, the f-projection of \mathcal{X} is the set:

$$
\Pi_{f}(\mathcal{X})=\left\{g \in\left(2^{\mathbb{N}}\right)^{Y} \mid f+g \in \mathcal{X}\right\} \subseteq\left(2^{\mathbb{N}}\right)^{Y}
$$

where $(f+g)(\alpha)$ is $f(\alpha)$, if $\alpha \in X$ and $g(\alpha)$ if $\alpha \in Y$.
Suppose X, Y are disjoint sets of names, with $F N(A) \subseteq X \cup Y$. Then, if we fix a valuation $f \in\left(2^{\mathbb{N}}\right)^{X}$ of the variables of A with names in X, the set $\Pi_{f}\left(\llbracket A \rrbracket_{X \cup Y}\right)$ describes the set of valuations of the variables of A with names in Y which extend f.

Definition 8 (Semantics of $\mathbb{C P L}$). For each formula A of $\mathbb{C P L}$, and finite set of names such that $X \supset F N(A)$, the interpretation of $\mathrm{A}, \llbracket A \rrbracket_{X} \subseteq\left(2^{\mathbb{N}}\right)^{X}$, is inductively defined as follows:

$$
\begin{aligned}
\llbracket \mathbf{i}_{a} \rrbracket_{X} & =\{f \mid f(a)(i)=1\} & \llbracket \neg A \rrbracket_{X} & =\left(2^{\mathbb{N}}\right)^{X}-\llbracket A \rrbracket_{X} \\
\llbracket A \wedge B \rrbracket_{X} & =\llbracket A \rrbracket_{X} \cap \llbracket B \rrbracket_{X} & \llbracket \mathbf{C}_{a}^{q} A \rrbracket_{X} & =\left\{f \mid \mu\left(\Pi_{f}\left(\llbracket A \rrbracket_{X \cup\{a\}}\right)\right) \geq q\right\} \\
\llbracket A \vee B \rrbracket_{X} & =\llbracket A \rrbracket_{X} \cup \llbracket B \rrbracket_{X} & \llbracket \mathbf{D}_{a}^{q} A \rrbracket_{X} & =\left\{f \mid \mu\left(\Pi_{f}\left(\llbracket A \rrbracket_{X \cup\{a\}}\right)\right)<q\right\} .
\end{aligned}
$$

Example 1. Let F be the formula of $\mathbb{C P L}$:

$$
F:\left(\mathbf{2}_{a} \wedge\left(\neg \mathbf{2}_{b} \wedge \mathbf{3}_{b}\right)\right) \wedge\left(\neg \mathbf{2}_{a} \wedge\left(\mathbf{2}_{b} \wedge \neg \mathbf{3}_{b}\right)\right) \vee\left(\left(\neg \mathbf{2}_{a} \wedge \mathbf{3}_{a}\right) \wedge \mathbf{3}_{b}\right)
$$

The valuations $f \in\left(2^{\mathbb{N}}\right)^{\{b\}}$ belonging to $\llbracket \mathbf{C}_{a}^{1 / 2} F \rrbracket_{\{b\}}$ are those which can be extended to valuations of all Boolean variables in F, satisfying in at least half of the cases. Let us list all possible cases:
(1) $f(b)(2)=f(b)(3)=1$, then F has $\frac{1}{4}$ chances of being true, as both $\neg \mathbf{2}_{a}$ and $\mathbf{3}_{a}$ must be true.
(2) $f(b)(2)=1$ and $f(b)(3)=0$, then F has $\frac{1}{2}$ chances of being true, as $\neg \mathbf{2}_{a}$ must be true.
(3) $f(b)(2)=0$ and $f(b)(3)=1$, then F has $\frac{3}{4}$ chances of being true, as either $\mathbf{2}_{a}$ or both $\neg \mathbf{2}_{a}$ and $\mathbf{3}_{a}$ must be true.
(4) $f(b)(2)=f(b)(3)=0$, then F has no chances of being true.

Clearly, $\llbracket \mathbf{C}_{a}^{1 / 2} F \rrbracket_{\{b\}}$ only contains the valuations which agree with cases 2. and 3. Therefore $\llbracket \mathbf{C}^{1 / 2} \mathbf{C}_{a}^{1 / 2} F \rrbracket_{\emptyset}=2^{\mathbb{N}}$ - that is $\mathbf{C} 1 / 2_{b} \mathbf{C}_{a}^{1 / 2} F$ is valid - since half of the valuations of b has at least $\frac{1}{2}$ chances of being extended to a model for F.

