

HIIT FOUNDATIONS FRIDAY

ON COUNTING PROPOSITIONAL LOGIC AND WAGNER'S HIERARCHY

melissa.antonelli@helsinki.fi

CONTENTS

1. On Wagner's Hierarchy	1
2. On (Univariate) Counting Propositional Logic	2
3. Characterizing the Counting Hierarchy	2
4. Interested in Further Details?	2
References	3
5. Additional Material	4
5.1. Proof Theory of \mathbb{CPL}_0	4
5.2. Multivariate \mathbb{CPL}	5

1. ON WAGNER'S HIERARCHY

A *counting Turing machine* is a standard nondeterministic TM with an auxiliary output device that (magically) prints in binary notation on a special tape the number of accepting computations induced by the input [17, p. 191]

Probabilistic and Counting Computational Models and Classes

...there are many natural computational problems whose complexity cannot be modeled in terms of existential and universal quantifiers; on the other hand this complexity is captured by other complexity classes, more adapted to the idea of counting. [15, p. 213]

Definition 1 (Counting Hierarchy, Oracle Characterization [15, 16, 1]). *Let $n \geq 0$,*

$$\mathbf{CH}_0 = \mathbf{P}$$

$$\mathbf{CH}_{n+1} = \mathbf{PP}^{\mathbf{CH}_n}.$$

2. ON (UNIVARIATE) COUNTING PROPOSITIONAL LOGIC

Definition 2 (Formulas of \mathbb{CPL}_0). Formulas of \mathbb{CPL}_0 are defined by the grammar below:

$$F ::= \mathbf{i} \mid \neg F \mid F \wedge F \mid F \vee F \mid \mathbf{C}^q F \mid \mathbf{D}^q F$$

where $i \in \mathbb{N}$ and $q \in \mathbb{Q}_{[0,1]}$.

Let $\sigma(\mathcal{C})$ be the σ -algebra generated by \mathcal{C} , namely the set of all cylinders, (i.e. the smallest σ -algebra containing \mathcal{C} and which is Borel), and μ denote the standard cylinder measure over $\sigma(\mathcal{C})$ (i.e. the unique measure on $\sigma(\mathcal{C})$ such that $\mu(\text{Cyl}(i)) = \frac{1}{2}$), see [8].

Definition 3 (Semantics of \mathbb{CPL}_0). For each \mathbb{CPL}_0 -formula, F , its interpretation is the measurable set, $\llbracket F \rrbracket \in \mathcal{B}(2^{\mathbb{N}})$ inductively defined as follows:

$$\begin{aligned} \llbracket \mathbf{i} \rrbracket &:= \text{Cyl}(i) & \llbracket \mathbf{C}^q F \rrbracket &:= \begin{cases} 2^{\mathbb{N}} & \text{if } \mu(\llbracket A \rrbracket) \geq q \\ \emptyset & \text{otherwise} \end{cases} \\ \llbracket \neg F \rrbracket &:= 2^{\mathbb{N}} - \llbracket F \rrbracket & \llbracket \mathbf{D}^q F \rrbracket &:= \begin{cases} 2^{\mathbb{N}} & \text{if } \mu(\llbracket A \rrbracket) < q \\ \emptyset & \text{otherwise.} \end{cases} \\ \llbracket F \wedge G \rrbracket &:= \llbracket F \rrbracket \cap \llbracket G \rrbracket & \\ \llbracket F \vee G \rrbracket &:= \llbracket F \rrbracket \cup \llbracket G \rrbracket & \end{aligned}$$

3. CHARACTERIZING THE COUNTING HIERARCHY

Complete Problems and Classical Logic

Is there a logical system characterizing **CH** in the same way?

1. [19, Theorem 7]: For each level \mathbf{CH}_k there is a complete problem W^k defined due to *counting operators over languages*.
2. From univariate \mathbb{CPL}_0 to multivariate \mathbb{CPL} :

$$\begin{aligned} \mathbf{i} &\rightsquigarrow \mathbf{i}_a \\ \mathbf{C}^q F &\rightsquigarrow \mathbf{C}_a^q F. \end{aligned}$$

3. Every formula of \mathbb{CPL} can be converted into *positive prenex normal form* (PPNF), where a formula of \mathbb{CPL} is in PPNF if it is both in PNF and **D**-free.

Theorem 1 ([4, 7]). The validity problem for formulas of \mathbb{CPL} with k nested quantifiers is complete for \mathbf{CH}_k .

4. INTERESTED IN FURTHER DETAILS?

On what partially introduced today,

- Counting propositional logics and Wagner's hierarchy [4, 7].
- Preliminary study on the expressive power of \mathbb{CPL}_0 as a model for stochastic experiments [2].

Other studies we are conducting on measure-quantified logics and probabilistic computation:

- Probabilistic Curry-Howard correspondence: intuitionistic \mathbf{iCPL}_0 and counting-typed randomized λ -calculus [6].
- Extended measure-quantified language for arithmetic and its relations with randomized computation [5].
- A randomized bounded theory to capture **BPP** (under review, abstract available [3]).

REFERENCES

- [1] E.W. Allender and K.W. Wagner. Counting Hierarchies: Polynomial Time and Constant Depth Circuits. In *Current Trends in Theoretical Computer Science*, pages 469–483, 1993.
- [2] M. Antonelli. Two Remarks on Counting Propositional Logic. In *Proc. BEWARE*, AIxIA Conference, pages 20–32, 2023.
- [3] M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone. Towards Randomized Bounded Arithmetic. In *Proc. AILA (Book of Abstract)*, 2022.
- [4] M. Antonelli, U. Dal Lago, and P. Pistone. On Counting Propositional Logic and Wagner’s Hierarchy. In *Proc. ICTCS*, pages 107–121, 2021.
- [5] M. Antonelli, U. Dal Lago, and P. Pistone. On Measure Quantifiers in First-Order Arithmetic. In *Proc. CiE*, pages 12–24, 2021.
- [6] M. Antonelli, U. Dal Lago, and P. Pistone. Curry and Howard Meet Borel. In *Proc. LICS*, pages 1–13, 2022.
- [7] M. Antonelli, U. Dal Lago, and P. Pistone. Towards Logical Foundations for Probabilistic Computation. *Annals of Pure and Applied Logic*, to appear (we hope).
- [8] P. Billingsley. *Probability and Measure*. Wiley, 1995.
- [9] J.T. Gill. Computational Complexity of Probabilistic Turing Machines. In *Proc. STOC*, pages 91–95, 1974.
- [10] J.T. Gill. Computational Complexity of Probabilistic Turing Machines. *SIAM Journal on Computing*, 6(4):675–695, 1977.
- [11] A.R. Meyer and L.J. Stockmeyer. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space. In *Proc. SWAT*, pages 125–129, 1972.
- [12] A.R. Meyer and L.J. Stockmeyer. Word Problems Requiring Exponential Time (Preliminary Report). In *Proc. STOC*, pages 1–9, 1973.
- [13] I. Parberry and G. Schnitger. Parallel Computation with Threshold Functions. *JCSS*, 36:278–302, 1988.
- [14] J. Simon. *On Some Central Problems in Computational Complexity*. PhD thesis, Cornell University, 1975.
- [15] J. Torán. An Oracle Characterization of the Counting Hierarchy. In *Proc. Structure in Complexity Theory Third Annual Conference*, pages 213–223, 1988.
- [16] J. Torán. Complexity Classes defined by Counting Quantifiers. *Journal of the ACM*, 38(3):753–774, 1991.
- [17] L.G. Valiant. The Complexity of Computing the Permanent. *TCS*, 8(2):189–201, 1979.
- [18] K.W. Wagner. Compact Descriptions and the Counting Polynomial-Time Hierarchy. In *Frege Conference 1984: Proc. International Conference held at Schwerin*, pages 383–392, 1984.
- [19] K.W. Wagner. The Complexity of Combinatorial Problems with Succinct Input Representation. *Acta Informatica*, 23:325–356, 1986.

5. ADDITIONAL MATERIAL

5.1. Proof Theory of \mathbb{CPL}_0 .

Definition 4 (Boolean Formula). *The grammar of Boolean formulas is as below:*

$$b ::= x_i \mid \top \mid \perp \mid \neg b \mid b \wedge b \mid b \vee b,$$

where $i \in \mathbb{N}$. The interpretation of a Boolean formula b is defined in an inductive way:

$$\begin{array}{ll} \llbracket x_i \rrbracket = \text{Cyl}_i & \llbracket \neg b \rrbracket = 2^{\mathbb{N}} - \llbracket b \rrbracket \\ \llbracket \top \rrbracket = 2^{\mathbb{N}} & \llbracket b \wedge c \rrbracket = \llbracket b \rrbracket \cap \llbracket c \rrbracket \\ \llbracket \perp \rrbracket = \emptyset & \llbracket b \vee c \rrbracket = \llbracket b \rrbracket \cup \llbracket c \rrbracket. \end{array}$$

Definition 5 (Labelled Formula). *A labelled formula is an expression of one of the forms $b \rightarrow F$ and $b \leftarrow F$, where b is a Boolean formula and F is a counting one. A labelled sequent is a sequent of the form $\vdash L$, where L is a labelled formula.*

The proof system $\mathbf{LK}_{\mathbb{CPL}_0}$ is defined by the rules illustrated in Figure 1.

FIGURE 1. Sequent Calculus $\mathbf{LK}_{\mathbb{CPL}_0}$

FIGURE 2. Skeleton of $\mathbf{LK}_{\mathbb{CPL}_0}$ -Completeness Proof

5.2. Multivariate \mathbb{CPL} .

Language of \mathbb{CPL} .

Definition 6 (Formulas of \mathbb{CPL}). Formulas of \mathbb{CPL} are defined by the grammar below:

$$F ::= \mathbf{i}_a \mid \neg F \mid F \wedge F \mid F \vee F \mid \mathbf{C}_a^q F \mid \mathbf{D}_a^q F$$

where $i \in \mathbb{N}$, a is a name, and $q \in \mathbb{Q}_{[0,1]}$.

The intuitive meaning of *named* quantifiers is that they count models *relative* to the corresponding bounded variables. Named quantifiers, $\mathbf{C}_a^q, \mathbf{D}_a^q$, bind the occurrences of name a in A . Given a formula A , $\text{FN}(A)$ denotes the set of names occurring *free* in A . Names can be used to distinguish between distinct groups of propositional variables.

Semantics of \mathbb{CPL} . The interpretation of a formula A now depends on the choice of a finite set of names $X \supseteq \text{FN}(A)$ and is a measurable set $\llbracket A \rrbracket_X$ belonging to the Borel algebra, $\mathcal{B}((2^\mathbb{N})^X)$. The quantifiers $\mathbf{C}_a^q, \mathbf{D}_a^q$ correspond to operations allowing one to pass from $\mathcal{B}((2^\mathbb{N})^{X \cup \{a\}})$ to $\mathcal{B}((2^\mathbb{N})^X)$. To define such operations we need the following technical notation:

Definition 7 (f -projection). Let X, Y be two disjoint finite sets of names and $f \in (2^\mathbb{N})^X$. For all $\mathcal{X} \subseteq (2^\mathbb{N})^{X \cup Y}$, the f -projection of \mathcal{X} is the set:

$$\Pi_f(\mathcal{X}) = \{g \in (2^\mathbb{N})^Y \mid f + g \in \mathcal{X}\} \subseteq (2^\mathbb{N})^Y,$$

where $(f + g)(\alpha)$ is $f(\alpha)$, if $\alpha \in X$ and $g(\alpha)$ if $\alpha \in Y$.

Suppose X, Y are disjoint sets of names, with $\text{FN}(A) \subseteq X \cup Y$. Then, if we fix a valuation $f \in (2^\mathbb{N})^X$ of the variables of A with names in X , the set $\Pi_f(\llbracket A \rrbracket_{X \cup Y})$ describes the set of valuations of the variables of A with names in Y which extend f .

Definition 8 (Semantics of \mathbb{CPL}). For each formula A of \mathbb{CPL} , and finite set of names such that $X \supseteq \text{FN}(A)$, the interpretation of A , $\llbracket A \rrbracket_X \subseteq (2^\mathbb{N})^X$, is inductively defined as follows:

$$\begin{array}{ll} \llbracket \mathbf{i}_a \rrbracket_X = \{f \mid f(a)(i) = 1\} & \llbracket \neg A \rrbracket_X = (2^\mathbb{N})^X - \llbracket A \rrbracket_X \\ \llbracket A \wedge B \rrbracket_X = \llbracket A \rrbracket_X \cap \llbracket B \rrbracket_X & \llbracket \mathbf{C}_a^q A \rrbracket_X = \{f \mid \mu(\Pi_f(\llbracket A \rrbracket_{X \cup \{a\}})) \geq q\} \\ \llbracket A \vee B \rrbracket_X = \llbracket A \rrbracket_X \cup \llbracket B \rrbracket_X & \llbracket \mathbf{D}_a^q A \rrbracket_X = \{f \mid \mu(\Pi_f(\llbracket A \rrbracket_{X \cup \{a\}})) < q\}. \end{array}$$

Example 1. Let F be the formula of \mathbb{CPL} :

$$F : (\mathbf{2}_a \wedge (\neg \mathbf{2}_b \wedge \mathbf{3}_b)) \wedge (\neg \mathbf{2}_a \wedge (\mathbf{2}_b \wedge \neg \mathbf{3}_b)) \vee ((\neg \mathbf{2}_a \wedge \mathbf{3}_a) \wedge \mathbf{3}_b)$$

The valuations $f \in (2^\mathbb{N})^{\{b\}}$ belonging to $\llbracket \mathbf{C}_a^{1/2} F \rrbracket_{\{b\}}$ are those which can be extended to valuations of all Boolean variables in F , satisfying in at least half of the cases. Let us list all possible cases:

- (1) $f(b)(2) = f(b)(3) = 1$, then F has $\frac{1}{4}$ chances of being true, as both $\neg \mathbf{2}_a$ and $\mathbf{3}_a$ must be true.

- (2) $f(b)(2) = 1$ and $f(b)(3) = 0$, then F has $\frac{1}{2}$ chances of being true, as $\neg\mathbf{2}_a$ must be true.
- (3) $f(b)(2) = 0$ and $f(b)(3) = 1$, then F has $\frac{3}{4}$ chances of being true, as either $\mathbf{2}_a$ or both $\neg\mathbf{2}_a$ and $\mathbf{3}_a$ must be true.
- (4) $f(b)(2) = f(b)(3) = 0$, then F has no chances of being true.

Clearly, $\llbracket \mathbf{C}_a^{1/2} F \rrbracket_{\{b\}}$ only contains the valuations which agree with cases 2. and 3. Therefore $\llbracket \mathbf{C}^{1/2} \mathbf{C}_a^{1/2} F \rrbracket_{\emptyset} = 2^{\mathbb{N}}$ – that is $\mathbf{C}^{1/2} \mathbf{C}_a^{1/2} F$ is valid – since half of the valuations of b has at least $\frac{1}{2}$ chances of being extended to a model for F .