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Beginnings

The Complexity of Theorem-Proving Procedures
Stephen A. Cook

University of Toronto

The field of mechanical theorem
In view of the apparent complexity of

{ DNF tautologies}, it is interesting to proving badly needs a basis for com-
examine the Davis-Putnam procedure [5]. . d 1 : c
This procedure was designed to determine paring and evaluating the dozens of pro-

whether a given formula in conjunctive

) . ; cedures which appear in the literature.
normal form is satisfiable, but of course PP

the '"dual" procedure determines whether Performance of a procedure on examples

a given formula in disjunctive normal

form is a tautology. I have not yet been by computer is a good criterion, but not
able to find a series of examples showing .

the procedure (treated sympathetically to sufficient (unless the procedure proves

avoid certain pitfalls) must require more
than polynomial time. Nor have I found

an interesting upper bound for the time retical complexity criterion is needed
required.

useful in some practical way). A theo-

which will bring out fundamental limita-

tions and suggest new goals to pursue.



Propositional Proof Systems

Definition [Cook, Reckhow ’79]

A propositional proof system is a poly-time predicate R(x, y),
whose domain equals TAUT (or UNSAT).

Soundness: if R(¢, ), then ¢ € TAUT;

Completeness: if ¢ € TAUT, then there is some proof 7 so that
R(g, m);

Feasibility: whether 7 is a proof of ¢ can be checked in
polynomial time in the length of the proof (and the formula).



Propositional Proof Systems

Comparing systems

Definition [Cook, Reckhow ’79]

A propositional proof system P p-simulates another

propositional proof system Q, if there is a polynomial-time
function that

e given as an input a OJ-proof & of a formula @

 outputs a P-proof of the same formula .




Propositional Proof Systems

The Foundational Observation

Proposition [Cook, Reckhow ’79]

There Is a polynomially bounded propositional proof system

if and only if

NP = coNP

A pps is polynomially bounded if there is some polynomial p so that
for any ¢ there is some proof 7 so that

7| < p(lel)



Resolution proof system
[Davis, Putnam ’60]

Resolution refutation of {C}, ..., C, } is a sequence of clauses
Dy, ....,D,

where D, is the empty clause and each D; is either an initial clause
or obtained from previous ones by the resolution rule

Avx,Bvx | AVB



Frege systems

Common name for any sound and complete calculus consisting of
a finite number of schematic inference rules, e.g. the axioms

@ — (y— @)
(p—=>W—>38) - (g =y - (p— <))
(g — ) = (y— @)

together with Modus Ponens as the only rule of inference

p.o—vw | W

Lemma [Cook, Reckhow ’79]

All Frege systems are polynomially equivalent.




Frege systems

Sub- and supersystems

Extended Frege system allows introduction of short-hands by
Lo < @
for a fresh propositional variable 2y

Size of Extended Frege proof ~ number of lines in a Frege proof.

Bounded-depth Frege system restrict the formulas used in the
proof to be of bounded logical depth.



Long proofs of simple
principles.



Pigeonhole Principle

PHP;' encodes the fact that m pigeons cannot fly into n holes
without a collision when m > n.

In clausal form:

\/ x;; for all 1 € |m]

JEIn]

Vo foralli € [m] and for all distinct j, kK € [n]



Resolution Lower Bounds

Theorem [Haken ’85]

PHP"*! requires resolution refutations of size

2€(n)

Preceded by Tseitin’s lower bound for regular resolution for the so
called Tseitin formulas [Tseitin '68].

Exponential separation between regular and general resolution
[Alekhnovich, Johannsen, Pitassi, Urquhart '02].



Resolution Lower Bounds

Proof idea [Beame, Pitassi '96]

In a refutation Dy, ..., D, of PHP"*! replace each negated literal X;;
by the conjunction x; V X»; V .. X;_1); V X(i41); V -+ V Xp1); 1O
obtain a positive pseudo-refutation of PHP*!,

Find a variable Xij that occurs in many wide clauses (by pigeonhole
principle!) and reduce to a pseudo-refutation of PHP' _,.

Continue until there are no wide clauses left with a narrow pseudo-
refutation of PHPiJrl for some k.

Show that any pseudo-refutation of PHP’,;Jrl must still contain
relatively wide clause.



Size-Width Trade-Off

Short proofs are narrow

Theorem [Ben-Sasson, Wigderson ’01]

If a kK-CNF F has a resolution refutation of size s, then it has a
refutation of width

O(y/nlogs + k)

Corollary

Any resolution refutation of a k-CNF F requires size

W(F F L) —k)?

n

exp




Proof lower bounds from
computational hardness



Feasible Interpolation

Basic set-up

Given two disjoint NP-sets A and B, an interpolant is a function s.t.

O, whenx € A
Jx) = {l,whenx €B

As A and B are in NP there are CNFs A, (x, y) and B, (x, z) so that

A=|J{xe{0.1}": 3y, A xy) =1}

new

B=|){xe{0.1}": 3z, B,(x.2) = 1)

necw

Disjointness of A and B < unsatisfiability of A, (x, y) A B, (x, 2).



Feasible Interpolation

Definition [Krajicek '97]

A pps P admits feasible interpolation if there is a function f
that given a P-refutation 7 of A (x, y) A B, (x, 7) outputs a
Boolean circuit /() so that

1, when A (x,y) € UNSAT
0, when B, (x,z) € UNSAT

J(m)(x) = {

and

size of f(xr) is polynomial in the size of .



Feasible Interpolation

Simple conditional lower bounds

Proposition

Suppose NP & P/poly. Then no propositional proof system
admitting feasible interpolation is polynomially bounded.

Proof.

Let P be a polynomially bounded proof system admitting
feasible interpolation, and let U € NP.

Now NP = coNP, and thus U &€ NP. Furthermore, as P is
polynomially bounded and admits feasible interpolation, there is

an interpolant of U and U* in P/poly. But this interpolant
decides U exactly, and thus U &€ P/poly.



Monotone Feasible Interpolation

Leveraging lower bounds for restricted models

In case A is downwards closed or B is upwards closed (or both),
there is always a monotone interpolant.

A pps P admits monotone feasible interpolation if in this setting a

proof of disjointness of A and B can be turned into only
polynomially larger monotone interpolating circuit.

Proposition [Krajicek ’97]

Resolution admits monotone feasible interpolation.




Monotone Feasible Interpolation

Lower bounds for Resolution

Consider the CNFs

Clique,, ,(x,y) : “y is a clique of size k on a graph x of size n”

Color,, ,(x, z) : “z is an £'-coloring of graph x”.

Theorem [Krajicek ’97] (using [Razborov ’85; Alon, Boppana ’87])

For k ~ 4/n any resolution refutation of Clique, , A Color,,,_,
requires size

exp(n**)




Negative results

Feasible interpolation is a sign of weakness

Theorem [Krajicek, Pudlak 98]

Extended Frege does not admit feasible interpolation unless
RSA is not secure against P/poly adversaries.

Theorem [Bonet, Pitassi, Raz ’00]

Frege does not admit feasible interpolation unless Diffie-Hellman
scheme is not secure against P/poly adversaries.




The Proof Search
Problem



Automatability

Barriers for efficient proof search

Definition [Bonet, Pitassi, Raz ’00]

A propositional proof system P is automatable if there is an
algorithm that given as input a CNF F returns a P-refutation of I

in time poly(| F'| + s), where s is the size of the smallest P
-refutation of F

Lemma [Bonet, Pitassi, Raz ’00]

If a propositional proof system P is automatable, then it admits
feasible interpolation.




Automatability of Resolution

Some positive results

Proposition [Beame, Pitassi '96]

O(log s)_

Tree-like resolution Is automatable in time n

Proof idea:

If 5 iIs the minimal size of a refutation, and if x is the final variable
to be resolved, then either

s(F| _FL)<sl2ors(F| _ FL)<s/2

By size-degree trade-off, general resolution is automatable in time

nO(\/nlog s+k)



Non-automatability of Resolution

Theorem [Atserias, Muller ’19]

Resolution is not automatable unless P = NP.

Proof idea (with amendments by [Garlik "20]):
Ret (F) : “there is a resolution refutation of F of size s”
If '€ SAT, then Ret, .(F) has poly-sized resolution refutations.

If ' € UNSAT, then Ref, .(F) requires size exp( | F |Q(1))



The Crown Jewel of
Proof Complexity



Bounded Arithmetic

Uniform models for Proof Complexity

Weak theories of arithmetic with close connections to
computational complexity theory.

Intuitively, theories of bounded arithmetic only allow somehow
computationally feasible reasoning.

Relates to propositional proof complexity via propositional
translations. Proofs in arithmetic are the uniform counterparts of
the non-uniform proofs in propositional proof systems.



The Theory /A,
The uniform bounded-depth Frege

Introduced by Parikh in ’71.

Basic language of arithmetic { < ,+,-, 0, 1}

Bounded quantifiers: dx < ¢, ¢(x,y) and Vx < f,y(x, 2)

IA is Peano arithmetic with induction restricted to formulas with
only bounded quantifiers:

@(0) = (Vx, (p(x) = @(x + 1)) = Vx, ¢(x))

Provably total functions are the functions in the linear time function
hierarchy FLLTH.



Paris-Wilkie translation

From /A to bounded-depth Frege

Consider IAy(R), where you allow additional binary relation symbol
R in the formulas.

Define a translation from Ay(R)-formulas into propositional ones:

T , when S(I_C) < t(l_c)
otherwise

(s(X) < 1(X))r = {
(R(s(X), 1(X))); = 7, where 1 = s(k) and j = #(k).

(3y <1®), 0@ )= \/ (@G
£<1(k)



Paris-Wilkie Translation

From provability to upper bounds

For any Ay(R)-formula ¢(X) the translation (¢(X)); is a constant
depth Boolean formula of length polynomial in the sum of k.

Theorem [Paris, Wilkie ’85]

Let ¢(X) be a Ay(R)-formula, and suppose that

IAH(R) = VX, p(X)

Then for any tuple k there is constant-depth Frege proof of
((X)); of size polynomial in the sum of .




Bounded-depth Frege and PHP*!

From unprovability to lower bounds
PHP(R) ;= 7(Vx <z+ 1dy <z R(x,y)
AVX<z+1Vy,y <z -R(x,y)VR(x,y"))
Theorem [Ajtai ’88]
The theory IA4(R) does not prove PHP(R),

and therefore

bounded-depth Frege refutations of PHPZJrl require super-
polynomial size.




Ajtar's argument

Let M be a non-standard model of true arithmetic and let n € M be
a hon-standard natural number.

Considerthecut I, = {m € M : m < n* for some standard c}

By a forcing argument construct an expansion (/ , R) with
R C [n+ 1] X [n] so that:

(I,RYEIA(R) and (I,R) ¥ PHP(R)

Therefore: If PHP’IEJrl has poly-sized refutation, then by overflow, for
some non-standard n exists poly-sized refutations of PHP"*!,

This refutation can be encoded in [, but I, encodes also a satisfying
assignment to PHP"*! encoded by R. Contradiction follows from the
fact that /A(R) proves the soundness of bounded depth Frege.



Stronger lower bounds

In '93 Pitassi, Beame and Impagliazzo; and concurrently Krajicek,
Pudlak and Woods improved the lower for PHP"*! to

exp(=0(d))

27’1

This year Hastad announced a lower bound of the form

n 1/0(d)

2

Hence, polynomial-sized Frege refutations of PHPZJrl require depth
Q(logn/loglog n).

In fact, there are polynomial-size Frege refutations of PHP*! of
depth O(log n/log log n). [Buss '86]



Some further reading

ENCYCLOPEDIA OF NATHEMATICS AND ITS APPLICATIONS £0

BOUNDED ‘
ARITHMETIG, PROOF
PROPOSITIONAL COMPLEXITY
LOGIC,

PERSPECTIVES IN LOGIC

Seephien Cook
Plwong Nguyen

LOGICAL FOUNDATIONS
OF PROOF COMPLEXITY

AND
COMPLEXITY
THEORY

JAN KRAJICEK

Thank you!



