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Summary 

It is shown that any recognition 
problem solved by a polynomial time- 
bounded nondeterministic Turing 
machine can be "reduced" to the pro- 
blem of determining whether a given 
propositional formula is a tautology. 
Here "reduced" means, roughly speak- 
ing, that the first problem can be 
solved deterministically in polyno- 
mial time provided an oracle is 
available for solving the second. 
From this notion of reducible, 
polynomial degrees of difficulty are 
defined, and it is shown that the 
problem of determining tautologyhood 
has the same polynomial degree as the 
problem of determining whether the 
first of two given graphs is iso- 
morphic to a subgraph of the second. 
Other examples are discussed. A 
method of measuring the complexity of 
proof procedures for the predicate 
calculus is introduced and discussed. 

Throughout this paper, a set of 
strings means a set of strings on 
some fixed, large, finite alphabet Z. 
This alphabet is large enough to in- 
clude symbols for all sets described 
here. All Turing machines are deter- 
ministic recognition devices, unless 
the contrary is explicitly stated. 

i. Tautologies and Polynomial Re- 
Reducibility. 

Let us fix a formalism for 
the propositional calculus in 
which formulas are written as 
strings on I. Since we will re- 
quire infinitely many proposition 
symbols (atoms), each such symbol 
will consist of a member of Z 
followed by a number in binary 
notation to distinguish that 
symbol. Thus a formula of length 
n can only have about n/logn 
distinct function and predicate 
symbols. The logical connectives 
are & (and), v (or), and ~(not). 

The set of tautologies 
(denoted by {tautologies}) is a 

certain recursive set of strings on 
this alphabet, and we are interested 
in the problem of finding a good 
lower bound on its possible recog- 
nition times. We provide no such 
lower bound here, but theorem 1 will 
give evidence that {tautologies} is 
a difficult set to recognize, since 
many apparently difficult problems 
can be reduced to determining tau- 
tologyhood. By reduced we mean, 
roughly speaking, that if tauto- 
logyhood could be decided instantly 
(by an "oracle") then these problems 
could be decided in polynomial time. 
In order to make this notion precise, 
we introduce query machines, which 
are like Turing machines with oracles 
in [I]. 

A query machine is a multitape 
Turing machine with a distinguished 
tape called the query tape, and 
three distinguished states called 
the query state, yes state, and n._o_ 
state, respectively. If M is a 
query machine and T is a set of 
strings, then a T-computation of M 
is a computation of M in which 
initially M is in the initial 
state and has an input string w on 
its input tape, and each time M 
assumes the query state there is a 
string u on the query tape, and 
the next state M assumes is the 
yes state if uET and the no state 
if u~T. We think of an "oracle", 
which knows T, placing M in the 
yes state or no state. 

Definition 

A set S of strings is P-redu- 
cible (P for polynomial) to a set 
T of strings iff there is some 
query machine M and a polynomial 
Q(n) such that for each input string 
w, the T-computation of M with in- 
put w halts within Q(Iwl) steps 
(lwl is the length of w~ and ends 
in an accepting state iff wcS. 

It is not hard to see that 
P-reducibility is a transitive re- 
lation. Thus the relation E on 
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Beginnings

C i = Ril & Ri2 & Ri3, and each Rij is 

an atom or a negation of an atom. Now 

let G 1 be the complete graph with ver- 

tices {v I, v 2, ... , Vk}, and let G 2 

be the graph with vertices {uij}, 

1 ~ i ~ k, 1 ~ j ~ 3, such that 4. ij 
is connected by an edge to Urs if 

and only if i ~ r and the two literals 

(Rij, Rrs) do not form an opposite pair 

(that is they are neither of the form 

(P, ~P) nor of the form (~P,P~. Thus 

there is a falsifying truth assignment 

to the formula A iff there is a graph 

homomorphism $ : G 1 + G 2 such that for 

each i, ~(vi) = uij for some j. 

(The homomorphism tells for each i 

which of Ril, Ri2 , Ri3 should be fal- 

sified, and the selective lack of edges 

in G 2 guarantees that the resulting 

truth assignment is consistently spe- 

cified). 

In order to guarantee that a one-one 

homomorphism ~ : G 1 + G 2 has the pro- 

perty that for each i, ¢(v i) = uij for 

some j, we modify G 1 and G 2 as fol- 

lows. We select graphs H I , H 2, ..., H k 

which are sufficiently distinct from each 

other that if Gi is formed from G 1 by 

attaching H i to vi, 1 ~ i ~ k, and 

G½ is formed from G 2 by attaching H i 

to each of Uil and Ui2 and ui3, 

1 ~ i ~ k, then every one-one homomor- 

phism ~ : G~ ÷ G~ has the property 

just stated. It is not hard to see such 

a construction can be carried out in po- 

lynomial time. Then G~ can be em- 

bedded in G~ if and only if A ~ D 3. 

This completes the proof of theorem 2. 

2. Discussion 

Theorem 1 and its corollary give 
strong evidence that it is not easy to 
determine whether a given proposition 
formula is a tautology, even if the 
formula is in normal disjunctive form. 
Theorems I and 2 together suggest that 
it is fruitless to search for a poly- 
nomial decision procedure for the sub- 
graph problem, since success would bring 
polynomial decision procedures to many 
other apparently intractible problems. 
Of course the same remark applies to any 
combinatorial problem to which {tauto- 
logies} is P-reducible. 

Furthermore, the theorems suggest 
that {tautologies} is a good candidate 
for an interesting set not in ~*, and 
I feel it is worth spending consider- 
able effort trying to prove this con- 
jecture. Such a proof would be a major 
breakthrough in complexity theory. 

In view of the apparent complexity of 
{DNF tautologies}, it is interesting to 
examine the Davis-Putnam procedure [5]. 
This procedure was designed to determine 
whether a given formula in conjunctive 
normal form is satisfiable, but of course 
the "dual" procedure determines whether 
a given formula in disjunctive normal 
form is a tautology. I have not yet been 
able to find a series of examples showing 
the procedure (treated sympathetically to 
avoid certain pitfalls) must require more 
than polynomial time. Nor have I found 
an interesting upper bound for the time 
required. 

If we let strings represent natural 
numbers, (or k-tuples of natural num- 
bers) using m-adic or other suitable 
notation, then the notions in the pre- 
ceeding sections can be made to apply to 
sets of numbers (or k-place relations on 
numbers). It is not hard to see that the 
set of relations accepted in polynomial 
time by some nondeterministic Turing ma- 
chine is precisely the set ~f+ of re- 
lations of the form 

(I) (3y_<gk(i)) R(i,y) 

where gk(x) 2 (£ (max i))k = , £(z) is the 
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given in 3B. However, there are reasons 

for the gap. For example, if we could 

improve the result in 3B and find a 

TQ(k) bounded by a polynomial in k, 

then by theorem 4 we could simulate a 

nondeterministic 2 n time bounded ma- 

chine deterministically in time p(2 n) 

for some polynomial p. This is con- 

trary to experience which indicates deter- 

ministic simulation of a nondeterminis- 

tic T(n) time bounded machine requires 

time k T(n) in general. 

On the other hand, if we could push 

up the lower bound given in theorem 3A 

and show 

Tq(k )  

2 k 

i s  u n b o u n d e d ,  t h e n  we c o u l d  c o n c l u d e  

{Tautologies} ~ S~, since otherwise the 

general Herbrand proof procedure would 

TQ(k) smaller than 2 k. Thus provide a 

such an improvement in 3A would require 

a major breakthrough in complexity 

theory. 

The field of mechanical theorem 

proving badly needs a basis for com- 

paring and evaluating the dozens of pro- 

cedures which appear in the literature. 

Performance of a procedure on examples 

by computer is a good criterion, but not 

sufficient (unless the procedure proves 

useful in some practical way). A theo- 

retical complexity criterion is needed 

which will bring out fundamental limita- 

tions and suggest new goals to pursue. 

The criterion suggested here (the func- 

tion TQ(k)) is probably too crude. For 

example, it might be better to make 

TQ(k) a function of several variables, 

of which one is ~(A), and another might 

be the minimum number of substitution 

instances of fn(A) needed to form a 

contradiction (note that in general not 

all of Ai, A2, ..., A~(A) are needed.) 

TQ(k) may be a crude measure, but 

it does provide a basis for discussion, 

and, I hope, will stimulate progress 

toward finding better complexity mea- 

sures for theorem provers. 

I. 

2. 

3. 

4. 

5. 

6. 

REFERENCES 

D. L. Kreider and R. W. Ritchie: 
Predictably Computable Functionals 
and Definitions by Recursion. 
Zeitschrift fHr math. Logik und 
Grundlagen der Math., Vol. I0, 
65-80 (1964). 

S. A. Cook: Characterizations of 
Pushdown Machines in terms of Time- 
Bounded Computers. J. Assoc. Com- 
puting Machinery, Vol. 18, No. i, 
Jan. 1971, pp 4-18. 

Cobham, Alan: The intrinsic compu- 
tational difficulty of functions. 
Proc. of the 1964 International Con- 
gress for Logic, Methodology, and the 
Philosophy of Science, North Holland 
Publishing Co., Amsterdam, pp. 24-30. 

D. G. Corneil and C. C. Gotlieb: An 
Efficient Algorithm for Graph Isomor- 
phism. J. Assoc Computing Machinery 
Vol. 17, No. i, Jan. 1970, pp 51-64. 

M. Davis and H. Putnam: A Computing 
Procedure for Quantification Theory. 
J. Assoc. Computing Machinery, 1960, 
pp. 201-215. 

J. H. Bennett: On Spectra. Doctoral 
Dissertation, Princeton University, 
1962. 

-157- 
given in 3B. However, there are reasons 

for the gap. For example, if we could 

improve the result in 3B and find a 

TQ(k) bounded by a polynomial in k, 

then by theorem 4 we could simulate a 

nondeterministic 2 n time bounded ma- 

chine deterministically in time p(2 n) 

for some polynomial p. This is con- 

trary to experience which indicates deter- 

ministic simulation of a nondeterminis- 

tic T(n) time bounded machine requires 

time k T(n) in general. 

On the other hand, if we could push 

up the lower bound given in theorem 3A 

and show 

Tq(k )  

2 k 

i s  u n b o u n d e d ,  t h e n  we c o u l d  c o n c l u d e  

{Tautologies} ~ S~, since otherwise the 

general Herbrand proof procedure would 

TQ(k) smaller than 2 k. Thus provide a 

such an improvement in 3A would require 

a major breakthrough in complexity 

theory. 

The field of mechanical theorem 

proving badly needs a basis for com- 

paring and evaluating the dozens of pro- 

cedures which appear in the literature. 

Performance of a procedure on examples 

by computer is a good criterion, but not 

sufficient (unless the procedure proves 

useful in some practical way). A theo- 

retical complexity criterion is needed 

which will bring out fundamental limita- 

tions and suggest new goals to pursue. 

The criterion suggested here (the func- 

tion TQ(k)) is probably too crude. For 

example, it might be better to make 

TQ(k) a function of several variables, 

of which one is ~(A), and another might 

be the minimum number of substitution 

instances of fn(A) needed to form a 

contradiction (note that in general not 

all of Ai, A2, ..., A~(A) are needed.) 

TQ(k) may be a crude measure, but 

it does provide a basis for discussion, 

and, I hope, will stimulate progress 

toward finding better complexity mea- 

sures for theorem provers. 

I. 

2. 

3. 

4. 

5. 

6. 

REFERENCES 

D. L. Kreider and R. W. Ritchie: 
Predictably Computable Functionals 
and Definitions by Recursion. 
Zeitschrift fHr math. Logik und 
Grundlagen der Math., Vol. I0, 
65-80 (1964). 

S. A. Cook: Characterizations of 
Pushdown Machines in terms of Time- 
Bounded Computers. J. Assoc. Com- 
puting Machinery, Vol. 18, No. i, 
Jan. 1971, pp 4-18. 

Cobham, Alan: The intrinsic compu- 
tational difficulty of functions. 
Proc. of the 1964 International Con- 
gress for Logic, Methodology, and the 
Philosophy of Science, North Holland 
Publishing Co., Amsterdam, pp. 24-30. 

D. G. Corneil and C. C. Gotlieb: An 
Efficient Algorithm for Graph Isomor- 
phism. J. Assoc Computing Machinery 
Vol. 17, No. i, Jan. 1970, pp 51-64. 

M. Davis and H. Putnam: A Computing 
Procedure for Quantification Theory. 
J. Assoc. Computing Machinery, 1960, 
pp. 201-215. 

J. H. Bennett: On Spectra. Doctoral 
Dissertation, Princeton University, 
1962. 

-157- 



Definition [Cook, Reckhow ’79] 

A propositional proof system is a poly-time predicate , 
whose domain equals  (or ).

R(x, y)
𝖳𝖠𝖴𝖳 𝖴𝖭𝖲𝖠𝖳

Propositional Proof Systems

Soundness: if , then ;


Completeness: if , then there is some proof  so that 
;


Feasibility: whether  is a proof of  can be checked in 
polynomial time in the length of the proof (and the formula).

R(φ, π) φ ∈ 𝖳𝖠𝖴𝖳

φ ∈ 𝖳𝖠𝖴𝖳 π
R(φ, π)

π φ



Definition [Cook, Reckhow ’79]


A propositional proof system  -simulates another 
propositional proof system , if there is a polynomial-time 
function that 


• given as an input a -proof  of a formula 


• outputs a -proof of the same formula .

P p
Q

Q π φ

P φ

Comparing systems
Propositional Proof Systems



Proposition [Cook, Reckhow ’79] 

There is a polynomially bounded propositional proof system


if and only if


𝖭𝖯 = 𝖼𝗈𝖭𝖯

The Foundational Observation
Propositional Proof Systems

A pps is polynomially bounded if there is some polynomial  so that 
for any  there is some proof  so that


p
φ π

|π | ≤ p( |φ | )



Resolution refutation of  is a sequence of clauses 

 

where  is the empty clause and each  is either an initial clause 
or obtained from previous ones by the resolution rule


{C1, …, Cm}

D1, …, Dℓ

Dℓ Di

A ∨ x, B ∨ x̄ / A ∨ B

[Davis, Putnam ’60]
Resolution proof system



Common name for any sound and complete calculus consisting of 
a finite number of schematic inference rules, e.g. the axioms


 
 




together with Modus Ponens as the only rule of inference


φ → (ψ → φ)
(φ → (ψ → ξ)) → ((φ → ψ) → (φ → ξ))
(¬φ → ¬ψ) → (ψ → φ)

φ, φ → ψ / ψ

Frege systems

Lemma [Cook, Reckhow ’79] 

All Frege systems are polynomially equivalent.



Extended Frege system allows introduction of short-hands by


 


for a fresh propositional variable . 


Size of Extended Frege proof  number of lines in a Frege proof.


Bounded-depth Frege system restrict the formulas used in the 
proof to be of bounded logical depth.

zφ ↔ φ

zφ

∼

Sub- and supersystems
Frege systems



Long proofs of simple 
principles.



 encodes the fact that  pigeons cannot fly into  holes 
without a collision when .


In clausal form:


  for all 


  for all  and for all distinct 

PHPm
n m n

m > n

⋁
j∈[n]

xij i ∈ [m]

¬xij ∨ ¬xik i ∈ [m] j, k ∈ [n]

Pigeonhole Principle



Theorem [Haken ’85] 

 requires resolution refutations of size
PHPn+1
n

2Ω(n)

Resolution Lower Bounds

Preceded by Tseitin’s lower bound for regular resolution for the so 
called Tseitin formulas [Tseitin ’68].  

Exponential separation between regular and general resolution 
[Alekhnovich, Johannsen, Pitassi, Urquhart ’02].



In a refutation  of  replace each negated literal  
by the conjunction  to 
obtain a positive pseudo-refutation of .


Find a variable  that occurs in many wide clauses (by pigeonhole 
principle!) and reduce to a pseudo-refutation of . 


Continue until there are no wide clauses left with a narrow pseudo-
refutation of  for some .


Show that any pseudo-refutation of  must still contain 
relatively wide clause.

D1, …, Dℓ PHPn+1
n x̄ij

x1j ∨ x2j ∨ …x(i−1)j ∨ x(i+1)j ∨ … ∨ x(n+1)j
PHPn+1

n

xij
PHPn

n−1

PHPk+1
k k

PHPk+1
k

Proof idea [Beame, Pitassi ’96]
Resolution Lower Bounds



Theorem [Ben-Sasson, Wigderson ’01] 

If a k-CNF  has a resolution refutation of size , then it has a 
refutation of width


F s

O( n log s + k)

Short proofs are narrow
Size-Width Trade-Off

Corollary  

Any resolution refutation of a k-CNF  requires size
F

exp Ω ( (w(F ⊢ ⊥ ) − k)2

n )



Proof lower bounds from 
computational hardness



Given two disjoint -sets  and , an interpolant is a function s.t.





As  and  are in  there are CNFs  and  so that 








Disjointness of  and   unsatisfiability of .

𝖭𝖯 A B

f(x) = {0, when x ∈ A
1, when x ∈ B

A B 𝖭𝖯 An(x, y) Bn(x, z)

A = ⋃
n∈ω

{x ∈ {0,1}n : ∃y, An(x, y) = 1}

B = ⋃
n∈ω

{x ∈ {0,1}n : ∃z, Bn(x, z) = 1}

A B ⇔ An(x, y) ∧ Bn(x, z)

Basic set-up
Feasible Interpolation



Definition [Krajíček ’97] 

A pps  admits feasible interpolation if there is a function  
that given a -refutation  of  outputs a 
Boolean circuit  so that





and 


size of  is polynomial in the size of .

P f
P π An(x, y) ∧ Bn(x, z)

f(π)

f(π)(x) = {1, when An(x, y) ∈ 𝖴𝖭𝖲𝖠𝖳
0, when Bn(x, z) ∈ 𝖴𝖭𝖲𝖠𝖳

f(π) π

Feasible Interpolation



Proposition


Suppose . Then no propositional proof system 
admitting feasible interpolation is polynomially bounded.

𝖭𝖯 ⊈ 𝖯/𝗉𝗈𝗅𝗒

Simple conditional lower bounds
Feasible Interpolation

Proof.


Let  be a polynomially bounded proof system admitting 
feasible interpolation, and let .


Now , and thus . Furthermore, as  is 
polynomially bounded and admits feasible interpolation, there is 
an interpolant of  and  in . But this interpolant 
decides  exactly, and thus . 

P
U ∈ 𝖭𝖯

𝖭𝖯 = 𝖼𝗈𝖭𝖯 Uc ∈ 𝖭𝖯 P

U Uc 𝖯/𝗉𝗈𝗅𝗒
U U ∈ 𝖯/𝗉𝗈𝗅𝗒



In case  is downwards closed or  is upwards closed (or both), 
there is always a monotone interpolant.


A pps  admits monotone feasible interpolation if in this setting a 
proof of disjointness of  and  can be turned into only 
polynomially larger monotone interpolating circuit.

A B

P
A B

Leveraging lower bounds for restricted models
Monotone Feasible Interpolation

Proposition [Krajíček ’97] 

Resolution admits monotone feasible interpolation.



Lower bounds for Resolution
Monotone Feasible Interpolation

Theorem [Krajíček ’97] (using [Razborov ’85; Alon, Boppana ’87]) 

For  any resolution refutation of  
requires size


k ∼ n Cliquen,k ∧ Colorn,k−1

exp(nΩ(1))

Consider the CNFs


 : “  is a clique of size  on a graph  of size ”


 : “  is an -coloring of graph ”.

Cliquen,k(x, y) y k x n

Colorn,ℓ(x, z) z ℓ x



Theorem [Krajíček, Pudlák ’98] 

Extended Frege does not admit feasible interpolation unless 
RSA is not secure against  adversaries.𝖯/𝗉𝗈𝗅𝗒

Feasible interpolation is a sign of weakness
Negative results

Theorem [Bonet, Pitassi, Raz ’00] 

Frege does not admit feasible interpolation unless Diffie-Hellman 
scheme is not secure against  adversaries.𝖯/𝗉𝗈𝗅𝗒



The Proof Search 
Problem



Definition [Bonet, Pitassi, Raz ’00] 

A propositional proof system  is automatable if there is an 
algorithm that given as input a CNF  returns a -refutation of  
in time , where  is the size of the smallest 
-refutation of 

P
F P F

poly( |F | + s) s P
F

Barriers for efficient proof search
Automatability

Lemma [Bonet, Pitassi, Raz ’00] 

If a propositional proof system  is automatable, then it admits 
feasible interpolation.

P



Proposition [Beame, Pitassi ’96] 

Tree-like resolution is automatable in time .nO(log s)

Some positive results
Automatability of Resolution

Proof idea:


If  is the minimal size of a refutation, and if  is the final variable 
to be resolved, then either


 or 


By size-degree trade-off, general resolution is automatable in time


s x

s(F |x=0 ⊢ ⊥ ) ≤ s/2 s(F |x=1 ⊢ ⊥ ) ≤ s/2

nO( n log s+k)



Theorem [Atserias, Müller ’19] 

Resolution is not automatable unless .𝖯 = 𝖭𝖯

Non-automatability of Resolution

Proof idea (with amendments by [Garlik ’20]):


 : “there is a resolution refutation of  of size ”


If , then  has poly-sized resolution refutations.


If , then  requires size 

Refs(F) F s

F ∈ 𝖲𝖠𝖳 Refnc(F)

F ∈ 𝖴𝖭𝖲𝖠𝖳 Refnc(F) exp( |F |Ω(1) )



The Crown Jewel of 
Proof Complexity



Weak theories of arithmetic with close connections to 
computational complexity theory.


Intuitively, theories of bounded arithmetic only allow somehow 
computationally feasible reasoning.


Relates to propositional proof complexity via propositional 
translations. Proofs in arithmetic are the uniform counterparts of 
the non-uniform proofs in propositional proof systems.


 

Uniform models for Proof Complexity
Bounded Arithmetic



Introduced by Parikh in ’71.


Basic language of arithmetic 


Bounded quantifiers:  and 


 is Peano arithmetic with induction restricted to formulas with 
only bounded quantifiers:





Provably total functions are the functions in the linear time function 
hierarchy .

{ ≤ , + , ⋅ , 0 , 1}

∃x ≤ t, φ(x, ȳ) ∀x ≤ t, ψ(x, z̄)

IΔ0

φ(0) → (∀x, (φ(x) → φ(x + 1)) → ∀x, φ(x))

FLTH

The uniform bounded-depth Frege
The Theory IΔ0



Consider , where you allow additional binary relation symbol 
 in the formulas.


Define a translation from -formulas into propositional ones:





, where  and .


IΔ0(R)
R

Δ0(R)

⟨s(x̄) ≤ t(x̄)⟩k̄ = { ⊤ ,  when s(k̄) ≤ t(k̄)
⊥  otherwise

⟨R(s(x̄), t(x̄))⟩k̄ = rij i = s(k̄) j = t(k̄)

⟨∃y ≤ t(x̄), φ(x̄, y⟩k̄ = ⋁
ℓ≤t(k̄)

⟨φ(x̄, y)⟩k̄,ℓ

From  to bounded-depth FregeIΔ0

Paris-Wilkie translation



For any -formula  the translation  is a constant 
depth Boolean formula of length polynomial in the sum of .

Δ0(R) φ(x̄) ⟨φ(x̄)⟩k̄
k̄

From provability to upper bounds
Paris-Wilkie Translation

Theorem [Paris, Wilkie ’85] 

Let  be a -formula, and suppose that





Then for any tuple  there is constant-depth Frege proof of 
 of size polynomial in the sum of .

φ(x̄) Δ0(R)

IΔ0(R) ⊢ ∀x̄, φ(x̄)

k̄
⟨φ(x̄)⟩k̄ k̄



Theorem [Ajtai ’88] 

The theory  does not prove , 


and therefore 


bounded-depth Frege refutations of  require super-
polynomial size.

IΔ0(R) PHP(R)

PHPn+1
n

From unprovability to lower bounds
Bounded-depth Frege and PHPn+1

n

 
PHP(R) := ¬(∀x ≤ z + 1∃y ≤ z, R(x, y)

∧ ∀x ≤ z + 1∀y, y′￼≤ z, ¬R(x, y) ∨ ¬R(x, y′￼))



Let  be a non-standard model of true arithmetic and let  be 
a non-standard natural number.


Consider the cut 


By a forcing argument construct an expansion  with 
 so that:


     and     


Therefore: If  has poly-sized refutation, then by overflow, for 
some non-standard n exists poly-sized refutations of .


This refutation can be encoded in , but  encodes also a satisfying 
assignment to  encoded by . Contradiction follows from the 
fact that  proves the soundness of bounded depth Frege.

M n ∈ M

In = {m ∈ M : m ≤ nc for some standard c}

⟨In, R⟩
R ⊆ [n + 1] × [n]

⟨In, R⟩ ⊨ IΔ0(R) ⟨In, R⟩ ⊭ PHP(R)

PHPk+1
k

PHPn+1
n

In In
PHPn+1

n R
IΔ0(R)

Ajtai’s argument



In ’93 Pitassi, Beame and Impagliazzo; and concurrently Krajíček, 
Pudlák and Woods improved the lower for  to 





This year Håstad announced a lower bound of the form





Hence, polynomial-sized Frege refutations of  require depth 
.


In fact, there are polynomial-size Frege refutations of  of 
depth . [Buss ’86]

PHPn+1
n

2nexp(−O(d))

2n1/O(d)

PHPn+1
n

Ω(log n/log log n)

PHPn+1
n

O(log n/log log n)

Stronger lower bounds



 Thank you!

Some further reading


