A primer to Strassen semirings and their asymptotic spectra

HIIT Foundations Friday 26 January 2024

Petteri Kaski Department of Computer Science Aalto University

- This talk is a short primer to Strassen semirings and their asymptotic spectra based on a recent exposition by Wigderson and Zuiddam https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf
- We aim to look at and motivate three examples:
 - 1. ℝ_{≥1}
 - 2. Restriction-preordered **tensors** [asymptotic te
 - 3. Cohomomorphism-preordered graphs

[asymptotic tensor rank] [Shannon capacity]

Time permitting, we will also seek to sketch Strassen's duality between asymptotic rank and the asymptotic spectrum formed by the monotone homomorphisms

- ► [Commutative] semiring
- Partial order, total order, preorder
- ► Semiring preorder
- ► Strassen preorder
- Strassen-preordered commutative semiring [Strassen semiring]

- A three-tuple (R, +, ·) consisting of a set R and two binary operations + : R × R → R and · : R × R → R is called a commutative semiring if
 - 1. for all $a, b, c \in \mathcal{R}$ we have (a + b) + c = a + (b + c),
 - 2. for all $a, b \in \mathcal{R}$ we have a + b = b + a,
 - 3. for all $a, b, c \in \mathcal{R}$ we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
 - 4. for all $a, b \in \mathcal{R}$ we have $a \cdot b = b \cdot a$,
 - 5. for all $a, b, c \in \mathcal{R}$ we have $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$, and
 - 6. there exists a $1 \in \mathcal{R}$ such that for all $a \in \mathcal{R}$ we have $1 \cdot a = a$
- [associativity of +] [commutativity of +] [associativity of ·] [commutativity of ·] [distributivity of · over +] [multiplicative unit]

• Example: $\mathbb{R}_{\geq 1}$ (the set of real numbers at least 1)

- A binary relation \leq on a set \mathcal{R} is
 - 1. **reflexive** if for all $a \in \mathcal{R}$ we have $a \leq a$
 - 2. **symmetric** if for all $a, b \in \mathcal{R}$ we have $a \leq b$ implies $b \leq a$
 - 3. **antisymmetric** if for all $a, b \in \mathcal{R}$ we have $a \le b$ and $b \le a$ imply a = b
 - 4. **transitive** if for all $a, b, c \in \mathcal{R}$ we have $a \leq b$ and $b \leq c$ imply $a \leq c$
 - 5. **total** if for all $a, b \in \mathcal{R}$ at least one of $a \le b$ or $b \le a$ holds
 - 6. equivalence if it is reflexive, symmetric, and transitive
 - 7. partial order if it is reflexive, antisymmetric, and transitive
 - 8. preorder if it is reflexive and transitive
 - 9. order if it is a partial order and total
- Let *P*, *Q* be binary relations on a set \mathcal{R} ; we say that *Q* extends *P* if $P \subseteq Q$

Strassen preorder

- Let \mathcal{R} be a commutative semiring and let $\mathbb{N} = \{0, 1, 2, ...\}$
- A preorder ≤ on R is a semiring preorder if for every a, b, c, d ∈ R we have that a ≤ b and c ≤ d imply a + c ≤ b + d and ac ≤ bd
- A semiring preorder \leq on \mathcal{R} is a **Strassen preorder** if
 - 1. for every $m, n \in \mathbb{N}_{\geq 1}$ we have $m \leq_{\mathbb{N}} n$ if and only if $m_{\mathcal{R}} \leq_{\mathcal{R}} n_{\mathcal{R}}$,

[embedding of the natural numbers]

2. for every $a, b \in \mathcal{R}$ it holds that $a \leq a + b$, and

[sum rule]

3. for every $a \in \mathcal{R}$ it holds that $1_{\mathcal{R}} \leq a \leq n_{\mathcal{R}}$ for some $n \in \mathbb{N}_{\geq 1}$

[strong Archimedean property]

- The pair (\mathcal{R}, \leq) with \leq a Strassen preorder on \mathcal{R} is a **Strassen semiring**
- Example.
 (ℝ_{≥1}, ≤_ℝ) is a Strassen semiring

- Let (\mathcal{R}, \leq) be a Strassen semiring
- ▶ For $a \in \mathcal{R}$, the **rank** R(a) is the least number $n \in \mathbb{N}_{\geq 1}$ such that $a \leq n_{\mathcal{R}}$
- ▶ For $a \in \mathcal{R}$, the **subrank** Q(a) is the greatest number $m \in \mathbb{N}_{\geq 1}$ such that $m_{\mathcal{R}} \leq a$
- ► *Remarks.* Rank is sub-additive, sub-multiplicative, normalized, and ≤-monotone; subrank is super-additive, super-multiplicative, normalized, and ≤-monotone
- ► Example.

For $(\mathbb{R}_{\geq 1}, \leq_{\mathbb{R}})$, we have $R(a) = \lceil a \rceil$ and $Q(a) = \lfloor a \rfloor$

Asymptotic rank and asymptotic subrank

- Let (\mathcal{R}, \leq) be a Strassen semiring
- ► For $a \in \mathcal{R}$, the **asymptotic rank** $\tilde{R}(a)$ is the infimum of $\{R(a^n)^{1/n} : n \in \mathbb{N}_{\geq 1}\}$
- ► For $a \in \mathcal{R}$, the asymptotic subrank $\tilde{Q}(a)$ is the supremum of $\{Q(a^n)^{1/n} : n \in \mathbb{N}_{\geq 1}\}$
- ► Remarks.
 - 1. Asymptotic rank is sub-additive, sub-multiplicative, normalized, and \leq -monotone
 - 2. Asymptotic subrank is super-additive, super-multiplicative, normalized, and ≤-monotone
 - 3. By Fekete's lemma, the infimum and supremum can be replaced by limits $n \rightarrow \infty$
- ► Example.

For $(\mathbb{R}_{\geq 1}, \leq_{\mathbb{R}})$, we have $\tilde{R}(a) = \tilde{Q}(a) = a$

- ► Let \mathbb{F} be a field and let $k \in \mathbb{N}_{\geq 1}$; let us abbreviate $[k] = \{0, 1, ..., k-1\}$
- ► For $d_1, d_2, ..., d_k \in \mathbb{N}_{\geq 1}$, an array $T \in \mathbb{F}^{d_1 \times d_2 \times \cdots \times d_k}$ is *k*-tensor over \mathbb{F} of shape $d_1 \times d_2 \times \cdots \times d_k$
- ► A tensor *T* is *nonzero* if there exist $i_1 \in [d_1], i_2 \in [d_2], ..., i_k \in [d_k]$ such that $T_{i_1, i_2, ..., i_k} \neq 0$
- *Example.* Matrices are 2-tensors
- We will fix k = 3 in what follows and abbreviate "3-tensor" to "tensor"
- Two tensors are equivalent if they have the same shape and one can be obtained by the other by rearranging the slices, the rows, and the columns of the tensor
- Let \mathcal{T} be the set of all equivalence classes of *nonzero* tensors (of any shape)

Example: Tensors (2/2)

- Let $T \in \mathbb{F}^{d_1 \times d_2 \times d_3}$ and $T' \in \mathbb{F}^{d'_1 \times d'_2 \times d'_3}$ be tensors
- ► The **direct sum** $T \oplus T' \in \mathbb{R}^{(d_1+d_1') \times (d_2+d_2') \times (d_3+d_3')}$ is defined for all $j_1 \in [d_1 + d_1']$, $j_2 \in [d_2 + d_2'], j_3 \in [d_3 + d_3']$ by

$$(T \oplus T')_{j_1, j_2, j_3} = \begin{cases} T_{j_1, j_2, j_3} & \text{if } j_1 < d_1, j_2 < d_2, j_3 < d_3; \\ T'_{j_1 - d_1, j_2 - d_2, j_3 - d_3} & \text{if } j_1 \ge d_1, j_2 \ge d_2, j_3 \ge d_3; \\ 0 & \text{otherwise} \end{cases}$$

- ► The **Kronecker product** $T \otimes T' \in \mathbb{F}^{(d_1d'_1) \times (d_2d'_2) \times (d_3d'_3)}$ is defined for all $i_1 \in [d_1]$, $i'_1 \in [d'_1]$, $i_2 \in [d_2]$, $i'_2 \in [d'_2]$, $i_3 \in [d_3]$, $i'_3 \in [d'_3]$ by $(T \otimes T')_{i_1d'_1+i'_1, i_2d'_2+i'_2, i_3d'_3+i'_3}$
- \blacktriangleright The direct sum and the Kronecker product are well-defined on ${\mathcal T}$
- ► Observing that the 1 × 1 × 1 tensor 1_T with the entry 1_F is the ⊗-multiplicative identity and that the other relevant axioms for a commutative semiring hold, we have that (T, ⊕, ⊗, 1_T) is a commutative semiring

Example: Restriction preorder for tensors

- Let $T \in \mathbb{F}^{d_1 \times d_2 \times d_3}$ and $T' \in \mathbb{F}^{d'_1 \times d'_2 \times d'_3}$ be tensors
- ▶ We say that *T'* restricts to *T* and write $T \le T'$ if there exist matrices $A \in \mathbb{F}^{d_1 \times d'_1}$, $B \in \mathbb{F}^{d_2 \times d'_2}$, and $C \in \mathbb{F}^{d_3 \times d'_3}$ such that for all $i_1 \in [d_1]$, $i_2 \in [d_2]$, and $i_3 \in [d_3]$ we have

$$T_{i_1, i_2, i_3} = \sum_{i_1' \in [d_1'], i_2' \in [d_2'], i_3' \in [d_3']} A_{i_1, i_1'} B_{i_2, i_2'} C_{i_3, i_3'} T_{i_1', i_2', i_3'}'$$

- ► The restriction relation ≤ is well-defined on T and can be verified to be a Strassen preorder on T
- Thus, (\mathcal{T}, \leq) is a Strassen semiring
- ► The rank and asymptotic rank on (T, ≤) correspond to the standard notions of tensor rank and asymptotic tensor rank

- Let G consist of the isomorphism classes of (nonempty) undirected graphs
- For two graphs G and H, let $G \sqcup H$ be the **disjoint union** and let $G \otimes H$ be the **strong product** of G and H
- (The strong product is essentially obtained from the Kronecker product of the adjacency matrices of *G* and *H*.)
- ► The set G equipped with \sqcup and \otimes is a commutative semiring with the one-vertex graph K_1 as the multiplicative identity

Example: Cohomomorphism preorder for graphs

- For a graph *G*, let us write \overline{G} for the complement graph of *G*
- ► For two graphs *G* and *H*, a mapping $\phi : V(G) \rightarrow V(H)$ is a **homomorphism** from *G* to *H* if for every $u, v \in V(G)$ we have that $\{u, v\} \in E(G)$ implies $\{\phi(u), \phi(v)\} \in E(H)$
- ► We say that two graphs *G* and *H* cohomomorphic and write $G \le H$ if there exists a homomorphism from \overline{G} to \overline{H}
- ► The cohomomorphism relation ≤ is a Strassen preorder on G and thus (G, ≤) is a Strassen semiring
- ► For a graph *G*, the rank $R(G) = \overline{\chi}(G)$ is the clique cover number and the subrank $Q(G) = \alpha(G)$ is the independence number of *G*
- The asymptotic subrank $\tilde{Q}(G) = \Theta(G)$ is the **Shannon capacity** of *G*
- Perfect graphs G satisfy α(G) = Θ(G) = χ̄(G); the Shannon capacity of C₅ is known but open already for all longer odd cycles

A (very) high-level sketch of Strassen duality

- ► A Strassen preorder *P* admits a **closure** $\tilde{P} \supseteq P$ that is also a Strassen preorder; closure satisfies $\tilde{\tilde{P}} = \tilde{P}$; when $\tilde{P} = P$ we say that *P* is **closed**
- Theorem. (Structure of Closed Strassen Preorders)
 Every closed Strassen preorder *P* is the intersection of all total closed Strassen preorders that extend *P*
- ► The (integral) notions of rank and subrank for *P* admit extensions to **fractional rank** and **fractional subrank** with $Q(a) \le \kappa(a) \le \rho(a) \le R(a)$
- ► For a total closed Strassen preorder $Q \supseteq P$ it holds that $\kappa_Q = \rho_Q$; the map $\phi = \kappa_Q = \rho_Q$ is thus a **monotone homomorphism** of *P*
- The set of all monotone homomorphisms of *P* form its **asymptotic spectrum** X
- ► **Theorem.** (Duality for asymptotic rank) For all $a \in \mathcal{R}$ it holds that $\tilde{R}(a) = \sup\{\phi(a) : \phi \in X\}$

- This talk is a short primer to Strassen semirings and their asymptotic spectra based on a recent exposition by Wigderson and Zuiddam https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf
- We aim to look at and motivate three examples:
 - 1. ℝ_{≥1}
 - 2. Restriction-preordered **tensors** [asymptotic tensors]
 - 3. Cohomomorphism-preordered graphs

[asymptotic tensor rank] [Shannon capacity]

Time permitting, we will also seek to sketch Strassen's duality between asymptotic rank and the asymptotic spectrum formed by the monotone homomorphisms