# A primer to Strassen semirings and their asymptotic spectra 

HIIT Foundations Friday

26 January 2024
Petteri Kaski
Department of Computer Science
Aalto University

## Summary

- This talk is a short primer to Strassen semirings and their asymptotic spectra based on a recent exposition by Wigderson and Zuiddam https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf
- We aim to look at and motivate three examples:

1. $\mathbb{R}_{\geq 1}$
2. Restriction-preordered tensors
[asymptotic tensor rank]
3. Cohomomorphism-preordered graphs [Shannon capacity]

- Time permitting, we will also seek to sketch Strassen's duality between asymptotic rank and the asymptotic spectrum formed by the monotone homomorphisms


## A short boot camp of definitions

- [Commutative] semiring
- Partial order, total order, preorder
- Semiring preorder
- Strassen preorder
- Strassen-preordered commutative semiring [Strassen semiring]


## Commutative semiring

- A three-tuple $(\mathcal{R},+, \cdot)$ consisting of a set $\mathcal{R}$ and two binary operations $+: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ and $: ~ \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ is called a commutative semiring if

1. for all $a, b, c \in \mathcal{R}$ we have $(a+b)+c=a+(b+c)$,
2. for all $a, b \in \mathcal{R}$ we have $a+b=b+a$,
3. for all $a, b, c \in \mathcal{R}$ we have $(a \cdot b) \cdot c=a \cdot(b \cdot c)$,
4. for all $a, b \in \mathcal{R}$ we have $a \cdot b=b \cdot a$,
5. for all $a, b, c \in \mathcal{R}$ we have $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$, and
6. there exists a $1 \in \mathcal{R}$ such that for all $a \in \mathcal{R}$ we have $1 \cdot a=a$
[associativity of +]
[commutativity of + ]
[associativity of •]
[commutativity of •]
[distributivity of • over +]
[multiplicative unit]

- Example: $\mathbb{R}_{\geq 1}$ (the set of real numbers at least 1 )


## Binary relations

- A binary relation $\leq$ on a set $\mathcal{R}$ is

1. reflexive if for all $a \in \mathcal{R}$ we have $a \leq a$
2. symmetric if for all $a, b \in \mathcal{R}$ we have $a \leq b$ implies $b \leq a$
3. antisymmetric if for all $a, b \in \mathcal{R}$ we have $a \leq b$ and $b \leq a$ imply $a=b$
4. transitive if for all $a, b, c \in \mathcal{R}$ we have $a \leq b$ and $b \leq c$ imply $a \leq c$
5. total if for all $a, b \in \mathcal{R}$ at least one of $a \leq b$ or $b \leq a$ holds
6. equivalence if it is reflexive, symmetric, and transitive
7. partial order if it is reflexive, antisymmetric, and transitive
8. preorder if it is reflexive and transitive
9. order if it is a partial order and total

- Let $P, Q$ be binary relations on a set $\mathcal{R}$; we say that $Q$ extends $P$ if $P \subseteq Q$


## Strassen preorder

- Let $\mathcal{R}$ be a commutative semiring and let $\mathbb{N}=\{0,1,2, \ldots\}$
- A preorder $\leq$ on $\mathcal{R}$ is a semiring preorder if for every $a, b, c, d \in \mathcal{R}$ we have that $a \leq b$ and $c \leq d$ imply $a+c \leq b+d$ and $a c \leq b d$
- A semiring preorder $\leq$ on $\mathcal{R}$ is a Strassen preorder if

1. for every $m, n \in \mathbb{N}_{\geq 1}$ we have $m \leq_{\mathbb{N}} n$ if and only if $m_{\mathcal{R}} \leq_{\mathcal{R}} n_{\mathcal{R}}$,
[embedding of the natural numbers]
2. for every $a, b \in \mathcal{R}$ it holds that $a \leq a+b$, and
[sum rule]
3. for every $a \in \mathcal{R}$ it holds that $1_{\mathcal{R}} \leq a \leq n_{\mathcal{R}}$ for some $n \in \mathbb{N}_{\geq 1}$
[strong Archimedean property]

- The pair $(\mathcal{R}, \leq)$ with $\leq$ a Strassen preorder on $\mathcal{R}$ is a Strassen semiring
- Example.
$\left(\mathbb{R}_{\geq 1}, \leq_{\mathbb{R}}\right)$ is a Strassen semiring


## Rank and subrank

- Let $(\mathcal{R}, \leq)$ be a Strassen semiring
- For $a \in \mathcal{R}$, the $\operatorname{rank} R(a)$ is the least number $n \in \mathbb{N}_{\geq 1}$ such that $a \leq n_{\mathcal{R}}$
- For $a \in \mathcal{R}$, the subrank $Q(a)$ is the greatest number $m \in \mathbb{N}_{\geq 1}$ such that $m_{\mathcal{R}} \leq a$
- Remarks. Rank is sub-additive, sub-multiplicative, normalized, and $\leq$-monotone; subrank is super-additive, super-multiplicative, normalized, and $\leq$-monotone
- Example.

For $\left(\mathbb{R}_{\geq 1}, \leq_{\mathbb{R}}\right)$, we have $R(a)=\lceil a\rceil$ and $Q(a)=\lfloor a\rfloor$

## Asymptotic rank and asymptotic subrank

- Let $(\mathcal{R}, \leq)$ be a Strassen semiring
- For $a \in \mathcal{R}$, the asymptotic rank $\tilde{R}(a)$ is the infimum of $\left\{R\left(a^{n}\right)^{1 / n}: n \in \mathbb{N}_{\geq 1}\right\}$
- For $a \in \mathcal{R}$, the asymptotic subrank $\tilde{Q}(a)$ is the supremum of $\left\{Q\left(a^{n}\right)^{1 / n}: n \in \mathbb{N} \geq 1\right\}$
- Remarks.

1. Asymptotic rank is sub-additive, sub-multiplicative, normalized, and $\leq$-monotone
2. Asymptotic subrank is super-additive, super-multiplicative, normalized, and $\leq$-monotone
3. By Fekete's lemma, the infimum and supremum can be replaced by limits $n \rightarrow \infty$

- Example.

For $\left(\mathbb{R}_{\geq 1}, \leq_{\mathbb{R}}\right)$, we have $\tilde{R}(a)=\tilde{Q}(a)=a$

## Example: Tensors (1/2)

- Let $\mathbb{F}$ be a field and let $k \in \mathbb{N}_{\geq 1}$; let us abbreviate $[k]=\{0,1, \ldots, k-1\}$
- For $d_{1}, d_{2}, \ldots, d_{k} \in \mathbb{N}_{\geq 1}$, an array $T \in \mathbb{F}^{d_{1} \times d_{2} \times \cdots \times d_{k}}$ is $k$-tensor over $\mathbb{F}$ of shape $d_{1} \times d_{2} \times \cdots \times d_{k}$
- A tensor $T$ is nonzero if there exist $i_{1} \in\left[d_{1}\right], i_{2} \in\left[d_{2}\right], \ldots, i_{k} \in\left[d_{k}\right]$ such that $T_{i_{1}, i_{2}, \ldots, i_{k}} \neq 0$
- Example. Matrices are 2-tensors
- We will fix $k=3$ in what follows and abbreviate " 3 -tensor" to "tensor"
- Two tensors are equivalent if they have the same shape and one can be obtained by the other by rearranging the slices, the rows, and the columns of the tensor
- Let $\mathcal{T}$ be the set of all equivalence classes of nonzero tensors (of any shape)


## Example: Tensors (2/2)

- Let $T \in \mathbb{F}^{d_{1} \times d_{2} \times d_{3}}$ and $T^{\prime} \in \mathbb{F}^{d_{1}^{\prime} \times d_{2}^{\prime} \times d_{3}^{\prime}}$ be tensors
- The direct sum $T \oplus T^{\prime} \in \mathbb{F}^{\left(d_{1}+d_{1}^{\prime}\right) \times\left(d_{2}+d_{2}^{\prime}\right) \times\left(d_{3}+d_{3}^{\prime}\right)}$ is defined for all $j_{1} \in\left[d_{1}+d_{1}^{\prime}\right]$, $j_{2} \in\left[d_{2}+d_{2}^{\prime}\right], j_{3} \in\left[d_{3}+d_{3}^{\prime}\right]$ by

$$
\left(T \oplus T^{\prime}\right)_{j_{1}, j_{2}, j_{3}}= \begin{cases}T_{j_{1}, j_{2}, j_{3}} & \text { if } j_{1}<d_{1}, j_{2}<d_{2}, j_{3}<d_{3} \\ T_{j_{1}-d_{1}, j_{2}-d_{2}, j_{3}-d_{3}}^{\prime} & \text { if } j_{1} \geq d_{1}, j_{2} \geq d_{2}, j_{3} \geq d_{3} \\ 0 & \text { otherwise }\end{cases}
$$

- The Kronecker product $T \otimes T^{\prime} \in \mathbb{F}^{\left(d_{1} d_{1}^{\prime}\right) \times\left(d_{2} d_{2}^{\prime}\right) \times\left(d_{3} d_{3}^{\prime}\right)}$ is defined for all $i_{1} \in\left[d_{1}\right]$, $i_{1}^{\prime} \in\left[d_{1}^{\prime}\right], i_{2} \in\left[d_{2}\right], i_{2}^{\prime} \in\left[d_{2}^{\prime}\right], i_{3} \in\left[d_{3}\right], i_{3}^{\prime} \in\left[d_{3}^{\prime}\right]$ by $\left(T \otimes T^{\prime}\right)_{i_{1} d_{1}^{\prime}+i_{1}^{\prime}, i_{2} d_{2}^{\prime}+i_{2}^{\prime}, i_{3} d_{3}^{\prime}+i_{3}^{\prime}}$
- The direct sum and the Kronecker product are well-defined on $\mathcal{T}$
- Observing that the $1 \times 1 \times 1$ tensor $1_{\mathcal{T}}$ with the entry $1_{\mathbb{F}}$ is the $\otimes$-multiplicative identity and that the other relevant axioms for a commutative semiring hold, we have that $(\mathcal{T}, \oplus, \otimes, 1 \mathcal{T})$ is a commutative semiring


## Example: Restriction preorder for tensors

- Let $T \in \mathbb{F}^{d_{1} \times d_{2} \times d_{3}}$ and $T^{\prime} \in \mathbb{F}^{d_{1}^{\prime} \times d_{2}^{\prime} \times d_{3}^{\prime}}$ be tensors
- We say that $T^{\prime}$ restricts to $T$ and write $T \leq T^{\prime}$ if there exist matrices $A \in \mathbb{F}^{d_{1} \times d_{1}^{\prime}}$, $B \in \mathbb{F}^{d_{2} \times d_{2}^{\prime}}$, and $C \in \mathbb{F}^{d_{3} \times d_{3}^{\prime}}$ such that for all $i_{1} \in\left[d_{1}\right], i_{2} \in\left[d_{2}\right]$, and $i_{3} \in\left[d_{3}\right]$ we have

$$
T_{i_{1}, i_{2}, i_{3}}=\sum_{i_{1}^{\prime} \in\left[d_{1}^{\prime}\right], i_{2}^{\prime} \in\left[d_{2}^{\prime}\right], i_{3}^{\prime} \in\left[d_{3}^{\prime}\right]} A_{i_{1}, i_{1}^{\prime}} B_{i_{2}, i_{2}^{\prime}} C_{i_{3}, i_{3}^{\prime}} T_{i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}}^{\prime}
$$

- The restriction relation $\leq$ is well-defined on $\mathcal{T}$ and can be verified to be a Strassen preorder on $\mathcal{T}$
- Thus, $(\mathcal{T}, \leq)$ is a Strassen semiring
- The rank and asymptotic rank on $(\mathcal{T}, \leq)$ correspond to the standard notions of tensor rank and asymptotic tensor rank


## Example: Graphs

- Let $\mathcal{G}$ consist of the isomorphism classes of (nonempty) undirected graphs
- For two graphs $G$ and $H$, let $G \sqcup H$ be the disjoint union and let $G \otimes H$ be the strong product of $G$ and $H$
- (The strong product is essentially obtained from the Kronecker product of the adjacency matrices of $G$ and $H$.)
- The set $\mathcal{G}$ equipped with $\sqcup$ and $\otimes$ is a commutative semiring with the one-vertex graph $K_{1}$ as the multiplicative identity


## Example: Cohomomorphism preorder for graphs

- For a graph $G$, let us write $\bar{G}$ for the complement graph of $G$
- For two graphs $G$ and $H$, a mapping $\phi: V(G) \rightarrow V(H)$ is a homomorphism from $G$ to $H$ if for every $u, v \in V(G)$ we have that $\{u, v\} \in E(G)$ implies $\{\phi(u), \phi(v)\} \in E(H)$
- We say that two graphs $G$ and $H$ cohomomorphic and write $G \leq H$ if there exists a homomorphism from $\bar{G}$ to $\bar{H}$
- The cohomomorphism relation $\leq$ is a Strassen preorder on $\mathcal{G}$ and thus $(\mathcal{G}, \leq)$ is a Strassen semiring
- For a graph $G$, the rank $R(G)=\bar{\chi}(G)$ is the clique cover number and the subrank $Q(G)=\alpha(G)$ is the independence number of $G$
- The asymptotic subrank $\tilde{Q}(G)=\Theta(G)$ is the Shannon capacity of $G$
- Perfect graphs $G$ satisfy $\alpha(G)=\Theta(G)=\bar{\chi}(G)$; the Shannon capacity of $C_{5}$ is known but open already for all longer odd cycles


## A (very) high-level sketch of Strassen duality

- A Strassen preorder $P$ admits a closure $\tilde{P} \supseteq P$ that is also a Strassen preorder; closure satisfies $\tilde{\tilde{P}}=\tilde{P}$; when $\tilde{P}=P$ we say that $P$ is closed
- Theorem. (Structure of Closed Strassen Preorders)

Every closed Strassen preorder $P$ is the intersection of all total closed Strassen preorders that extend $P$

- The (integral) notions of rank and subrank for $P$ admit extensions to fractional rank and fractional subrank with $Q(a) \leq \kappa(a) \leq \rho(a) \leq R(a)$
- For a total closed Strassen preorder $Q \supseteq P$ it holds that $\kappa_{Q}=\rho_{Q}$; the map $\phi=\kappa_{Q}=\rho_{Q}$ is thus a monotone homomorphism of $P$
- The set of all monotone homomorphisms of $P$ form its asymptotic spectrum $X$
- Theorem. (Duality for asymptotic rank)

For all $a \in \mathcal{R}$ it holds that $\tilde{R}(a)=\sup \{\phi(a): \phi \in \mathcal{X}\}$

## Summary

- This talk is a short primer to Strassen semirings and their asymptotic spectra based on a recent exposition by Wigderson and Zuiddam https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf
- We aim to look at and motivate three examples:

1. $\mathbb{R}_{\geq 1}$
2. Restriction-preordered tensors
[asymptotic tensor rank]
3. Cohomomorphism-preordered graphs [Shannon capacity]

- Time permitting, we will also seek to sketch Strassen's duality between asymptotic rank and the asymptotic spectrum formed by the monotone homomorphisms

