$\exists \mathbb{R}$-completeness in geometric algorithms

Sándor Kisfaludi-Bak

HIIT Foundations Friday 16 February 2024

NP-hard, but is it in NP?

1. Stretchability: given a set of n pseudolines (x-monotone curves with exactly 1 crossing between any pair), decide if it is homeomorphic to an arrangement of lines.

Non-example: non-Pappus configuration

NP-hard, but is it in NP?

1. Stretchability: given a set of n pseudolines (x-monotone curves with exactly 1 crossing between any pair), decide if it is homeomorphic to an arrangement of lines.

Non-example: non-Pappus configuration

Scary results: (Goodman et al STOC'89): representing the order type sometimes requires a grid of size $2^{2^{c n}}$.

NP-hard, but is it in NP?

1. Stretchability: given a set of n pseudolines (x-monotone curves with exactly 1 crossing between any pair), decide if it is homeomorphic to an arrangement of lines.

Non-example: non-Pappus configuration

Scary results: (Goodman et al STOC'89): representing the order type sometimes requires a grid of size $2^{2^{c n}}$.

Double exponential precision is required \Rightarrow the "natural" witness has exponentially many bits!

NP-hard, but is it in NP?

2. Packing: Given a square container and some convex polygons, can they all be packed inside the container?

NP-hard, but is it in NP?

2. Packing: Given a square container and some convex polygons, can they all be packed inside the container?

NP-hard, but is it in NP?

2. Packing: Given a square container and some convex polygons, can they all be packed inside the container?

Scary: Are we sure that the coordinates of the rotated translated polygons can be expressed with $O(n)$ bits?

NP-hard, but is it in NP?

3. Art Gallery: Given an art gallery (a simple polygon), can it be guarded by k point guards?

NP-hard, but is it in NP?

3. Art Gallery: Given an art gallery (a simple polygon), can it be guarded by k point guards?

NP-hard, but is it in NP?

3. Art Gallery: Given an art gallery (a simple polygon), can it be guarded by k point guards?

NP-hard, but is it in NP?

3. Art Gallery: Given an art gallery (a simple polygon), can it be guarded by k point guards?

Perhaps we can always find valid guards on a fine grid? That would guarantee NP-membership...

Further examples: NP-hard but witness issues

Unit Disk Graph Recognition: Given a graph G, is it realizable as an intersection graph of unit disks?

Further examples: NP-hard but witness issues

Unit Disk Graph Recognition: Given a graph G, is it realizable as an intersection graph of unit disks?

Geometric Embeddability of Complexes: Given a d-dimensional simplicial complex, can it be embedded with geometric simplices into \mathbb{R}^{d} ? or into \mathbb{R}^{d+1} ?

Further examples: NP-hard but witness issues

Unit Disk Graph Recognition: Given a graph G, is it realizable as an intersection graph of unit disks?

Geometric Embeddability of Complexes: Given a d-dimensional simplicial complex, can it be embedded with geometric simplices into \mathbb{R}^{d} ? or into \mathbb{R}^{d+1} ?

Convex cover: Given a polygon, can it be covered by k convex pieces of itself?

Existential Theory of the Reals

First order theory of the reals is the set of true sentences with the symbols

$$
\left\{x_{1}, x_{2}, \ldots, \forall, \exists, \wedge, \vee, \neg, 0,1,+,-, \cdot,(,),=, \leq,<\right\}
$$

where x_{i} are variables over the real numbers.
Easy to get integer constant k with $\mathrm{O}(\log \mathrm{k})$ formula length.

Existential Theory of the Reals

First order theory of the reals is the set of true sentences with the symbols

$$
\left\{x_{1}, x_{2}, \ldots, \forall, \exists, \wedge, \vee, \neg, 0,1,+,-, \cdot,(,),=, \leq,<\right\}
$$

where x_{i} are variables over the real numbers.
Easy to get integer constant k with $\mathrm{O}(\log \mathrm{k})$ formula length.
Existential theory of the reals is the set of true sentences of first order theory of the reals of the form

$$
\exists x_{1} \exists x_{2} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)
$$

where Φ is a quantifier-free formula.

Existential Theory of the Reals

First order theory of the reals is the set of true sentences with the symbols

$$
\left\{x_{1}, x_{2}, \ldots, \forall, \exists, \wedge, \vee, \neg, 0,1,+,-, \cdot,(,),=, \leq,<\right\}
$$

where x_{i} are variables over the real numbers.
Easy to get integer constant k with $\mathrm{O}(\log \mathrm{k})$ formula length.
Existential theory of the reals is the set of true sentences of first order theory of the reals of the form

$$
\exists x_{1} \exists x_{2} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)
$$

where Φ is a quantifier-free formula.

Existential Theory of the Reals

First order theory of the reals is the set of true sentences with the symbols

$$
\left\{x_{1}, x_{2}, \ldots, \forall, \exists, \wedge, \vee, \neg, 0,1,+,-, \cdot,(,),=, \leq,<\right\}
$$

where x_{i} are variables over the real numbers.
Easy to get integer constant k with $\mathrm{O}(\log \mathrm{k})$ formula length.
Existential theory of the reals is the set of true sentences of first order theory of the reals of the form

$$
\exists x_{1} \exists x_{2} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)
$$

where Φ is a quantifier-free formula.

Defines a semi-algebraic set.

ETR: the computational problem of deciding if a given formula $\exists x_{1} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$ is true.

Existential Theory of the Reals

First order theory of the reals is the set of true sentences with the symbols

$$
\left\{x_{1}, x_{2}, \ldots, \forall, \exists, \wedge, \vee, \neg, 0,1,+,-, \cdot,(,),=, \leq,<\right\}
$$

where x_{i} are variables over the real numbers.
Easy to get integer constant k with $\mathrm{O}(\log \mathrm{k})$ formula length.
Existential theory of the reals is the set of true sentences of first order theory of the reals of the form

$$
\exists x_{1} \exists x_{2} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)
$$

where Φ is a quantifier-free formula.
Defines a semi-algebraic set.
ETR: the computational problem of deciding if a given formula $\exists x_{1} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$ is true.
$\exists \mathbb{R}$: the class of problems poly-time reducible to ETR

Examples and non-examples

$$
\exists x_{1} \exists x_{2}:\left(x_{1} \geq 0\right) \wedge\left(x_{2} \geq 0\right) \wedge\left(\left(x_{1}+x_{2}\right) \cdot\left(x_{1}+x_{2}\right) \geq\left(x_{1}+x_{1}\right) \cdot\left(x_{2}+x_{2}\right)\right)
$$

Examples and non-examples

$$
\begin{array}{r}
\exists x_{1} \exists x_{2}:\left(x_{1} \geq 0\right) \wedge\left(x_{2} \geq 0\right) \wedge\left(\left(x_{1}+x_{2}\right) \cdot\left(x_{1}+x_{2}\right) \geq\left(x_{1}+x_{1}\right) \cdot\left(x_{2}+x_{2}\right)\right) \\
\left(x_{1}+x_{2}\right)^{2} \geq 4 x_{1} x_{2}
\end{array}
$$

Examples and non-examples

$$
\underbrace{\exists x_{1} \exists x_{2}:\left(x_{1} \geq 0\right) \wedge\left(x_{2} \geq 0\right) \wedge\left(\left(x_{1}+x_{2}\right) \cdot\left(x_{1}+x_{2}\right) \geq\left(x_{1}+x_{1}\right) \cdot\left(x_{2}+x_{2}\right)\right)}_{\left(x_{1}+x_{2}\right)^{2} \geq 4 x_{1} x_{2}}
$$

True, states the AM -GM inequality.

Examples and non-examples

$$
\underbrace{\exists x_{1} \exists x_{2}:\left(x_{1} \geq 0\right) \wedge\left(x_{2} \geq 0\right) \wedge\left(\left(x_{1}+x_{2}\right) \cdot\left(x_{1}+x_{2}\right) \geq\left(x_{1}+x_{1}\right) \cdot\left(x_{2}+x_{2}\right)\right)}_{\left(x_{1}+x_{2}\right)^{2} \geq 4 x_{1} x_{2}}
$$

True, states the AM-GM inequality.
Packing $\in \exists \mathbb{R}$ because:

- variables $x_{i, j}, y_{i, j}$ expressing the location of vertex j of polygon i

Examples and non-examples

True, states the AM-GM inequality.
Packing $\in \exists \mathbb{R}$ because:

- variables $x_{i, j}, y_{i, j}$ expressing the location of vertex j of polygon i
- Each polygon vertex is inside the container square: each variable has $0 \leq x \leq 1$.

Examples and non-examples

True, states the AM-GM inequality.
Packing $\in \exists \mathbb{R}$ because:

- variables $x_{i, j}, y_{i, j}$ expressing the location of vertex j of polygon i
- Each polygon vertex is inside the container square: each variable has $0 \leq x \leq 1$.
- The squared distances of vertices in the same polygon are fixed.

Examples and non-examples

True, states the AM-GM inequality.
Packing $\in \exists \mathbb{R}$ because:

- variables $x_{i, j}, y_{i, j}$ expressing the location of vertex j of polygon i
- Each polygon vertex is inside the container square: each variable has $0 \leq x \leq 1$.
- The squared distances of vertices in the same polygon are fixed.
- Each vertex of polygon i is separated from polygon i^{\prime} by the line of one of the sides of i^{\prime} for all $i \neq i^{\prime}$.

The complexity landscape

$$
N P \subseteq \exists \mathbb{R} \subseteq P S P A C E
$$

The complexity landscape

Take a 3-SAT instance, and regard as an ETR formula. To restrict each variable $x \in \mathbb{R}$ to be Boolean, add the conditions:

$$
(x \cdot x=x)
$$

The complexity landscape

$N P \subseteq \exists \mathbb{R} \subseteq P S P A C E$ I
 Canny STOC'88

Take a 3-SAT instance, and regard as an ETR formula. To restrict each variable $x \in \mathbb{R}$ to be Boolean, add the conditions:

$$
(x \cdot x=x)
$$

The complexity landscape

$N P \subseteq \exists \mathbb{R} \subseteq P S P A C E$ 1
 Canny STOC'88

Take a 3-SAT instance, and regard as an ETR formula. To restrict each variable $x \in \mathbb{R}$ to be Boolean, add the conditions:

$$
(x \cdot x=x)
$$

Many believe that $N P \neq \exists \mathbb{R}$, and take an $\exists \mathbb{R}$-hardness proof as evidence that the problem is likely not in $N P$.

Smarter $\exists \mathbb{R}$ containment proofs

Theorem (Erickson, van der Hoog, Miltzow, FOCS 2020), roughly stated A problem is in $\exists \mathbb{R}$ iff it has a real verification algorithm, i.e., can be verified in poly time on a real RAM with a polynomial witness (of reals and integers).

Smarter $\exists \mathbb{R}$ containment proofs

Theorem (Erickson, van der Hoog, Miltzow, FOCS 2020), roughly stated A problem is in $\exists \mathbb{R}$ iff it has a real verification algorithm, i.e., can be verified in poly time on a real RAM with a polynomial witness (of reals and integers).
Stretchability $\in \exists \mathbb{R}$ because:
Witness: pairwise intersection points of each line pair (i, j) given as pairs of real coordinates $\left(x_{i j}, y_{i j}\right) \in \mathbb{R}^{2}$.
Algorithm to verify: check using real arithmetic that the points on each line i are indeed collinear, and that they have the same ordering as the intersections of the corresponding curve in the pseudoline arrangement.

Smarter $\exists \mathbb{R}$ containment proofs

Theorem (Erickson, van der Hoog, Miltzow, FOCS 2020), roughly stated A problem is in $\exists \mathbb{R}$ iff it has a real verification algorithm, i.e., can be verified in poly time on a real RAM with a polynomial witness (of reals and integers).

Stretchability $\in \exists \mathbb{R}$ because:
Witness: pairwise intersection points of each line pair (i, j) given as pairs of real coordinates $\left(x_{i j}, y_{i j}\right) \in \mathbb{R}^{2}$.
Algorithm to verify: check using real arithmetic that the points on each line i are indeed collinear, and that they have the same ordering as the intersections of the corresponding curve in the pseudoline arrangement.

Art Gallery $\in \exists \mathbb{R}$ because:
Witness: Guard coordiantes as real numbers
Algorithm to verify: Compute using real arithmetic the polynomial complexity region seen by each guard, and check if their union covers the gallery.

A glimpse of the $\exists \mathbb{R}$-hardness for Stretchability

Theorem (Mnëv '88, Shor '91), very roughly stated

For each ETR formula there is an equivalent ETR formula (defining a
"topologically equivalent" semi-algebraic set) whose variables are >1 and have a fixed strict ordering, and where each equation is a simple addition or a simple multiplication.

Basically, we can assume that:
$1<x_{1}<x_{2}<\cdots<x_{n}$, and formulas are either $x_{i}+x_{j}=x_{k}$ or $x_{i} \cdot x_{j}=x_{k}$

A glimpse of the $\exists \mathbb{R}$-hardness for Stretchability

Theorem (Mnëv '88, Shor '91), very roughly stated

For each ETR formula there is an equivalent ETR formula (defining a
"topologically equivalent" semi-algebraic set) whose variables are > 1 and have a fixed strict ordering, and where each equation is a simple addition or a simple multiplication.

Basically, we can assume that:
$1<x_{1}<x_{2}<\cdots<x_{n}$, and formulas are either $x_{i}+x_{j}=x_{k}$ or $x_{i} \cdot x_{j}=x_{k}$
Idea: put the variables and 0,1 on a line, so lengths are represented by distance to the 0 point.
Use projective geometry gadgets for addition and multiplicaiton.

Addition and multiplication with cross-ratio

$$
x+y
$$

Addition and multiplication with cross-ratio

Addition and multiplication with cross-ratio

$x \cdot y$

Addition and multiplication with cross-ratio

Addition and multiplication with cross-ratio

$$
x+y
$$

$x \cdot y$

Parallel lines are not allowed, but projections preserve cross-ratio:

When should you suspect $\exists \mathbb{R}$-completeness?

- Continuity

When should you suspect $\exists \mathbb{R}$-completeness?

- Continuity

When should you suspect $\exists \mathbb{R}$-completeness?

- Continuity
- Non-linear behaviour

$$
x=\sqrt{c^{2}-y^{2}}
$$

$\exists \mathbb{R}$-compelte ETR variants

ETR-Square:
$x=1 \quad x+y=z \quad x^{2}=y \quad$ and $x_{i} \in[-1,1]$ for all i.

$\exists \mathbb{R}$-compelte ETR variants

ETR-Square:

$$
x=1 \quad x+y=z \quad x^{2}=y \quad \text { and } x_{i} \in[-1,1] \text { for all } i .
$$

ETR-INV:

$$
x=1 \quad x+y=z \quad x \cdot y=1 \quad \text { and } x_{i} \in\left[\frac{1}{2}, 2\right] \text { for all } i .
$$

$\exists \mathbb{R}$-compelte ETR variants

ETR-Square:
$x=1 \quad x+y=z \quad x^{2}=y \quad$ and $x_{i} \in[-1,1]$ for all i.
ETR-INV:
$x=1 \quad x+y=z \quad x \cdot y=1 \quad$ and $x_{i} \in\left[\frac{1}{2}, 2\right]$ for all i.
ETR-f: for some fixed non-linear f :
$x=1 \quad x+y=z \quad x \geq 0 \quad f(x, y)=0 \quad$ and $x_{i} \in[-1,1]$ for all i

Theorem (Miltzow and Schmiermann FOCS'21), roughly
ETR-f is $\exists \mathbb{R}$-complete whenever
f is "curved".

$\exists \mathbb{R}$-compelte ETR variants

ETR-Square:

$$
x=1 \quad x+y=z \quad x^{2}=y \quad \text { and } x_{i} \in[-1,1] \text { for all } i .
$$

ETR-INV:

$x=1 \quad x+y=z \quad x \cdot y=1 \quad$ and $x_{i} \in\left[\frac{1}{2}, 2\right]$ for all i.
ETR-f: for some fixed non-linear f :
$x=1 \quad x+y=z \quad x \geq 0 \quad f(x, y)=0 \quad$ and $x_{i} \in[-1,1]$ for all i
Definition 6 (Well-behaved). We say a function $f: U^{2} \rightarrow \mathbb{R}$ is well-behaved around the origin if the following conditions are met.

- f is a C^{2}-function, with $U \subseteq \mathbb{R}$ being a neighborhood of $(0,0)$,
- $f(0,0)=0$, and all partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$ are rational, in $(0,0)$.
- $f_{x}(0,0) \neq 0$ or $f_{y}(0,0) \neq 0$,
- $f(x, y)$ can be computed on a real RAM [51].

Note that if $p(x, y)$ is a polynomial of the form $\sum_{i, j} a_{i, j} x^{i} y^{j}$, then p is well-behaved if and only if $a_{0,0}=0$, $a_{1,0}, a_{0,1}, a_{2,0}, a_{1,1}, a_{0,2}$ are rational, and ($a_{1,0} \neq 0$ or $\left.a_{0,1} \neq 0\right)$.
Definition 7 (Curved). Let $f: U^{2} \rightarrow \mathbb{R}$ be a function that is well-behaved around the origin. We write the curvature of f at zero by

$$
\kappa=\kappa(f)=\left(\frac{f_{y}^{2} f_{x x}-2 f_{x} f_{y} f_{x y}+f_{x}^{2} f_{y y}}{\left(f_{x}^{2}+f_{y}^{2}\right)^{\frac{3}{2}}}\right)(0,0)
$$

see Figure 4 for an illustration. We say f is

- curved if $\kappa(f) \neq 0$,

Beyond $\exists \mathbb{R}: \forall \mathbb{R}, \forall \exists \mathbb{R}, \ldots$

$\exists \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\exists x_{1} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$

Beyond $\exists \mathbb{R}: \forall \mathbb{R}, \forall \exists \mathbb{R}, \ldots$

$\exists \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\exists x_{1} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$
$\forall \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\forall x_{1} \ldots \forall x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$

Beyond $\exists \mathbb{R}: \forall \mathbb{R}, \forall \exists \mathbb{R}, \ldots$

$\exists \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\exists x_{1} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$
$\forall \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\forall x_{1} \ldots \forall x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$
$\forall \exists \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\forall x_{1} \ldots \forall x_{k} \exists y_{1} \ldots \exists y_{\ell} \quad \Phi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right)$

Beyond $\exists \mathbb{R}: \forall \mathbb{R}, \forall \exists \mathbb{R}, \ldots$

$\exists \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\exists x_{1} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$
$\forall \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\forall x_{1} \ldots \forall x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$
$\forall \exists \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\forall x_{1} \ldots \forall x_{k} \exists y_{1} \ldots \exists y_{\ell} \quad \Phi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right)$

Beyond $\exists \mathbb{R}: \forall \mathbb{R}, \forall \exists \mathbb{R}, \ldots$

$\exists \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\exists x_{1} \ldots \exists x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$
$\forall \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\forall x_{1} \ldots \forall x_{k} \quad \Phi\left(x_{1}, \ldots, x_{k}\right)$
$\forall \exists \mathbb{R}$: the class of problems poly-time reducible to some formula given formula $\forall x_{1} \ldots \forall x_{k} \exists y_{1} \ldots \exists y_{\ell} \quad \Phi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right)$

Complete problems for the 2nd level of the hierarchy?

Area Universality: Given a plane graph, can all positive area-assignments to its bounded faces be realized with a straight-line drawing?

Complete problems for the 2 nd level of the hierarchy?

Area Universality: Given a plane graph, can all positive area-assignments to its bounded faces be realized with a straight-line drawing?

Conjectured $\forall \exists \mathbb{R}$-complete by Dobbins et al. '21. A variant where a partial assignment is given for some triplets of vertices is $\forall \exists \mathbb{R}$-complete.

Complete problems for the 2nd level of the hierarchy?

Area Universality: Given a plane graph, can all positive area-assignments to its bounded faces be realized with a straight-line drawing?

Conjectured $\forall \exists \mathbb{R}$-complete by Dobbins et al. '21. A variant where a partial assignment is given for some triplets of vertices is $\forall \exists \mathbb{R}$-complete.

Hausdorff distance of semi-algebraic sets: Given two semi-algebraic sets, is their Hausdorff distance at most x ?
$d_{H}(A, B)=\sup _{a \in A} \inf _{b \in B} \operatorname{dist}(a, b)$
The minimum distance t that B should expand to cover A.

Complete problems for the 2nd level of the hierarchy?

Area Universality: Given a plane graph, can all positive area-assignments to its bounded faces be realized with a straight-line drawing?

Conjectured $\forall \exists \mathbb{R}$-complete by Dobbins et al. '21. A variant where a partial assignment is given for some triplets of vertices is $\forall \exists \mathbb{R}$-complete.

Hausdorff distance of semi-algebraic sets: Given two semi-algebraic sets, is their Hausdorff distance at most x ?
$d_{H}(A, B)=\sup _{a \in A} \inf _{b \in B} \operatorname{dist}(a, b)$
The minimum distance t that B should expand to cover A.

$$
d_{H}(A, B)=\max \left(d_{H}(A, B), d_{H}(B, A)\right)
$$

Complete problems for the 2 nd level of the hierarchy?
Area Universality: Given a plane graph, can all positive area-assignments to its bounded faces be realized with a straight-line drawing?

Conjectured $\forall \exists \mathbb{R}$-complete by Dobbins et al. '21. A variant where a partial assignment is given for some triplets of vertices is $\forall \exists \mathbb{R}$-complete.

Hausdorff distance of semi-algebraic sets: Given two semi-algebraic sets, is their Hausdorff distance at most x ?
$d_{H}(A, B)=\sup _{a \in A} \inf _{b \in B} \operatorname{dist}(a, b)$
The minimum distance t that B should expand to cover A.

Theorem (Jungeblut, Kleist, Miltzow '23) Hausdorff Distance is $\forall \exists_{<} \mathbb{R}$-complete. Even when both sets are defined by a single polynomial equation of degree ≤ 4.

$$
d_{H}(A, B)=\max \left(d_{H}(A, B), d_{H}(B, A)\right)
$$

How to solve $\exists \mathbb{R}$-complete problems anyway?

> Theorem (Basu, Pollack, Roy JACM'96), Algorithm for the first order theory of the reals Given a set of s polynomial inequalities $(<0,>0,=0)$ of degree at most d in k variables, where the variables are alternatingly quantified in ω blocks, having $k_{1}, k_{2}, \ldots, k_{\omega}$ variables ($\sum k_{i}=k$), the sentence can be decided with ${ }_{s} \Pi\left(k_{i}+1\right) d \Pi O\left(k_{i}\right)$ arithmetic operations.

How to solve $\exists \mathbb{R}$-complete problems anyway?

Theorem (Basu, Pollack, Roy JACM'96), Algorithm for the first order theory of the reals Given a set of s polynomial inequalities $(<0,>0,=0)$ of degree at most d in k variables, where the variables are alternatingly quantified in ω blocks, having $k_{1}, k_{2}, \ldots, k_{\omega}$ variables ($\sum k_{i}=k$), the sentence can be decided with $s^{\Pi}{ }^{\left(k_{i}+1\right)} d \Pi O\left(k_{i}\right)$ arithmetic operations.

How to solve $\exists \mathbb{R}$-complete problems anyway?

Theorem (Basu, Pollack, Roy JACM'96),
Algorithm for the first order theory of the reals
Given a set of s polynomial inequalities $(<0,>0,=0)$ of degree at most d in k variables, where the variables are alternatingly quantified in ω blocks, having $k_{1}, k_{2}, \ldots, k_{\omega}$ variables ($\sum k_{i}=k$), the sentence can be decided with ${ }_{s} \Pi\left(k_{i}+1\right) d \Pi O\left(k_{i}\right)$ arithmetic operations.

The bit size of all
\rightarrow numbers is at most

$$
n \cdot O(d)^{k}
$$

Corollary (Basu, Pollack, Roy JACM'96), Algorithm for ETR
Given a set of s polynomial inequalities $(<0,>0,=0)$ of degree at most d in k variables that are existentially quantified, the sentence can be decided with $s^{k+1} d^{O(k)}$ arithmetic operations.

How to solve $\exists \mathbb{R}$-complete problems anyway?

Theorem (Basu, Pollack, Roy JACM'96),
Algorithm for the first order theory of the reals
Given a set of s polynomial inequalities $(<0,>0,=0)$ of degree at most d in k variables, where the variables are alternatingly quantified in ω blocks, having $k_{1}, k_{2}, \ldots, k_{\omega}$ variables ($\sum k_{i}=k$), the sentence can be decided with ${ }_{s} \Pi\left(k_{i}+1\right) d \Pi O\left(k_{i}\right)$ arithmetic operations.

The bit size of all
\rightarrow numbers is at most $n \cdot O(d)^{k}$

Corollary (Basu, Pollack, Roy JACM'96), Algorithm for ETR
Given a set of s polynomial inequalities $(<0,>0,=0)$ of degree at most d in k variables that are existentially quantified, the sentence can be decided with $s^{k+1} d^{O(k)}$ arithmetic operations.
... But Canny's algorithm is not much slower and uses only poly space.

Not so geometric $\exists \mathbb{R}$-complete examples

Training Neural Networks (Abrahamsen, Kleist, Miltzow '21): Given a neural network architecture (DAG with s input and t output neurons) and data set ($D \in \mathbb{R}^{s+t}$ giving ground truth), an activation function for each neuron, and a cost funciton $c: \mathbb{R}^{t} \times \mathbb{R}^{t} \rightarrow \mathbb{R}_{\geq 0}$ that is 0 on the diagonal, are there weights such that the total cost of the error $\sum_{d \in D} c\left(y(d), y^{\prime}(d)\right)<\delta$?

Not so geometric $\exists \mathbb{R}$-complete examples

> Training Neural Networks (Abrahamsen, Kleist, Miltzow '21): Given a neural network architecture (DAG with s input and t output neurons) and data set ($D \in \mathbb{R}^{s+t}$ giving ground truth), an activation function for each neuron, and a cost funciton $c: \mathbb{R}^{t} \times \mathbb{R}^{t} \rightarrow \mathbb{R}_{\geq 0}$ that is 0 on the diagonal, are there weights such that the total cost of the error $\sum_{d \in D} c\left(y(d), y^{\prime}(d)\right)<\delta$?

Matroid Realizability over \mathbb{R} (Kim, Mesmay, Miltzow '24):
Given a matroid (by listing its bases), can it be be represented over \mathbb{R} ?

Not so geometric $\exists \mathbb{R}$-complete examples

Abstract

Training Neural Networks (Abrahamsen, Kleist, Miltzow '21): Given a neural network architecture (DAG with s input and t output neurons) and data set ($D \in \mathbb{R}^{s+t}$ giving ground truth), an activation function for each neuron, and a cost funciton $c: \mathbb{R}^{t} \times \mathbb{R}^{t} \rightarrow \mathbb{R}_{\geq 0}$ that is 0 on the diagonal, are there weights such that the total cost of the error $\sum_{d \in D} c\left(y(d), y^{\prime}(d)\right)<\delta$?

Matroid Realizability over \mathbb{R} (Kim, Mesmay, Miltzow '24):
Given a matroid (by listing its bases), can it be be represented over \mathbb{R} ?

Low-Rank Matrix Completion (Bertsimas, Cory-Wright, Pauphilet '21)
$\min _{X \in \mathbb{R}^{n \times m}}\langle C, X\rangle+\lambda \operatorname{rk}(X)$ s.t. $A X=B, \operatorname{rk}(X) \leq k, X$ is positive semidefinite

Euclidean TSP and other uncategorized

Euclidean TSP: given n points in the plane with integer coordinates, is there a closed curve of length at most x containing all the points?
\rightarrow between NP and $\exists \mathbb{R}$. Lack of continuity!

Euclidean TSP and other uncategorized

Euclidean TSP: given n points in the plane with integer coordinates, is there a closed curve of length at most x containing all the points?
\rightarrow between NP and $\exists \mathbb{R}$. Lack of continuity!
Shortest path among 3d obstacles: given pw disjoint open polyhedra with n total vertices, and points $a, b \in \mathbb{R}^{3}$, is there a path from a to b of length at most x that is disjoint from the polyhedra?
\rightarrow between NP and $\exists \mathbb{R}$. Continuous, non-linear, could be good?

Euclidean TSP and other uncategorized

Euclidean TSP: given n points in the plane with integer coordinates, is there a closed curve of length at most x containing all the points?
\rightarrow between NP and $\exists \mathbb{R}$. Lack of continuity!
Shortest path among 3d obstacles: given pw disjoint open polyhedra with n total vertices, and points $a, b \in \mathbb{R}^{3}$, is there a path from a to b of length at most x that is disjoint from the polyhedra?
\rightarrow between NP and $\exists \mathbb{R}$. Continuous, non-linear, could be good?
Minimum Spanning tree: given n points in the plane with integer coordinates, do they have a spanning tree of length at most x ?
\rightarrow between P and $\exists \mathbb{R}$. Conjectured to be in P .

Euclidean TSP and other uncategorized

Euclidean TSP: given n points in the plane with integer coordinates, is there a closed curve of length at most x containing all the points?
\rightarrow between NP and $\exists \mathbb{R}$. Lack of continuity!
Shortest path among 3d obstacles: given pw disjoint open polyhedra with n total vertices, and points $a, b \in \mathbb{R}^{3}$, is there a path from a to b of length at most x that is disjoint from the polyhedra?
\rightarrow between NP and $\exists \mathbb{R}$. Continuous, non-linear, could be good?
Minimum Spanning tree: given n points in the plane with integer coordinates, do they have a spanning tree of length at most x ?
\rightarrow between P and $\exists \mathbb{R}$. Conjectured to be in P .
Minimum Spanning tree: given n points in the plane with integer coordinates, compute a minimum spanning tree.
\rightarrow Can be solved in $O(n \log n)$.

Sum of square roots

Sum of Square Roots

Let $a_{1}, \ldots, a_{k}, b_{1}, \ldots b_{k} \in\{0,1, \ldots, n\}$. Decide if

$$
\sum_{i=1}^{k} \sqrt{a_{i}}<\sum_{i=1}^{k} \sqrt{b_{i}}
$$

Sum of square roots

Sum of Square Roots

Let $a_{1}, \ldots, a_{k}, b_{1}, \ldots b_{k} \in\{0,1, \ldots, n\}$. Decide if

$$
\sum_{i=1}^{k} \sqrt{a_{i}}<\sum_{i=1}^{k} \sqrt{b_{i}}
$$

Let $r(n, k)=\min \left|\sum_{i=1}^{k} \sqrt{a_{i}}-\sum_{i=1}^{k} \sqrt{b_{i}}\right|$.
We want: $\log (1 / r(n, k))=\operatorname{poly}(\log n, k)$.
(Would imply Sum of Square Roots \in P.)

Sum of square roots

Sum of Square Roots

Let $a_{1}, \ldots, a_{k}, b_{1}, \ldots b_{k} \in\{0,1, \ldots, n\}$. Decide if

$$
\sum_{i=1}^{k} \sqrt{a_{i}}<\sum_{i=1}^{k} \sqrt{b_{i}}
$$

Let $r(n, k)=\min \left|\sum_{i=1}^{k} \sqrt{a_{i}}-\sum_{i=1}^{k} \sqrt{b_{i}}\right|$.
We want: $\log (1 / r(n, k))=\operatorname{poly}(\log n, k)$.
(Would imply Sum of Square Roots \in P.)
Best known bound is $\log (1 / r(n, k))=O\left(2^{2 k \log n}\right)$

Sum of square roots

Sum of Square Roots

Let $a_{1}, \ldots, a_{k}, b_{1}, \ldots b_{k} \in\{0,1, \ldots, n\}$. Decide if

$$
\sum_{i=1}^{k} \sqrt{a_{i}}<\sum_{i=1}^{k} \sqrt{b_{i}}
$$

Let $r(n, k)=\min \left|\sum_{i=1}^{k} \sqrt{a_{i}}-\sum_{i=1}^{k} \sqrt{b_{i}}\right|$.
We want: $\log (1 / r(n, k))=\operatorname{poly}(\log n, k)$.
(Would imply Sum of Square Roots \in P.)
Best known bound is $\log (1 / r(n, k))=O\left(2^{2 k \log n}\right)$
Deciding if $\sum_{i=1}^{k} \sqrt{a_{i}}-\sum_{i=1}^{k} \sqrt{b_{i}}=0$ is in RP. (Blömer, FOCS'91) Sum of Square Roots $\in P^{P P^{P P^{P P}}}$ (Allender et al, CCC'06).

Conclusion

- $\exists \mathbb{R}$-completeness is quite common for NP-hard problems with (i) continuity and (ii) non-linearity

Conclusion

- $\exists \mathbb{R}$-completeness is quite common for NP-hard problems with (i) continuity and (ii) non-linearity
- $N P \subseteq \exists \mathbb{R} \subseteq$ PSPACE

Conclusion

- $\exists \mathbb{R}$-completeness is quite common for NP-hard problems with (i) continuity and (ii) non-linearity
- $N P \subseteq \exists \mathbb{R} \subseteq$ PSPACE
- Containment is easy to check with real verification algorithm, hardness is more work-intensive but can use ETR-f

Conclusion

- $\exists \mathbb{R}$-completeness is quite common for NP-hard problems with (i) continuity and (ii) non-linearity
- $N P \subseteq \exists \mathbb{R} \subseteq$ PSPACE
- Containment is easy to check with real verification algorithm, hardness is more work-intensive but can use ETR-f
- Long-standing open questions around Sum of Square Roots

Conclusion

- $\exists \mathbb{R}$-completeness is quite common for NP-hard problems with
(i) continuity and (ii) non-linearity
- $N P \subseteq \exists \mathbb{R} \subseteq$ PSPACE
- Containment is easy to check with real verification algorithm, hardness is more work-intensive but can use ETR-f
- Long-standing open questions around Sum of Square Roots

Conclusion

- $\exists \mathbb{R}$-completeness is quite common for NP-hard problems with
(i) continuity and (ii) non-linearity
- $N P \subseteq \exists \mathbb{R} \subseteq$ PSPACE
- Containment is easy to check with real verification algorithm, hardness is more work-intensive but can use ETR-f
- Long-standing open questions around Sum of Square Roots

