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NP-hard, but is it in NP?

1. Stretchability: given a set of n pseudolines (x-monotone curves with
exactly 1 crossing between any pair), decide if it is homeomorphic to an
arrangement of lines.

Non-example: non-Pappus configuration
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NP-hard, but is it in NP?

1. Stretchability: given a set of n pseudolines (x-monotone curves with
exactly 1 crossing between any pair), decide if it is homeomorphic to an
arrangement of lines.

Scary results: (Goodman et al STOC’89): representing the order type
sometimes requires a grid of size 22

cn

.

Double exponential precision is required
⇒ the "natural" witness has exponentially many bits!

Non-example: non-Pappus configuration
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2. Packing: Given a square container and some convex polygons, can they all
be packed inside the container?
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NP-hard, but is it in NP?
2. Packing: Given a square container and some convex polygons, can they all
be packed inside the container?

Scary: Are we sure that the coordinates of the rotated translated
polygons can be expressed with O(n) bits?
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3. Art Gallery: Given an art gallery (a simple polygon), can it be guarded
by k point guards?
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NP-hard, but is it in NP?

3. Art Gallery: Given an art gallery (a simple polygon), can it be guarded
by k point guards?

Perhaps we can always find valid guards on a fine grid?
That would guarantee NP-membership...
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Further examples: NP-hard but witness issues

Unit Disk Graph Recognition: Given a graph G, is it realizable as an
intersection graph of unit disks?
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Further examples: NP-hard but witness issues

Unit Disk Graph Recognition: Given a graph G, is it realizable as an
intersection graph of unit disks?

Geometric Embeddability of Complexes: Given a d-dimensional
simplicial complex, can it be embedded with geometric simplices into Rd? or
into Rd+1?

Convex cover: Given a polygon, can it be covered by k convex pieces of
itself?
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Existential Theory of the Reals

First order theory of the reals is the set of true sentences with the symbols

{x1, x2, . . . ,∀,∃,∧,∨,¬, 0, 1,+,−, ·, (, ),=,≤, <}

where xi are variables over the real numbers.

Easy to get integer constant k with O(log k) formula length.
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{x1, x2, . . . ,∀,∃,∧,∨,¬, 0, 1,+,−, ·, (, ),=,≤, <}

where xi are variables over the real numbers.

Existential theory of the reals is the set of true sentences of first order theory
of the reals of the form

∃x1∃x2 . . . ∃xk Φ(x1, . . . , xk)

where Φ is a quantifier-free formula.

ETR: the computational problem of deciding if a given formula
∃x1 . . . ∃xk Φ(x1, . . . , xk) is true.

∃R: the class of problems poly-time reducible to ETR

Easy to get integer constant k with O(log k) formula length.

Defines a semi-algebraic set.
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Examples and non-examples

∃x1∃x2 : (x1 ≥ 0) ∧ (x2 ≥ 0) ∧
(

(x1 + x2) · (x1 + x2) ≥ (x1 + x1) · (x2 + x2)
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Examples and non-examples

∃x1∃x2 : (x1 ≥ 0) ∧ (x2 ≥ 0) ∧
(

(x1 + x2) · (x1 + x2) ≥ (x1 + x1) · (x2 + x2)
)

(x1 + x2)2 ≥ 4x1x2

True, states the AM-GM inequality.

Packing ∈ ∃R because:

• variables xi,j , yi,j expressing the location of vertex j of polygon i

• Each polygon vertex is inside the container square: each variable has
0 ≤ x ≤ 1.

• The squared distances of vertices in the same polygon are fixed.

• Each vertex of polygon i is separated from polygon i′ by the line of one of
the sides of i′ for all i 6= i′.
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The complexity landscape

PSPACE

NP

∃R
NP ⊆ ∃R ⊆ PSPACE

Easy! Very involved!
Canny STOC’88

Take a 3-SAT instance, and regard as an ETR formula. To restrict each variable
x ∈ R to be Boolean, add the conditions:

(x · x = x)

Many believe that NP 6= ∃R, and take an ∃R-hardness proof as evidence that
the problem is likely not in NP .
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Smarter ∃R containment proofs

Theorem (Erickson, van der Hoog, Miltzow, FOCS 2020), roughly stated
A problem is in ∃R iff it has a real verification algorithm, i.e., can be verified in
poly time on a real RAM with a polynomial witness (of reals and integers).
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are indeed collinear, and that they have the same ordering as the intersections of
the corresponding curve in the pseudoline arrangement.
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Smarter ∃R containment proofs

Theorem (Erickson, van der Hoog, Miltzow, FOCS 2020), roughly stated
A problem is in ∃R iff it has a real verification algorithm, i.e., can be verified in
poly time on a real RAM with a polynomial witness (of reals and integers).

Stretchability ∈ ∃R because:
Witness: pairwise intersection points of each line pair (i,j) given as pairs of real
coordinates (xij , yij) ∈ R2.
Algorithm to verify: check using real arithmetic that the points on each line i
are indeed collinear, and that they have the same ordering as the intersections of
the corresponding curve in the pseudoline arrangement.

Art Gallery ∈ ∃R because:
Witness: Guard coordiantes as real numbers
Algorithm to verify: Compute using real arithmetic the polynomial complexity
region seen by each guard, and check if their union covers the gallery.
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A glimpse of the ∃R-hardness for Stretchability

Theorem (Mnëv ’88, Shor ’91), very roughly stated
For each ETR formula there is an equivalent ETR formula (defining a
"topologically equivalent" semi-algebraic set) whose variables are > 1 and have
a fixed strict ordering, and where each equation is a simple addition or a simple
multiplication.

Basically, we can assume that:

1 < x1 < x2 < · · · < xn, and formulas are either xi + xj = xk or xi · xj = xk
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A glimpse of the ∃R-hardness for Stretchability

Theorem (Mnëv ’88, Shor ’91), very roughly stated
For each ETR formula there is an equivalent ETR formula (defining a
"topologically equivalent" semi-algebraic set) whose variables are > 1 and have
a fixed strict ordering, and where each equation is a simple addition or a simple
multiplication.

Basically, we can assume that:

1 < x1 < x2 < · · · < xn, and formulas are either xi + xj = xk or xi · xj = xk

Idea: put the variables and 0, 1 on a line, so lengths are represented by distance
to the 0 point.
Use projective geometry gadgets for addition and multiplicaiton.

0 1
x1 x2 x3x4 x5 x6 x7
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Addition and multiplication with cross-ratio
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Addition and multiplication with cross-ratio

0 1
x1 x2 x3x4 x5 x6 x7

x+ y

0 x y x+ y

α

β

β
α
x

x · y

10 x y x · y

Parallel lines are not allowed, but projections preserve cross-ratio:

∞

A
B

C
DA′

D′

B′ C
′

AC·BD
BC·AD



12

When should you suspect ∃R-completeness?

• Continuity

x

y



12

When should you suspect ∃R-completeness?

• Continuity

x

y



12

When should you suspect ∃R-completeness?

• Continuity

x

y

• Non-linear behaviour

x =
√

c2 − y2

c
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∀x1 . . . ∀xk Φ(x1, . . . , xk)

P
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Σ1 =
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Complete problems for the 2nd level of the hierarchy?

Area Universality: Given a plane graph, can all positive area-assignments
to its bounded faces be realized with a straight-line drawing?

a1

a2
a3 a4

Conjectured ∀∃R-complete by Dobbins et al. ’21.
A variant where a partial assignment is given for some
triplets of vertices is ∀∃R-complete.

Hausdorff distance of semi-algebraic sets: Given two semi-algebraic
sets, is their Hausdorff distance at most x?

d→H (A,B) = sup
a∈A

inf
b∈B

dist(a, b)

dH(A,B) = max(d→H (A,B), d→H (B,A))

Theorem (Jungeblut, Kleist, Miltzow ’23)
Hausdorff Distance is ∀∃<R-complete.
Even when both sets are defined by a
single polynomial equation of degree ≤ 4.

The minimum distance t that
B should expand to cover A.
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How to solve ∃R-complete problems anyway?

Theorem (Basu, Pollack, Roy JACM’96),
Algorithm for the first order theory of the reals
Given a set of s polynomial inequalities (<0,>0,=0) of degree at most d in k
variables, where the variables are alternatingly quantified in ω blocks, having
k1, k2, . . . , kω variables (

∑
ki = k), the sentence can be decided with

s
∏

(ki+1)d
∏

O(ki) arithmetic operations.
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Theorem (Basu, Pollack, Roy JACM’96),
Algorithm for the first order theory of the reals
Given a set of s polynomial inequalities (<0,>0,=0) of degree at most d in k
variables, where the variables are alternatingly quantified in ω blocks, having
k1, k2, . . . , kω variables (

∑
ki = k), the sentence can be decided with

s
∏

(ki+1)d
∏

O(ki) arithmetic operations.

The bit size of all
numbers is at most
n ·O(d)k

Corollary (Basu, Pollack, Roy JACM’96), Algorithm for ETR
Given a set of s polynomial inequalities (<0,>0,=0) of degree at most d in k
variables that are existentially quantified, the sentence can be decided with
sk+1dO(k) arithmetic operations.

... But Canny’s algorithm is not much slower and uses only poly space.
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Not so geometric ∃R-complete examples

Training Neural Networks (Abrahamsen, Kleist, Miltzow ’21):
Given a neural network architecture (DAG with s input and t output neurons)
and data set (D ∈ Rs+t giving ground truth), an activation function for each
neuron, and a cost funciton c : Rt × Rt → R≥0 that is 0 on the diagonal, are
there weights such that the total cost of the error

∑
d∈D c(y(d), y′(d)) < δ?
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Not so geometric ∃R-complete examples

Training Neural Networks (Abrahamsen, Kleist, Miltzow ’21):
Given a neural network architecture (DAG with s input and t output neurons)
and data set (D ∈ Rs+t giving ground truth), an activation function for each
neuron, and a cost funciton c : Rt × Rt → R≥0 that is 0 on the diagonal, are
there weights such that the total cost of the error

∑
d∈D c(y(d), y′(d)) < δ?

Matroid Realizability over R (Kim, Mesmay, Miltzow ’24):
Given a matroid (by listing its bases), can it be be represented over R?

Low-Rank Matrix Completion (Bertsimas, Cory-Wright, Pauphilet ’21)

min
X∈Rn×m

〈C,X〉+ λrk(X) s.t. AX = B, rk(X) ≤ k, X is positive semidefinite
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Euclidean TSP and other uncategorized

Euclidean TSP: given n points in the plane with integer coordinates, is
there a closed curve of length at most x containing all the points?

→ between NP and ∃R. Lack of continuity!
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Euclidean TSP: given n points in the plane with integer coordinates, is
there a closed curve of length at most x containing all the points?

→ between NP and ∃R. Lack of continuity!

Shortest path among 3d obstacles: given pw disjoint open polyhedra
with n total vertices, and points a, b ∈ R3, is there a path from a to b of
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Shortest path among 3d obstacles: given pw disjoint open polyhedra
with n total vertices, and points a, b ∈ R3, is there a path from a to b of
length at most x that is disjoint from the polyhedra?

→ between NP and ∃R. Continuous, non-linear, could be good?

Minimum Spanning tree: given n points in the plane with integer
coordinates, do they have a spanning tree of length at most x?

→ between P and ∃R. Conjectured to be in P.

Minimum Spanning tree: given n points in the plane with integer
coordinates, compute a minimum spanning tree.

→ Can be solved in O(n log n).
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√
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i=1

√
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√
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√
bi|.

We want: log(1/r(n, k)) = poly(log n, k).
(Would imply Sum of Square Roots ∈ P.)

Best known bound is log(1/r(n, k)) = O(22k logn)

Deciding if
∑k

i=1

√
ai −

∑k
i=1

√
bi = 0 is in RP. (Blömer, FOCS’91)

Sum of Square Roots ∈ PPPPPPP

(Allender et al, CCC’06).
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• ∃R-completeness is quite common for NP-hard problems with

(i) continuity and (ii) non-linearity

• NP ⊆ ∃R ⊆ PSPACE

• Containment is easy to check with real verification algorithm,
hardness is more work-intensive but can use ETR-f

• Long-standing open questions around Sum of Square Roots

The grid is not always good enough.

Thanks!


