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1. STRETCHABILITY: given a set of n pseudolines (x-monotone curves with
exactly 1 crossing between any pair), decide if it is homeomorphic to an
arrangement of lines.

Non-example: non-Pappus configuration

Scary results: (Goodman et al STOC'89): representing the order type

. . . . cn
sometimes requires a grid of size 2% .

Double exponential precision is required
= the "natural" witness has exponentially many bits!
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N

Scary: Are we sure that the coordinates of the rotated translated
polygons can be expressed with O(n) bits?
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NP-hard, but is it in NP7

3. ART GALLERY: Given an art gallery (a simple polygon), can it be guarded
by k point guards?

Perhaps we can always find valid guards on a fine grid?
That would guarantee NP-membership...
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Further examples: NP-hard but witness issues

UNIT Disk GRAPH RECOGNITION: Given a graph G, is it realizable as an
intersection graph of unit disks?

(GEOMETRIC EMBEDDABILITY OF COMPLEXES: Given a d-dimensional

simplicial complex, can it be embedded with geometric simplices into R%? or
into R4T17?

CONVEX COVER: Given a polygon, can it be covered by k convex pieces of
itself?
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Existential Theory of the Reals

First order theory of the reals is the set of true sentences with the symbols

{x1,29,...,V, 3, A, V,—,0,1,+,—, -, (,),=, <, <}

where x; are variables over the real numbers.

Easy to get integer constant k£ with O(log k) formula length.

Existential theory of the reals is the set of true sentences of first order theory
of the reals of the form

dridxs ... dar (P(21,...,2k)

where ® is a quantifier-free formula. ]

\bDefines a semi-algebraic set.

ETR: the computational problem of deciding if a given formula
Jri... 3z P(x1,...,Tk) is true.

JR: the class of problems poly-time reducible to ETR
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Examples and non-examples

dx1dxs : (5131 > O) A\ (iUQ > O) A\ ((561 —+ .5132) . (.5131 —+ 5172) > (5171 —+ .5131) . (5132 —+ 5132)>

N— -
—

/ (r1 + 22)* > 4x179

True, states the AM-GM inequality.

PACKING &€ dR because:

e variables x; ;,v; ; expressing the location of vertex j of polygon 7

e Each polygon vertex is inside the container square: each variable has
0<zx<1.

e The squared distances of vertices in the same polygon are fixed.

e Each vertex of polygon i is separated from polygon i’ by the line of one of
the sides of ¢’ for all 7 # ¢'.
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The complexity landscape

PSPACE

NP CdR C PSPACE

I\

NP Easy! Very involved!
/ Canny STOC'88

Take a 3-SAT instance, and regard as an ETR formula. To restrict each variable
x € R to be Boolean, add the conditions:

Many believe that NP # dR, and take an dR-hardness proof as evidence that
the problem is likely not in NP.
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poly time on a real RAM with a polynomial witness (of reals and integers).

STRETCHABILITY € JR because:

Witness: pairwise intersection points of each line pair (i,j) given as pairs of real
coordinates (z;;,y;;) € R=.

Algorithm to verify: check using real arithmetic that the points on each line ¢

are indeed collinear, and that they have the same ordering as the intersections of
the corresponding curve in the pseudoline arrangement.

s vl =

ART GALLERY € R because:

Witness: Guard coordiantes as real numbers
Algorithm to verify: Compute using real arithmetic the polynomial complexity
region seen by each guard, and check if their union covers the gallery.




A glimpse of the JR-hardness for STRETCHABILITY

Theorem (Mnév '88, Shor '91), very roughly stated

For each ETR formula there is an equivalent ETR formula (defining a
"topologically equivalent" semi-algebraic set) whose variables are > 1 and have
a fixed strict ordering, and where each equation is a simple addition or a simple
multiplication.

Basically, we can assume that:

1<z <29 <--- <y, and formulas are either z; + z; =z, or x; - x; = xy
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A glimpse of the dR-hardness for STRETCHABILITY

Theorem (Mnév '88, Shor '91), very roughly stated

For each ETR formula there is an equivalent ETR formula (defining a
"topologically equivalent" semi-algebraic set) whose variables are > 1 and have
a fixed strict ordering, and where each equation is a simple addition or a simple
multiplication.

Basically, we can assume that:
1<z <29 <--- <y, and formulas are either z; + z; =z, or x; - x; = xy

Idea: put the variables and 0,1 on a line, so lengths are represented by distance
to the 0 point.
Use projective geometry gadgets for addition and multiplicaiton.
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Addition and multiplication with cross-ratio
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Addition and multiplication with cross-ratio

@ @ HK—X H—HK—XK % %%
0 1 L1 X2 X3Tyg Ty Tg Xy
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x|
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Parallel lines are not allowed, but projections preserve cross-ratio:

AC-BD
BC-AD
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When should you suspect dR-completeness?

Y

e Continuity

e Non-linear behaviour

:Uz\/cz—y2
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JR-compelte ETR variants

ETR-Square:

r=1 z+y=2 x°=y anduz; €[-1,1] forall 4.

ETR-INV:

=1 ,jlj—|—y:Z xyzl andxiE[l

29

ETR-f: for some fixed non-linear f:

2] for all 4.

r=1 z4+y=2 x>0 f(x,y)=0 andx; €[-1,1] for all i

Theorem (Miltzow and Schmiermann
FOCS’21), roughly

ETR-f is dR-complete whenever

fis "curved".

Definition 6 (Well-behaved). We say a function f: /2 — R
is well-behaved around the origin if the following conditions
are met.
e fis a C?-function, with U C R being a neighborhood
of (0.0),
e f(0,0) =0, and all partial derivatives f., fy, foz, fay
and f,, are rational, in (0,0).
. f.r':o* 0) 75 0 or fy(o*o) 75 0,
e f(z,y) can be computed on a real RAM [51].

Note that if p(z,y) is a polynomial of the form
Zi.j (J,i__j.-r:iyj, then p is well-behaved if and only if ag o = 0,
a1.0,00.1,02,0,01.1,002 are rational, and (a1 # 0 or
a(]:]_ -'/—‘ 0)

Definition 7 (Curved). Let f : U? — R be a function that
is well-behaved around the origin. We write the curvature
of f at zero by

2 o 2
() - (fyfﬂ 2fufyfuy + fffyy) 0,0,

(F2+3)2
see Figure 4 for an illustration. We say f is
o curved if x(f) # 0,
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Complete problems for the 2nd level of the hierarchy?

AREA UNIVERSALITY: Given a plane graph, can all positive area-assignments
to its bounded faces be realized with a straight-line drawing?
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Complete problems for the 2nd level of the hierarchy?

AREA UNIVERSALITY: Given a plane graph, can all positive area-assignments
to its bounded faces be realized with a straight-line drawing?

Conjectured VdR-complete by Dobbins et al. "21.
A variant where a partial assignment is given for some
triplets of vertices is VdR-complete.

<\

HAUSDORFF DISTANCE OF SEMI-ALGEBRAIC SETS: Given two semi-algebraic
sets, is their Hausdorff distance at most x?

dy (A, B) = sup inf dist(a, b
i (4, B) = sup inf dist(a, b)

The minimum distance ¢ that
B should expand to cover A.

Theorem (Jungeblut, Kleist, Miltzow ’'23)
HAUSDORFF DISTANCE is Vd-R-complete.
Even when both sets are defined by a

single polynomial equation of degree < 4.

dir (A, B) = max(dz (A, B),d7 (B, A))
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How to solve dR-complete problems anyway?

Theorem (Basu, Pollack, Roy JACM’96),

Algorithm for the first order theory of the reals

Given a set of s polynomial inequalities (<0,>0,=0) of degree at most d in k
variables, where the variables are alternatingly quantified in w blocks, having
ki,ks, ...,k variables (> k; = k), the sentence can be decided with
slI(ki+1) gl1Ok:) Zrithmetic operations.
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How to solve dR-complete problems anyway?

Theorem (Basu, Pollack, Roy JACM’96),

Algorithm for the first order theory of the reals

Given a set of s polynomial inequalities (<0,>0,=0) of degree at most d in k
variables, where the variables are alternatingly quantified in w blocks, having
ki,ks, ...,k variables (> k; = k), the sentence can be decided with
slI(ki+1) gl1Ok:) Frithmetic operations.

The bit size of all
numbers is at most

n - O(d)"

Corollary (Basu, Pollack, Roy JACM’96), Algorithm for ETR

Given a set of s polynomial inequalities (<0,>0,=0) of degree at most d in k
variables that are existentially quantified, the sentence can be decided with
sFt1dO() arithmetic operations.

... But Canny’s algorithm is not much slower and uses only poly space.
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Not so geometric dR-complete examples

TRAINING NEURAL NETWORKS (Abrahamsen, Kleist, Miltzow 21):

Given a neural network architecture (DAG with s input and t output neurons)
and data set (D € R*** giving ground truth), an activation function for each
neuron, and a cost funciton ¢ : R* x R* — R that is 0 on the diagonal, are
there weights such that the total cost of the error )", c(y(d),y'(d)) < 67
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TRAINING NEURAL NETWORKS (Abrahamsen, Kleist, Miltzow 21):

Given a neural network architecture (DAG with s input and t output neurons)
and data set (D € R*** giving ground truth), an activation function for each
neuron, and a cost funciton ¢ : R* x R* — R that is 0 on the diagonal, are
there weights such that the total cost of the error )", c(y(d),y'(d)) < 67

MATROID REALIZABILITY OVER R (Kim, Mesmay, Miltzow '24):
Given a matroid (by listing its bases), can it be be represented over R?

Low-RANK MATRIX COMPLETION (Bertsimas, Cory-Wright, Pauphilet '21)

min (C, X) + \rk(X) s.t. AX = B,rk(X) <k, X is positive semidefinite
XeRnXm

17



Euclidean TSP and other uncategorized

EUCLIDEAN TSP: given n points in the plane with integer coordinates, is
there a closed curve of length at most = containing all the points?

— between NP and dR. Lack of continuity!
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SHORTEST PATH AMONG 3D OBSTACLES: given pw disjoint open polyhedra
with n total vertices, and points a,b € R?, is there a path from a to b of
length at most = that is disjoint from the polyhedra?

— between NP and JR. Continuous, non-linear, could be good?

MINIMUM SPANNING TREE: given n points in the plane with integer
coordinates, do they have a spanning tree of length at most z?

— between P and dR. Conjectured to be in P.

MINIMUM SPANNING TREE: given n points in the plane with integer
coordinates, compute a minimum spanning tree.

— Can be solved in O(nlogn).
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Sum of square roots

SUM OF SQUARE RoOOTS

Let ai, ..

L, ag,b1,...bp €4{0,1,...,n}. Decide if
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SUM OF SQUARE RoOOTS
Let a1,...,ax,b1,...0 € {0,1,...,n}. Decide if

Let r(n, k) = min |37 @ — S, Vi,

We want: log(1/r(n, k)) = poly(logn, k).
(Would imply Sum OF SQUARE RooOTs € P.)

Best known bound is log(1/r(n, k)) = O(22F1oen)

Deciding if 2%, /a; — S, v/b; = 0 is in RP. (Blémer, FOCS'91)

ppPP
SUM OF SQUARE Roorts € PF'F (Allender et al, CCC'06).
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Conclusion

e JR-completeness is quite common for NP-hard problems with
(i) continuity and (ii) non-linearity
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