
Alexandru Tomescu, Department of Computer Science, University of Helsinki
PI of Graph Algorithms Team / Algorithmic Bioinformatics Research Group

Safe algorithms:
Dealing with multiple solutions in practice

Outline

• Motivation from computational biology

• Previous related notions

• Safety

• Simple examples of techniques for safe algorithms

• Conclusions

The Human Genome Project
"The most important biomedical research undertaking of the 20th Century"

February 2001

• Carried out from 1990–2003, it was one of the most
ambitious and important scientific endeavors in
human history.

• The [...] cost for the Human Genome Project was $3
billion [...].

• Assemble[d] interdisciplinary groups from across the
world, involving experts in engineering, biology, and
computer science [...].

‣ https://www.genome.gov/about-genomics/
educational-resources/fact-sheets/human-
genome-project

https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project

https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project

https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project

Enumeration
• Counting (#P-complete problems), constant-time delay, poly-time delay, etc

‣ Carl Kingsford et al. "Assembly complexity of prokaryotic genomes using short

reads", BMC Bioinformatics 11:21, 2010

• k-best enumeration

‣ David Eppstein, "k-best enumeration." arXiv preprint arXiv:1412.5075 (2014): 

 

Many real-world problems are only approximately modeled by mathematical
formulations. [...] Once such a list of candidates is generated, one can apply more
sophisticated quality criteria, wait for data to become available to choose among them,
or present them all to human decision-makers. On the other hand, the exponential growth
of the solution space for many combinatorial optimization problems would make it
infeasible to list all possible candidate solutions; instead, some filtering is needed.

‣ Enumerate k-shortest - paths

‣ See e.g. Yen's algorithm: https://en.wikipedia.org/wiki/Yen's_algorithm

s t

O(k |V | (|E | + |V | log |V |))

https://en.wikipedia.org/wiki/Yen's_algorithm

All, none, some

Maximum matching 1Bipartite graph G Maximum matching 2

belongs to ALL
max matchings

belongs to NO
max matchings

belongs to SOME
max matchings,

but not to all

Persistency

• For a bipartite graph , the partition is the
persistency partition of for maximum cardinality matchings:

‣ Computable in time (or faster)

‣ Marie-Christine Costa "Persistency in maximum cardinality bipartite
matchings." Operations Research Letters 15.3 (1994): 143-149.

• For a graph , let be the persistency partition of
for maximum independent sets:

‣ Computing is NP-hard

‣ Peter Hammer et al. "Vertices belonging to all or to no maximum stable sets of
a graph." SIAM Journal on Algebraic Discrete Methods 3.4 (1982): 511-522.

G = (V, E) (Eall, Enone, Esome)
E

O(|V | |E |)

G = (V, E) (Vall, Vnone, Vsome) V

(Vall, Vnone)

Backbones for Boolean satisfiability

• For a propositional formula , the backbone of is its set of variables that are
set to TRUE in every assignment satisfying

• Alessandro Previti et al. "On computing generalized backbones." 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2017: 
 

[...] backbone variables of SAT instances encoding real-world problem instances can
have various kinds of meaningful interpretations [...] backbones can represent faults in
integrated circuits

• Mikoláš Janota et al. "Algorithms for computing backbones of propositional formulae."
AI Communications 28.2 (2015) 161-177: 
 

The concept of backbone appears under various terms. For instance, inadmissible and
necessary variables [16], bound literals [15], fixed assignments [37], units [21], or
frozen variables [1].

φ φ
φ

Safety: contiguous persistency
• Consider Eulerian cycles (closed walks covering every edge exactly once)

‣ Nothing to do: every edge is persistent, every vertex is persistent

• Let be a problem on a graph whose
solutions are certain sets of walks in

• We say that a walk is a safe walk for on if for
every solution , is a subwalk of some walk in

• Enumerate all maximal safe walks for on

P G = (V, E)
𝒲 G

W P G
𝒲 W 𝒲

P G

• Safe algorithm for : an algorithm outputting only safe walks for

• Safe and complete algorithm for : an algorithm outputting all (maximal) safe walks for

P P

P P

1. Characterize safe walks

2. Turn the characterization into an enumeration algorithm

safe not safe not safe safe

except

A general approach to compute safe walks

• A walk is safe for Eulerian cycles on if every internal node of either:

1. has degree 1, or

2. has degree 2 and is a cut node of the undirected graph underlying

W G v W

G

• Finding all maximal safe walks for Eulerian cycles: time

‣ Nidia Obscura Acosta, A. T. "Simplicity in Eulerian circuits: Uniqueness and safety." Information Processing Letters 183

(2024): 106421

O(|E |)

Eulerian cycle

safe safe safe

• "Hide-and-test" for edges in for maximum bipartite matchings

‣ Compute max-matching-size()

‣ For each edge :

‣ If max-matching-size() < max-matching-size():

‣ Then add to

• Complexity:

• Recall: can do in (or faster) [Costa, 1994]

Eall

G

e ∈ E
G∖e G

e Eall

O(|E | ⋅ max-matching(G))

O(|V | |E |)

A general approach to detect safety

Hide-and-test for safety: example
• Given a directed acyclic graph , , we say that paths

are a minimum - path cover if:

‣ every is an - path

‣ every belongs to at least one

‣ is minimum

G = (V, E) s, t ∈ V P1, …, Pk
s t

Pi s t

v ∈ V Pi

k

s t• Compute all maximal safe paths
‣ Manuel Cáceres et al. "Safety in multi-assembly

via paths appearing in all path covers of a
DAG", IEEE/ACM TCBB 2022

How to hide paths?

Length-1 safe paths:

Length-2 safe paths:

x1 x2

G

Length-3 safe paths:

x1 x2

G′

⟹

x1 x2 x3safe

G

x1 x2 x3

G′

⟹

 unsafe iff  
mpc-size()=mpc-size()

(x1, x2)
G G′

 unsafe iff  
mpc-size()=mpc-size()

(x1, x2, x3)
G G′

x2 x3 x4x1
safe

G G′

⟹

x2 x3 x4x1

 unsafe iff  
mpc-size()=mpc-size()

(x1, x2, x3, x4)
G G′

When are safe walks correct in practice

true unknown
solution

possible problem
solutions

safe walks are also part of the
true unknown solution

larger solution space
 

 smaller safe walks
⇒

smaller solution
space 

 
risk of the true
solution falling

outside

⇒

• Hamiltonian cycle NP-complete

• Closed walk covering every node at

least once P

‣ Massimo Cairo et al. "Cut Paths and Their Remainder

Structure, with Applications." STACS 2023

‣ A.T., Paul Medvedev, "Safe and complete contig

assembly via omnitigs", RECOMB 2016

∈

∈

• Eulerian cycle

• Closed walk covering every edge at least once

‣ Massimo Cairo et al. "An Optimal O(nm) Algorithm for
Enumerating All Walks Common to All Closed Edge-covering
Walks of a Graph", CPM 2019, ACM TALG 2019

‣ Massimo Cairo et al. "Genome Assembly, from Practice to
Theory: Safe, Complete and Linear-Time", ICALP 2021, ACM
TALG 2023

Conclusions

• For problems about discovering some object:

‣ Safety is a practical way of dealing with multiple solutions

‣ Safety can lead to interesting computational problems

• Open theoretical problems (meta-theorems):

‣ Is the "safety version" of any problem in P also in P?

‣ Might be much simpler for persistency

‣ Is the "safety version" of any NP-hard problem also NP-hard?

‣ Safety seems harder than detecting uniqueness

SAFETY
FIRST

Be safe
when you output!

