Safe algorithms:
Dealing with multiple solutions In practice

Alexandru Tomescu, Department of Computer Science, University of Helsinki %

Pl of Graph Algorithms Team / Algorithmic Bioinformatics Research Group _
UNIVERSITY OF HELSINKI
FACULTY OF SCIENCE

Outline

 Motivation from computational biology

* Previous related notions

o Safety

o Simple examples of techniques for safe algorithms

e Conclusions

The Human Genome Project

"The most important biomedical research undertaking of the 20th Century"

5 February

nature

e Carried out from 1990-2003, it was one of the most
ambitious and important scientific endeavors in

- human history.

v
3 the X -
- L o] 3 ' m gt '
3 Yy 0 ‘, 3 2
s & _.human :
¥ ' o B) XEe \
-

e The [...] cost for the Human Genome Project was $3

billion /...].

; ;i"-;(.I K o Assemble[d] interdisciplinary groups from across the
energylandsca a“v, '- L W el L A . . ” ” . ”

| Seaf.oo,s.,,..xld 1 T e Wi world, znvol\./zng experts in engineering, biology, and
Ih \1\ h n..m‘l\i er o ’ > 1 ,J *‘ COmpul‘er sclence [:”].
g:alr:enrprc;slzecﬁs1 ' . - ',“ ¥ t--__. | . :
TR 1 e N > https://www.genome.gov/about-genomics/
‘ T b educational-resources/fact-sheets/human-

genome-project

February 2001

https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project

NATURE BIOTECHNOLOGY VOLUME 29 NUMBER 11 NOVEMBER 2011

How to apply de Bruijn graphs to genome

assemply

Phillip E C Compeau, Pavel A Pevzner & Glenn Tesler

A mathematical concept known as a de Bruijn graph turns the formidable challenge of assembling a contiguous
genome from billions of short sequencing reads into a tractable computational problem.

he development of algorithmic ideas

for next-generation sequencing can be
traced back 300 years to the Prussian city of
Konigsberg (present-day Kaliningrad, Russia),
where seven bridges joined the four parts of the
city located on opposing banks of the Pregel
River and two river islands (Fig. 1a). At the
time, Konigsberg’s residents enjoyed strolling
through their city, and they wondered if every
part of the city could be visited by walking
across each of the seven bridges exactly once
and returning to one’s starting location.
The solution came in 1735, when the great
mathematician Leonhard Euler! made a

v \J . ' B - FYY : R
~" » r v » 4 - . | 5 ' A 5 5 - -
'y . L » = : L) : . .
-

i 4
G2 fnd et bl it o s 7

Ll - Bl 8t Ay SR =t Mt

Figure 1 Bridges of Kénigsberg problem. (a) A map of old Kénigsberg, in which each area of the city is
labeled with a different color point. (b) The Kénigsberg Bridge graph, formed by representing each of
four land areas as a node and each of the city’s seven bridges as an edge.

Did the Human Genome Project
produce a perfectly complete
genome sequence?

No. Throughout the Human Genome Project, researchers
continually improved the methods for DNA sequencing.
However, they were limited in their abilities to determine the
sequence of some stretches of human DNA (e.g., particularly
complex or highly repetitive DNA).

In June 2000, the International Human Genome Sequencing
Consortium announced that it had produced a draft human
genome sequence that accounted for 90% of the human
genome. The draft sequence contained more than 150,000
areas where the DNA sequence was unknown because it could
not be determined accurately (known as gaps).

In April 2003, the consortium announced that it had generated
an essentially complete human genome sequence, which was
significantly improved from the draft sequence. Specifically, it
accounted for 92% of the human genome and less than 400
gaps, it was also more accurate.

On March 31, 2022, the Telomere-to-Telomere (T2T)
consortium announced that had filled in the remaining gaps
and produced the first truly complete human genome
sequence.

https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project

https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genome-project

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008928 May 20, 2021
EDUCATION

What do Eulerian and Hamiltonian cycles have
to do with genome assembly?

Paul Medvedev® '%2* Mihai Pop®*

Abstract

Many students are taught about genome assembly using the dichotomy between the com-
plexity of finding Eulerian and Hamiltonian cycles (easy versus hard, respectively). This
dichotomy is sometimes used to motivate the use of de Bruijn graphs in practice. In this
paper, we explain that while de Bruijn graphs have indeed been very useful, the reason has
nothing to do with the complexity of the Hamiltonian and Eulerian cycle problems. We give 2
arguments. The first is that a genome reconstruction is never unique and hence an algorithm
for finding Eulerian or Hamiltonian cycles is not part of any assembly algorithm used in prac-
tice. The second is that even if an arbitrary genome reconstruction was desired, one could
do so in linear time in both the Eulerian and Hamiltonian paradigms.

Enumeration

 Counting (#P-complete problems), constant-time delay, poly-time delay, etc

> Carl Kingsford et al. "Assembly complexity of prokaryotic genomes using short
reads”, BMC Bioinformatics 11:21, 2010

e k-best enumeration

> David Eppstein, "k-best enumeration.” arXiv preprint arXiv:1412.5075 (2014):

Many real-world problems are only approximately modeled by mathematical
formulations. [...] Once such a list of candidates is generated, one can apply more
sophisticated quality criteria, wait for data to become available to choose among them,
or present them all to human decision-makers. On the other hand, the exponential growth

of the solution space for many combinatorial optimization problems would make it
infeasible to list all possible candidate solutions, instead, some filtering is needed.

> Enumerate k-shortest s-f paths

> See e.g. Yen's algorithm: https://en.wikipedia.org/wiki/Yen's algorithm
Ok|VI(|E]+[V]log|V]))

https://en.wikipedia.org/wiki/Yen's_algorithm

All, none, some

belongs to ALL
max matchings

belongs to NO
max matchings

-
.
.
A ‘¢
o
¢$“
.’ RS
.
4
4
4
]
.
.’
&’ ~
. R
L4 ~
--------- S
- - - ~
” e ~
-4 ~~
’¢ s ~
.. ~
'O ~ .,
4
4
' bel
. I l
.’
.
¢
="
PR Y s [|
¢" ,' m m n
.’
’ ! ,
4
4
4
4
’
1
I

but not to all

Bipartite graph G = Maximum matching 1 Maximum matching 2

Persistency

» For a bipartite graph G = (V, E), the partition (£, E, .., E. ...) is the

persistency partition of £ for maximum cardinality matchings:

» Computable in time O(| V|| E|) (or faster)

> Marie-Christine Costa "Persistency in maximum cardinality bipartite
matchings." Operations Research Letters 15.3 (1994): 143-149.

» Foragraph G = (V, E), let (V_,
for maximum independent sets:

) be the persistency partition of V

nane’ kunne

> Computing (V 5, V. ,,..) is NP-hard

none

> Peter Hammer et al. "Vertices belonging to all or to no maximum stable sets of
a graph.” SIAM Journal on Algebraic Discrete Methods 3.4 (1982): 511-522.

Backbones for Boolean satisfiability

» For a propositional formula ¢, the backbone of @ is its set of variables that are
set to TRUE in every assignment satisfying @

e Alessandro Previti et al. "On computing generalized backbones." 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2017:

[...] backbone variables of SAT instances encoding real-world problem instances can
have various kinds of meaningful interpretations /...] backbones can represent faults in
integrated circuits

e Mikolas Janota et al. "Algorithms for computing backbones of propositional formulae.'
Al Communications 28.2 (2015) 161-177:

The concept of backbone appears under various terms. For instance, inadmissible and
necessary variables [16], bound literals [15], fixed assignments [37], units [21], or
frozen variables [1].

Safety: contiguous persistency

* Consider Eulerian cycles (closed walks covering every edge exactly once)

> Nothing to do: every edge Is persistent, every vertex is persistent

B
\/

« Safe algorithm for P: an algorithm outputting only safe walks for P

e Let P be a problem on a graph G = (V, E) whose
solutions are certain sets # of walks in G

« We say that a walk W is a safe walk for P on G if for
every solution 7', W is a subwalk of some walk in 7

« Enumerate all maximal safe walks for P on G

« Safe and complete algorithm for P: an algorithm outputting all (maximal) safe walks for P

A general approach to compute safe walks

1. Characterize safe walks
2. Turn the characterization into an enumeration algorithm

L not safe not saf</.
<¢

® >® @ o— o—

- A walk W is safe for Eulerian cycles on G if every internal node v of W either:
1. has degree 1, or

2. has degree 2 and is a cut node of the undirected graph underlying G

Eulerian cycle

S

safe safe safe

- Finding all maximal safe walks for Eulerian cycles: O(| E'|) time

> Nidia Obscura Acosta, A. T. "Simplicity in Eulerian circuits: Uniqueness and safety." Information Processing Letters 183
(2024): 106421

A general approach to detect safety

» "Hide-and-test" for edges in £ _; for maximum bipartite matchings

» Compute max-matching-size(G)
> For each edge e € L
> If max-matching-size(G\e) < max-matching-size(G):
> Then add e to £,
« Complexity: O(| E'| - max-matching(G))

e Recall: candoin O(| V|| E]|) (or faster) [Costa, 1994]

Hide-and-test for safety: example

» Given a directed acyclic graph G = (V, E), s,t € V, we say that paths P, ..., P,
are a minimum s-f path cover if:

> every P; is an s-f path
> every v € V belongs to at least one P;

» kis minimum

 Compute all maximal safe paths

> Manuel Caceres et al. "Safety in multi-assembly
via paths appearing in all path covers of a
DAG", IEEE/ACM TCBB 2022

How to hide paths?

G
Length-1 safe paths:
(xl,.xZ) unsafe iff
mpc-size(G)=mpc-size(G’)
G

Length-2 safe paths:
(X1, Xy, X3) unsafe iff
mpc-size(G)=mpc-size(G’)

Length-3 safe paths:
(.xl, X9y X3y X4) unsafe iff o

mpc-size(G)=mpc-size(G') I X X

safe

When are safe walks correct In practice

. O

smaller solution .
space yd b
| = true unknown possible problem I Ut
risk of the true solution solutions arger soiition space
solution falling =
outside safe walks are also part of the smaller safe walks
true unknown solution
* tuleriancycle « Hamiltonian cycle € NP-complete
e Closed walk covering every edge at least once e Closed walk Covering every node at
> Massimo Cairo et al. "An Optimal O(nm) Algorithm for
Enumerating All Walks Common to All Closed Edge-covering least once € P
Walks of a Graph", CPM 2019, ACM TALG 2019 > Massimo Cairo et al. "Cut Paths and Their Remainder

> Massimo Cairo et al. "Genome Assembly, from Practice to Structure, with Applications.” STACS 2023
Theory: Safe, Complete and Linear-Time", ICALP 2021, ACM > A.T., Paul Medvedev, "Safe and complete contig
TALG 2023 assembly via omnitigs", RECOMB 2016

Conclusions

* For problems about discovering some object:
» Safety is a practical way of dealing with multiple solutions
» Safety can lead to interesting computational problems

* Open theoretical problems (meta-theorems):

> |s the "safety version" of any problem in P also in P?
Be safe

when you output! > Might be much simpler for persistency

> |s the "safety version" of any NP-hard problem also NP-hard?

» Safety seems harder than detecting uniqueness

