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What is Fine-Grained Complexity?
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Lower Bounds

Unconditional lower bounds

E.g. number of comparisons for sorting

May be hard to prove

Conditional lower bounds

E.g. showing NP hardness

Conditioned on P ̸= NP

Very “coarse” grain: only polynomial vs exponential complexities

Let’s say you can solve problem A in time O(n2)

How to prove that A cannot be solved in O(n2−ϵ)?
What can we condition on?
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ETH and SETH

Fine-grained complexity provides the hypotheses for that
[Impagliazzo and Paturi, 2001]

Exponential Time Hypothesis (ETH)

There exists a constant ᾱ s.t. no algorithm solves CNF-SAT with n
variables in time O(2αn), α < ᾱ

Strong Exponential Time Hypothesis (SETH)

No algorithm solves CNF-SAT with n variables in time O(2αn), α < 1

Idea: if we solve problem A in O(n2−ϵ), then we solve CNF-SAT in
O(2(1−ϵ′)n), contradicting SETH
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Some notation

CNF-SAT: SAT in conjunctive normal form (CNF)

input: a boolean formula F in CNF
n variables v1, . . . , vn, k clauses c1, . . . , cq

F (v1, . . . , vn) = (v1 ∨ v̄2) ∧ (v̄1 ∨ v2 ∨ v̄3) ∧ (v1 ∨ v3 ∨ v̄4) ∧ · · ·

output: Yes/No - is there a ∈ {0, 1}n s.t. F (a) = 1?

k-SAT : as CNF-SAT but with at most k literals per clause.
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ETH and SETH in more detail

k-SAT : as CNF-SAT but with at most k literals per clause.

Let sk = inf {α : There is anO(2αn)-time algorithm for k-SAT}

Exponential Time Hypothesis (ETH)

For all k ≥ 3, sk > 0

Strong Exponential Time Hypothesis (SETH)

s∞ = lim
k→∞

sk = 1
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Arguments in favour of ETH

Theorem

The following statements are equivalent:

For every k ≥ 3, sk > 0 (ETH)

For some k, sk > 0

s3 > 0

SNP ⊈ SUBEXP
Satisfiability of linear-sized circuits cannot be solved in subexponential time

[Impagliazzo, Paturi and Zane, 1998]

SNP: the class of properties expressible by a series of second order existential quantifiers,

followed by a series of first order universal quantifiers, followed by a basic formula

Note:

P ̸= NP allows e.g. O(2
√
n) for k-SAT, ETH does not

ETH ⇒ P ̸= NP
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Arguments in favour of SETH

SETH : s∞ = lim
k→∞

sk = 1

Main points in favour of it:

(a) Upper bound O(2αn), α = 1 − d/O(k), with d constant
⇒ s∞ ≤ 1

(b) Assuming ETH ⇒ every sk < sk′ , for k < k ′, i.e. sequence {sk} is
increasing infinitely often
[Impagliazzo and Paturi, 2001]

SETH states s∞ = 1, but it might be s∞ < 1

Let’s look at (b) more closely
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Arguments in favour of SETH

Theorem

For every k, sk ≤ (1− d/k)s∞

ETH: for k ≥ 3, sk > 0

Consider k and k ′ such that k < k ′

Then (1 − d/k)s∞ < (1 − d/k ′)s∞
Moreover ∃k ′ s.t. sk ≤ (1 − d/k)sk′(

1− d
k

)
s∞

(
1− d

k ′

)
s∞

sk
sk ′

Then sk < sk′ , i.e. sequence {sk} is strictly increasing
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SETH

Summing up, we know that

s∞ ≤ 1

sk ≤ (1 − d/k)s∞, for every k
ETH ⇒ sk < sk′ , for some k < k ′

Hence the claim
SETH : s∞ = 1
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Conditional Lower Bounds
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Orthogonal Vectors

Why is SETH useful?

It can be used to prove conditional lower bounds for polynomial
problems.

SETH can be used to prove a conditional lower bound for the Orthogonal
Vectors (OV) problem

Doing so allows us to use OV instead of CNF-SAT for proving polynomial
conditional lower bounds, making the reductions easier
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Quick Complexity Background

Orthogonal Vectors (OV) Problem

Let X ,Y ⊆ {0, 1}d be two sets of n binary vectors of length d .

Determine whether there exist x ∈ X , y ∈ Y such that x · y = 0

X =


001
010
011
101



010
011
100
111

 = Y

Orthogonal Vectors Hypothesis (OVH)

No algorithm can solve Orthogonal Vectors in time O(nα poly(d)), α < 2

CNF-SAT can be reduced to OV, thus SETH ⇒ OVH
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Orthogonal Vectors

Reduction from CNF-SAT to OV

start from a CNF-SAT formula F with n variables and q clauses

separate the variables in two groups v1, . . . , v n
2
and v n

2
+1, . . . , vn

y4 =

y3 =

y2 =

y1 =

x4 =

x3 =

x2 =

x1 =

(1 1)

(1 0)

(0 1)

(0 0)

(1 1)

(1 0)

(0 1)

(0 0)

(0 1 0 1 0)

(0 1 0 1 1)

(1 1 0 0 1)

(0 0 1 1 0)

(1 0 1 0 0)

(1 0 0 0 1)

(0 1 1 0 0)

(0 0 1 1 1)

= w4

= w3

= w2

= w1

= u4

= u3

= u2

= u1

wj [h] = 0
⇔

yj |= ch

ui [h] = 0
⇔

xi |= ch

2
n
2

2
n
2

m

m

n
2

k
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Orthogonal Vectors

Contradiction with SETH

this reductions takes O(2
n
2 poly(q))

m = 2
n
2 vectors

each vector is of size d = q

Solving OV in time O(m2−ϵpoly(d)) implies the following for CNF-SAT:

O(2
n
2
(2−ϵ)poly(q)) = O(2n(1− ϵ

2
)poly(q))

This contradicts SETH

We conclude that OVH is true unless SETH is false (SETH ⇒ OVH)
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Problems with lower bounds

Problems with a reduction from OV (or k-OV) that implies a lower bound,
unless SETH is false [Williams, 2018]:

Graph Diameter for unweighted, undirected graphs with n nodes and
O(n) edges

Edit Distance, Longest Common Subsequence, Dynamic Time
Warping Distance, Fréchet Distance

Subtree Isomorphism

All Pairs Max Flow

Subset Sum on n integers and target T

Massimo Equi The Origins of Fine-Grained Complexity 26 April 2024 16 / 19



Final remarks

No known connections with APSP or 3-SUM

Often used as different source problems for fine-grained reductions

Reductions from Formula-SAT instead of CNF-SAT
[Abboud, Hansen, Williams and Williams, 2016]

For a problem with upper bound O(nd/ logc n), you can show that
c < c̄ , for some constant c̄ .

Thank you!
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