The Origins of Fine-Grained Complexity

Massimo Equi

Foundation Friday

26 April 2024

Massimo Equi

The Origins of Fine-Grained Complexity

26 April 2024

What is Fine-Grained Complexity?

< ∃⇒

Image: A matrix

æ

• E.g. number of comparisons for sorting

3 N 3

- E.g. number of comparisons for sorting
- May be hard to prove

< 1 k

э

∃ >

- E.g. number of comparisons for sorting
- May be hard to prove

Conditional lower bounds

• E.g. showing NP hardness

- E.g. number of comparisons for sorting
- May be hard to prove

Conditional lower bounds

- E.g. showing NP hardness
- Conditioned on $P \neq NP$

- E.g. number of comparisons for sorting
- May be hard to prove

Conditional lower bounds

- E.g. showing NP hardness
- Conditioned on $P \neq NP$
- Very "coarse" grain: only polynomial vs exponential complexities

- E.g. number of comparisons for sorting
- May be hard to prove

Conditional lower bounds

- E.g. showing NP hardness
- Conditioned on $P \neq NP$
- Very "coarse" grain: only polynomial vs exponential complexities

Let's say you can solve problem A in time $O(n^2)$

- E.g. number of comparisons for sorting
- May be hard to prove

Conditional lower bounds

- E.g. showing NP hardness
- Conditioned on $P \neq NP$
- Very "coarse" grain: only polynomial vs exponential complexities

Let's say you can solve problem A in time $O(n^2)$ How to prove that A cannot be solved in $O(n^{2-\epsilon})$? What can we condition on?

Fine-grained complexity provides the hypotheses for that [Impagliazzo and Paturi, 2001]

Exponential Time Hypothesis (ETH)

There exists a constant $\bar{\alpha}$ s.t. no algorithm solves CNF-SAT with *n* variables in time $O(2^{\alpha n})$, $\alpha < \bar{\alpha}$

Fine-grained complexity provides the hypotheses for that [Impagliazzo and Paturi, 2001]

Exponential Time Hypothesis (ETH)

There exists a constant $\bar{\alpha}$ s.t. no algorithm solves CNF-SAT with *n* variables in time $O(2^{\alpha n})$, $\alpha < \bar{\alpha}$

Strong Exponential Time Hypothesis (SETH)

No algorithm solves CNF-SAT with *n* variables in time $O(2^{\alpha n})$, $\alpha < 1$

Fine-grained complexity provides the hypotheses for that [Impagliazzo and Paturi, 2001]

Exponential Time Hypothesis (ETH)

There exists a constant $\bar{\alpha}$ s.t. no algorithm solves CNF-SAT with *n* variables in time $O(2^{\alpha n})$, $\alpha < \bar{\alpha}$

Strong Exponential Time Hypothesis (SETH)

No algorithm solves CNF-SAT with *n* variables in time $O(2^{\alpha n})$, $\alpha < 1$

Idea: if we solve problem A in $O(n^{2-\epsilon})$, then we solve CNF-SAT in $O(2^{(1-\epsilon')n})$, contradicting SETH

∃ ⇒

æ

Image: A matrix and a matrix

input: a boolean formula F in CNF n variables v_1, \ldots, v_n, k clauses c_1, \ldots, c_q

$$F(v_1,\ldots,v_n) = (v_1 \vee \bar{v_2}) \land (\bar{v_1} \vee v_2 \vee \bar{v_3}) \land (v_1 \vee v_3 \vee \bar{v_4}) \land \cdots$$

< 4³ ►

input: a boolean formula F in CNF *n* variables v_1, \ldots, v_n , k clauses c_1, \ldots, c_q

$$F(v_1,\ldots,v_n) = (v_1 \vee \bar{v_2}) \land (\bar{v_1} \vee v_2 \vee \bar{v_3}) \land (v_1 \vee v_3 \vee \bar{v_4}) \land \cdots$$

output: Yes/No - is there $a \in \{0, 1\}^n$ s.t. F(a) = 1?

input: a boolean formula F in CNF n variables v_1, \ldots, v_n , k clauses c_1, \ldots, c_q

 $F(v_1,\ldots,v_n) = (v_1 \vee \bar{v_2}) \land (\bar{v_1} \vee v_2 \vee \bar{v_3}) \land (v_1 \vee v_3 \vee \bar{v_4}) \land \cdots$

output: Yes/No - is there $a \in \{0, 1\}^n$ s.t. F(a) = 1?

k-SAT : as CNF-SAT but with at most k literals per clause.

k-SAT : as CNF-SAT but with at most k literals per clause.

k-**SAT** : as CNF-SAT but with at most k literals per clause.

Let $s_k = inf \{ \alpha : \text{There is an } O(2^{\alpha n}) \text{-time algorithm for } k\text{-SAT} \}$

k-SAT : as CNF-SAT but with at most k literals per clause.

Let $s_k = inf \{ \alpha : \text{There is an } O(2^{\alpha n}) \text{-time algorithm for } k\text{-SAT} \}$

Exponential Time Hypothesis (ETH)

For all $k \geq 3$, $s_k > 0$

Strong Exponential Time Hypothesis (SETH)

$$s_{\infty} = \lim_{k \to \infty} s_k = 1$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

The following statements are equivalent:

```
For every k \ge 3, s_k > 0 (ETH)
For some k, s_k > 0
s_3 > 0
SNP \nsubseteq SUBEXP
```

Satisfiability of linear-sized circuits cannot be solved in subexponential time

[Impagliazzo, Paturi and Zane, 1998]

Theorem

The following statements are equivalent:

```
For every k \ge 3, s_k > 0 (ETH)
For some k, s_k > 0
s_3 > 0
SNP \nsubseteq SUBEXP
```

Satisfiability of linear-sized circuits cannot be solved in subexponential time

[Impagliazzo, Paturi and Zane, 1998]

SNP: the class of properties expressible by a series of second order existential quantifiers, followed by a series of first order universal quantifiers, followed by a basic formula Note:

- $P \neq NP$ allows e.g. $O(2^{\sqrt{n}})$ for k-SAT, ETH does not
- ETH $\Rightarrow P \neq NP$

SETH:
$$s_{\infty} = \lim_{k \to \infty} s_k = 1$$

イロト イボト イヨト イヨト

2

SETH:
$$s_{\infty} = \lim_{k \to \infty} s_k = 1$$

Main points in favour of it:

(a) Upper bound
$$O(2^{lpha n}), lpha = 1 - d/O(k)$$
, with d constant $\Rightarrow s_\infty \leq 1$

< □ > < /□ >

э

∃ →

SETH:
$$s_{\infty} = \lim_{k \to \infty} s_k = 1$$

Main points in favour of it:

- (a) Upper bound $O(2^{lpha n}), lpha = 1 d/O(k)$, with d constant $\Rightarrow s_\infty \leq 1$
- (b) Assuming ETH ⇒ every s_k < s_{k'}, for k < k', i.e. sequence {s_k} is increasing infinitely often [Impagliazzo and Paturi, 2001]

SETH:
$$s_{\infty} = \lim_{k \to \infty} s_k = 1$$

Main points in favour of it:

- (a) Upper bound $O(2^{lpha n}), lpha = 1 d/O(k)$, with d constant $\Rightarrow s_\infty \leq 1$
- (b) Assuming ETH ⇒ every s_k < s_{k'}, for k < k', i.e. sequence {s_k} is increasing infinitely often [Impagliazzo and Paturi, 2001]

SETH states $s_\infty = 1$, but it might be $s_\infty < 1$

Let's look at (b) more closely

Theorem

For every k, $s_k \leq (1-d/k)s_\infty$

イロト 不得 ト イヨト イヨト

æ

Theorem

For every k, $s_k \leq (1-d/k)s_\infty$

ETH: for $k\geq 3$, $s_k>0$

ヨト・イヨト・

æ

Theorem

For every k, $s_k \leq (1-d/k)s_\infty$

ETH: for $k\geq 3$, $s_k>0$

Consider **k** and **k'** such that k < k'

• Then
$$(1-d/k)s_\infty < (1-d/k')s_\infty$$

A ► <

I ∃ ►

Theorem

For every k, $s_k \leq (1-d/k)s_\infty$

ETH: for $k \geq 3$, $s_k > 0$

Consider **k** and **k'** such that k < k'

- Then $(1-d/k)s_\infty < (1-d/k')s_\infty$
- Moreover $\exists k'$ s.t. $s_k \leq (1-d/k)s_{k'}$

Theorem

For every k, $s_k \leq (1-d/k)s_\infty$

ETH: for $k \geq 3$, $s_k > 0$

Consider **k** and **k'** such that k < k'

- Then $(1-d/k)s_\infty < (1-d/k')s_\infty$
- Moreover $\exists k'$ s.t. $s_k \leq (1-d/k)s_{k'}$

Theorem

For every k, $s_k \leq (1-d/k)s_\infty$

ETH: for $k \geq 3$, $s_k > 0$

Consider **k** and **k'** such that k < k'

- Then $(1-d/k)s_\infty < (1-d/k')s_\infty$
- Moreover $\exists k'$ s.t. $s_k \leq (1-d/k)s_{k'}$

Then $s_k < s_{k'}$, i.e. sequence $\{s_k\}$ is strictly increasing

Summing up, we know that

- $s_{\infty} \leq 1$
- $\mathit{s_k} \leq (1 \mathit{d}/\mathit{k}) \mathit{s_{\infty}}$, for every k
- ETH \Rightarrow $s_k < s_{k'}$, for some k < k'

< A >

→ ∃ →

Summing up, we know that

•
$$s_\infty \leq 1$$

•
$$s_k \leq (1-d/k)s_\infty$$
, for every k

• ETH
$$\Rightarrow$$
 $s_k < s_{k'}$, for some $k < k'$

Hence the claim

SETH:
$$s_{\infty} = 1$$

3 × 4 3 ×

æ

Conditional Lower Bounds

Image: A matched black

æ

< ∃⇒

Why is SETH useful?

It can be used to prove **conditional lower bounds** for polynomial problems.

< ∃⇒

э

Image: A matrix

Why is SETH useful?

It can be used to prove **conditional lower bounds** for polynomial problems.

SETH can be used to prove a conditional lower bound for the **Orthogonal Vectors** (OV) problem

Why is SETH useful?

It can be used to prove **conditional lower bounds** for polynomial problems.

SETH can be used to prove a conditional lower bound for the Orthogonal Vectors (OV) problem

Doing so allows us to use OV instead of CNF-SAT for proving polynomial conditional lower bounds, making the reductions easier

Let $X, Y \subseteq \{0,1\}^d$ be two sets of *n* binary vectors of length *d*.

Determine whether there exist $x \in X, y \in Y$ such that $x \cdot y = 0$

Let $X, Y \subseteq \{0, 1\}^d$ be two sets of *n* binary vectors of length *d*.

Determine whether there exist $x \in X, y \in Y$ such that $x \cdot y = 0$

$$X = \begin{pmatrix} 001\\ 010\\ 011\\ 101 \end{pmatrix} \qquad \qquad \begin{pmatrix} 010\\ 011\\ 100\\ 111 \end{pmatrix} = Y$$

Let $X, Y \subseteq \{0,1\}^d$ be two sets of *n* binary vectors of length *d*.

Determine whether there exist $x \in X, y \in Y$ such that $x \cdot y = 0$

$$X = \begin{pmatrix} 001\\ 010\\ 011\\ 101 \end{pmatrix} \qquad \qquad \begin{pmatrix} 010\\ 011\\ 100\\ 111 \end{pmatrix} = Y$$

Orthogonal Vectors Hypothesis (OVH)

No algorithm can solve Orthogonal Vectors in time $O(n^{\alpha} \operatorname{poly}(d))$, $\alpha < 2$

Let $X, Y \subseteq \{0,1\}^d$ be two sets of *n* binary vectors of length *d*.

Determine whether there exist $x \in X, y \in Y$ such that $x \cdot y = 0$

$$X = \begin{pmatrix} 001\\ 010\\ 011\\ 101 \end{pmatrix} \qquad \qquad \begin{pmatrix} 010\\ 011\\ 100\\ 111 \end{pmatrix} = Y$$

Orthogonal Vectors Hypothesis (OVH)

No algorithm can solve Orthogonal Vectors in time $O(n^{\alpha} \operatorname{poly}(d))$, $\alpha < 2$

CNF-SAT can be reduced to OV, thus SETH \Rightarrow OVH

Reduction from CNF-SAT to OV

• start from a CNF-SAT formula F with n variables and q clauses

Image: Image:

3. 3

Reduction from CNF-SAT to OV

- start from a CNF-SAT formula F with n variables and q clauses
- separate the variables in two groups $v_1, \ldots, v_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}, \ldots, v_n$

Reduction from CNF-SAT to OV

- start from a CNF-SAT formula F with n variables and q clauses
- separate the variables in two groups $v_1, \ldots, v_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}, \ldots, v_n$

$$2^{\frac{n}{2}} \begin{cases} x_{1} = (0 \ 0) & (0 \ 0 \ 1 \ 1 \ 1) = u_{1} \\ x_{2} = (0 \ 1) & (0 \ 1 \ 1 \ 0 \ 0) = u_{2} \\ x_{3} = (1 \ 0) & (1 \ 0 \ 0 \ 0 \ 1) = u_{3} \\ x_{4} = (1 \ 1) & (1 \ 0 \ 1 \ 0 \ 0) = u_{4} \end{cases} \qquad m \qquad \overset{u_{i}[h] = 0}{\underset{x_{i} \models c_{h}}{\Leftrightarrow}} \\ 2^{\frac{n}{2}} \begin{cases} y_{1} = (0 \ 0) & (0 \ 0 \ 1 \ 1 \ 0) = w_{1} \\ y_{2} = (0 \ 1) & (1 \ 1 \ 0 \ 0 \ 1) = w_{2} \\ y_{3} = (1 \ 0) & (0 \ 1 \ 0 \ 1 \ 1) = w_{2} \\ y_{3} = (1 \ 0) & (0 \ 1 \ 0 \ 1 \ 1) = w_{3} \\ y_{4} = (1 \ 1) & (0 \ 1 \ 0 \ 1 \ 0) = w_{4} \end{cases} \qquad m \qquad w_{j}[h] = 0 \\ \underset{w_{j}[h] = 0}{\Leftrightarrow} \\ y_{j} \models c_{h} \end{cases}$$

Contradiction with SETH

• this reductions takes $O(2^{\frac{n}{2}} \operatorname{poly}(q))$

< 1 k

3 N 3

Contradiction with SETH

- this reductions takes $O(2^{\frac{n}{2}} \operatorname{poly}(q))$
- $m = 2^{\frac{n}{2}}$ vectors

3 N 3

- this reductions takes $O(2^{\frac{n}{2}} \operatorname{poly}(q))$
- $m = 2^{\frac{n}{2}}$ vectors
- each vector is of size d = q

- this reductions takes $O(2^{\frac{n}{2}} \operatorname{poly}(q))$
- $m = 2^{\frac{n}{2}}$ vectors
- each vector is of size d = q

Solving OV in time $O(m^{2-\epsilon} \operatorname{poly}(d))$ implies the following for CNF-SAT:

$$O(2^{\frac{n}{2}(2-\epsilon)}\operatorname{poly}(q)) = O(2^{n(1-\frac{\epsilon}{2})}\operatorname{poly}(q))$$

- this reductions takes $O(2^{\frac{n}{2}} \operatorname{poly}(q))$
- $m = 2^{\frac{n}{2}}$ vectors
- each vector is of size d = q

Solving OV in time $O(m^{2-\epsilon} \operatorname{poly}(d))$ implies the following for CNF-SAT: $O(2^{\frac{n}{2}(2-\epsilon)}\operatorname{poly}(q)) = O(2^{n(1-\frac{\epsilon}{2})}\operatorname{poly}(q))$

This contradicts SETH

- this reductions takes $O(2^{\frac{n}{2}} \operatorname{poly}(q))$
- $m = 2^{\frac{n}{2}}$ vectors
- each vector is of size d = q

Solving OV in time $O(m^{2-\epsilon} \operatorname{poly}(d))$ implies the following for CNF-SAT: $O(2^{\frac{n}{2}(2-\epsilon)}\operatorname{poly}(q)) = O(2^{n(1-\frac{\epsilon}{2})}\operatorname{poly}(q))$

This contradicts SETH

We conclude that OVH is true unless SETH is false (SETH \Rightarrow OVH)

Problems with a reduction from **OV** (or k-OV) that implies a lower bound, unless SETH is false [Williams, 2018]:

- Graph Diameter for unweighted, undirected graphs with *n* nodes and *O*(*n*) edges
- Edit Distance, Longest Common Subsequence, Dynamic Time Warping Distance, Fréchet Distance
- Subtree Isomorphism
- All Pairs Max Flow
- Subset Sum on *n* integers and target *T*

No known connections with **APSP** or **3-SUM**

• Often used as different source problems for fine-grained reductions

No known connections with **APSP** or **3-SUM**

• Often used as different source problems for fine-grained reductions

Reductions from Formula-SAT instead of CNF-SAT [Abboud, Hansen, Williams and Williams, 2016]

• For a problem with upper bound $O(n^d / \log^c n)$, you can show that $c < \bar{c}$, for some constant \bar{c} .

Thank you!

[Impagliazzo, Paturi and Zane, 1998] Russell Impagliazzo, Ramamohan Paturi, Fancis Zane Which Problems Have Strongly Exponential Complexity? FOCS 1998

[Impagliazzo and Paturi, 2001] Russell Impagliazzo, Ramamohan Paturi **On the Complexity of k-SAT** Journal of Computer and System Sciences, 2001

[Abboud, Hansen, Williams and Williams, 2016]

Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, Ryan Williams

Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower bound made STOC 2016

[Williams, 2018] Virginia Vassilevska Williams **On some fine-grained questions in algorithms and complexity** ICM 2018

イロト イヨト イヨト ・