Jukka Suomela Aalto University

Online Locality Meets Distributed Quantum Computing

Recap: locality in distributed, dynamic and online settings

LOCAL distributed, parallel online LOCAL centralized

LOCAL distributed, parallel online LOCAL centralized

LOCAL distributed, parallel

Each node **in parallel**:

- looks at its radius-T neighborhood
- picks its output based on this information

(nodes have unique identifiers)

LOCAL distributed, parallel online LOCAL centralized

LOCAL distributed, parallel online LOCAL centralized

Each node in a sequential, adversarial order:

- looks at its radius-T neighborhood
- picks its output & state based on this information

LOCAL distributed, parallel online LOCAL centralized

LOCAL distributed, parallel online LOCAL centralized

Graph **constructed** by an adversary that adds nodes and edges one by one

We can see everything

We can **change** our output only within distance *T* from a point of change

LOCAL distributed, parallel online LOCAL centralized

LOCAL distributed, parallel online LOCAL centralized

Some unknown input graph is **revealed** piece by piece:

- adversary points at a node v
- we can see the radius-T neighborhood of v
- we have to choose the label for *v*

We can **remember** everything

online LOCAL centralized

LOCAL distributed, parallel online LOCAL centralized

Recap: distributed quantum computing & causality

Distributed algorithms

Classical

- node = classical computer
- edge = classical communication channel

Quantum

- node = quantum computer
- edge = quantum communication channel

light cone

2 rounds

\bigcirc		measure
0		measure
		measure
	measure	

2 rounds light cone

Non-signaling model

• Key idea: **define** a model so that it can do **anything** except violating causality

Non-signaling model

Definition (non-signaling distribution):fix any set of nodes X ...

Gavoille, Kosowski, Markiewicz 2009 Arfaoui, Fraigniaud 2014

Non-signaling model

Definition (non-signaling distribution):

- fix any set of nodes X
- changes in the input more than T hops away from X do not influence the output distribution of X

Gavoille, Kosowski, Markiewicz 2009 Arfaoui, Fraigniaud 2014

Three models

Classical probability theory

Classical (randomized) distributed algorithms

Quantum distributed algorithms

Weird quantum things

Non-signaling "algorithms"

Classical probability theory

Unifying model: randomized online LOCAL

Rand. online-LOCAL

- Adversary fixes a graph + order in which nodes are revealed
- For each node *v*

Oblivious adversary

- algorithm sees radius-T neighborhood of v
- algorithm must choose the label of v
- Algorithm can **remember** everything, algorithm can use **randomness**

Rand. online-LOCAL

• Trivial:

 randomize online-LOCAL can simulate deterministic online-LOCAL

• Suprise:

 randomized online-LOCAL can simulate any non-signaling distribution (with the same asymptotic locality)

Why does it matter?

 We can prove for some problem families that det. LOCAL ≈ rand. online-LOCAL

Why does it matter?

- We can prove for some problem families that det. LOCAL ≈ rand. online-LOCAL
- Implies: det. LOCAL ≈ rand. LOCAL
 ≈ quantum-LOCAL ≈ bounded-dependence
 ≈ non-signaling ≈ det. SLOCAL
 ≈ rand. SLOCAL ≈ det. dynamic-LOCAL
 ≈ det. online-LOCAL ≈ rand. online-LOCAL
 for the same problem families

Why does it matter?

- We can prove for some problem families that det. LOCAL ≈ rand. online-LOCAL
- Holds for:
 - locally checkable labeling problems (LCLs)
 - in rooted trees
 - in o(log log n) region
- Puts limits on distributed quantum advantage

One implication

 O(log* n)-round distributed quantum algorithms are not any stronger than O(log* n)-round classical algorithms for LCLs in rooted trees

Still wide open

- Are O(1)-round distributed quantum algorithms any stronger than
 O(1)-round classical algorithms for LCLs in rooted trees?
- In directed cycles?
- Anywhere?

Online Locality Meets Distributed Quantum Computing — arXiv:2403.01903