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Quantum excitations in
quantum materials

Quantum materials made of electrons (spin = 1/2, charge = 1), protons, neutrons and photons

But in quantum materials, we can have emergent collective new excitations

Magnons Spinons Dirac fermions

No charge
Spin = 1

No charge
Spin = ½

No mass
Spin = ½
Charge = 1

Majorana fermions

No charge
No spin
Own antiparticle

Anyons

No spin
Charge=1/3
Not a boson 
Not a fermion



Topological quantum matter

Quantum Spin Hall effect

Quantum Anomalous Hall effect

Science 325.5937 (2009): 178-181

Bi2Se3

Science 340.6129 (2013): 167-170

Cr-doped
(Bi,Sb)2Te3

Topological superconductor

Science 346.6209 (2014): 602-607

Fe@Pb

Quantum Hall effect

graphene

Nature 438, 197-200 (2005)

Weyl semimetal

    Nature Physics 11, 724–727 (2015)

TaAs

All these states are described by effective isolated single-particle physics

Nodal line semimetals

Advanced Science 6.4 (2019): 1800897

Mg3Bi2



Many-body topological
quantum matter

Quantum spin liquids Parafermions

Topological many-body quantum matter is an open challenge
where quantum algorithms will potentially enable solving open challenges

Reports on Progress in Physics 80.1 (2016): 016502. Annual Review of Condensed Matter Physics 7, 119-139 (2016)

Fractional Chern insulators

Rev. Mod. Phys. 71, S298 (1999)



Macroscopic topological effects

Quantization of flux Quantization of conductance

Macroscopic (topological) quantum phenomena determine
fundamental physical constants with the highest precision

Superconductivity Chern topological insulators



The computational challenge in 
topological matter

Single particle topological matter Many-body topological matter

sites/atoms/orbitals

computational resources

sites/atoms/orbitals

computational resources

How can it be solved

Exact classical methods

How can it be solved

Tensor network classical methods
Quantum computers (?)

Exact classical methods (tiny systems)



Sym

Introduction to topology in 
quantum materials



The Hall effect

Hall conductivity

Measure the current perpendicular to a voltage



The Hall conductivity

Berry curvature

Chern number

Berry connection

The Hall conductivity is obtained as

The transverse conductivity is a topological invariant
This means, it must take integer values regardless of defects in an insulator



Hall conductivity in an insulator

An insulator can have a finite
(and quantized) Hall conductivity

The Chern number is quantized

This is a simple example of
a topological state of matter



The idea of topological invariants

Topology classifies object that cannot
smoothly deformed into one another

Holes in a 3d surface Knots in curves



Topology and holes

One hole One hole Zero holes

“Topologically” equivalent “Topologically” different



Topological invariant
in a Hamiltonian

We can classify Hamiltonians according to topological invariants

Hamiltonian Wavefunction

Metric
(Berry curvature)

Topological invariant
(Chern number)



The role of a topological invariant
Hamiltonians with different topological invariants

can not be deformed one to another



The consequence of different 
topological invariants

Trivial system Topological systemTopologically
protected
excitation

Topological excitations appear between topologically different systems



The edge states of a
Chern insualtor

Trivial system Topological systemTopologically
protected

chiral state

The edge states of the quantum Hall effect are topological excitations



The edge states of a
Chern insualtor

The edge states of the quantum Hall effect are topologically protected

No backscattering channel
Perfect conductance

Topological protection



Three important topological 
materials 

Quantum spin
Hall insulators

Chern insulators Topological
superconductors

Chiral states Helical states Majorana excitations

Electronics Spintronics Topological quantum
computing



Sym

A minimal model for a 
topological insulator:

the SSH model



The SSH model

Let us consider a finite dimerized chain



The two phases of the
dimerized model

“Trivial” phase (gaped everywhere)

“Topological” phase (gapless zero modes)



The two phases of the 
dimerized model

Trivial Topological



Coupling the dimers

Does this Hamiltonian have a surface zero mode?



Coupling the dimers

For t<1, both Hamiltonians are topologically equivalent

They can be deformed into one another without closing the bulk gap



The bulk Hamiltonian
in the dimerized model

For a finite system of this form

The unit cell is
The Hamiltonian is



The bulk invariant
in the dimerized model

Zak phaseHamiltonian

Two different possible values for the Zak phase

Trivial insulator

Topological insulator



The bulk-boundary correspondence 
in the dimerized model

Trivial Topological



Physical relevance of 
dimerized models

Some topological orders are equivalent to dimerized models upon a mathematical transformation

Topological superconductor

Conventional
fermion

Majorana
operator

Topological quantum magnets



The computational challenge of 
quantum many-body systems



The problem of dimensionality
In a many-body problem, the size of our vectors grows as

where L is the number of sites

For a single-particle tight binding problem, we can reach up to sites in a laptop

For a many-problem, we cannot even store states for systems bigger than                   sites



The quantum many-body problem
Let us take a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

For example, for L=2 sites the elements of the basis are

For L=3 sites the elements of the basis are



The quantum many-body problem

And let us imagine that we have L different sites on our system and S=1/2

For L=4 sites, the elements of the basis are

Let us take a simple many-body problem



The quantum many-body problem

A typical wavefunction is written as 

We need to determine in total coefficients

Is there an efficient way of storing so many coefficients?

Let us take a simple many-body problem



The fundamental idea of tensor-networks

A many-body wavefunction a is a very high dimensional object

Tensor-networks allow “compressing” all that information in a very efficient way

“True wavefunction” “Tensor-network wavefunction”



The matrix-product state ansatz
For this wavefunction

Let us imagine to propose a parametrization in this form

dimension
dimension

(m dimension of the matrix)



State compression with tensor-networks

Given a many-body wavefunction, we can parametrice the components as

The previous representation allows drastically reducing the memory required to store a state

Matrix product state

Annals of Physics 326, 96 (2011)



Exponentially large algebra with 
tensor networks

Tensor network allow to (approximately) operate in exponentially large vector spaces

vector matrix



MPS as a parametrization of area 
law states

MPS have an entanglement entropy
bounded by the bond dimension



A controlled way of parametrizing 
the Hilbert space

Sketch of the space parametrized with bond dimension D



The matrix-product state ansatz
● This ansatz enforces a maximum amount of 

entanglement entropy in the state
● One-dimensional problems have ground states 

that can be captured with this ansatz

This ansatz can be generalized for time-evolution, excited states, or typical thermal states



The Heisenberg model
with tensor-networks

Non-uniform Heisenberg model

Tensor networks allow solving a 200 many-body spin model in a few seconds in a laptop



Many-body dynamical correlators
One dimensional Heisenberg Hamiltonian

Tensor networks allow computing dynamical correlators



Dynamical structure factor
of a Heisenberg model

S=1/2 chain S=1 chain

Edge modes



Open-source software for tensor-network 
many-body algorithms

dmrgpy

Generic Python library for tensor-network kernel polynomial algorithms for spins, 
fermions, parafermions, with static and dynamical solvers

https://github.com/joselado/dmrgpy



Some paradigmatic problems
solved with matrix product states
Solving the 2D Hubbard
model at finite doping

Solving the 2D Heisenberg
model in frustrated lattices

Science, 365(6460), 1424-1428 (2019) Phys. Rev. Lett. 123, 207203 (2019)



Many-body state compression

Neural-network quantum states

Science 355.6325 (2017): 602-606.

Matrix-product states Projected entangled pair-states

Phys. Rev. Lett. 69, 2863 (1992)

Other compressed many-body states could be potentially
used for noisy quantum circuit simulation

Annals of Physics 326, 96 (2011)



Plan for today
● Emulating quantum circuits with tensor-networks

● Computing topological invariants in a 
superconducting quantum computer

Phys. Rev. Research 6, 033325 (2024)

Phys. Rev. Research 6, 043288 (2024)

Marcel Niedermeier Christian FlindtMarc Nairn



Tensor-networks for
noisy quantum circuits



What is a quantum computer
Time evolution of quantum systems are described by

Whose solution is

A quantum computer is a controllable quantum system where

and can be controlled

The results of the computation consist on observables

Quantum computers enabling simulating dynamics that may require exponentially large resources

A method to simulate large quantum many-body dynamics (tensor networks)
also allows to simulate large quantum computers



How much entanglement do we need

Do we need the whole Hilbert space to successfully run a quantum algorithm?
Could we get meaningful results even if we can only access part of the Hilbert space?

Tensor-network bond dimension
limits which states we parametrize

Qubit fidelity limits which states
we can create in a quantum circuit

Both constrains put bounds to the entanglement of accessible states
Phys. Rev. X 10, 041038 (2020)



What is the relation between a noisy 
qubit and a tensor network?

Tensor-network bond dimension

Q
ub

it 
fid

el
ity

The finite tensor-network bond dimension can be understood as a finite qubit fidelity



Applying a single qubit gate
to a tensor network

Original MPS

Single qubit gate

Transform MPS



Applying a multi-qubit gate
to a tensor network

Original MPS

Multi-qubit gate

Higher dimension updated MPS

Compressed updated MPS



Three quantum algorithms with 
tensor-network quantum circuits

● Quantum Fourier transform: quantum analogue 
of the discrete Fourier transform

● Grover’s algorithm: find elements in a database
● Quantum counting algorithm: counting the 

number of solutions for a given search problem



The quantum Fourier transform

Tensor-network bond dimension QFT Fidelity

Circuit architectureN is the number of qubits

Phys. Rev. Research 6, 033325 (2024)



Grover’s search algorithm

Tensor-network bond dimension

N is the number of qubits

Grover fidelity (m marked elements)

Circuit architecture

Phys. Rev. Research 6, 033325 (2024)



Quantum counting algorithm
Circuit architecture

Phases of marked elements (correct in red)

low-quality
circuit

high-quality
circuit

Phys. Rev. Research 6, 033325 (2024)



Entanglement propagation in the 
quantum-circuit

Quantum Fourier
transform Grover’s algorithm Quantum counting

algorithm

Entanglement builds up in concrete locations and steps of the quantum circuit

Phys. Rev. Research 6, 033325 (2024)



Quantum circuits for topological 
quantum materials



Topological invariant
in a Hamiltonian

We can classify Hamiltonians according to topological invariants

Hamiltonian Wavefunction

Metric
(Berry curvature)

Topological invariant
(Chern number)



Berry phase with a quantum circuit
Take the eigenstates of the Hamiltonian

Evolve them in reciprocal space

Dynamical phaseGeometric phase

We want to cancel out the dynamical phase, so we can evolve first forward and then backwards in time

Phys. Rev. Research 6, 043288 (2024)



Quantum circuits to compute 
topological invariants

Berry phase with quantum phase estimation (based on QFT)

Berry flux (based on Hadamard test)

Phys. Rev. Research 6, 043288 (2024)



Two ways of computing a Chern 
number

Method 1: Integrate the Berry Curvature

Method 2: Pumping of the Wannier charge centers

(and count how many times they wind)
Phys. Rev. Research 6, 043288 (2024)



Five implementations of the 
topological invariant

● Helmi quantum computer
● Exact quantum circuit emulator
● Noisy quantum circuit emulator
● Tensor-network quantum circuit emulator
● Exact classical algorithm



Helmi quantum computer

https://fiqci.fi/

“Helmi, the first Finnish quantum computer, co-developed by VTT and IQM Quantum 
Computers, is operated by VTT in Espoo, Finland. Helmi is based on superconducting 
technology, and presently provides five qubits. Upgrades to 20, then 50 qubits is planned for 
the near future.”



Chern number from Wannier 
winding

Exact classical simulation

Tensor network simulator

Phys. Rev. Research 6, 043288 (2024)



Chern number from Wannier 
winding

Low bond dimension

High bond dimension

Tiny part of the Hilbert space

Most of the Hilbert space

Phys. Rev. Research 6, 043288 (2024)



Chern number from Berry curvature 
integration

Exact Noisy simulation Helmi
quantum computer

Phys. Rev. Research 6, 043288 (2024)



Topological phase diagram
QWZ model Haldane model

Phys. Rev. Research 6, 043288 (2024)



Topological phase diagram

Haldane model

Noisy calculations provide qualitatively
correct topological phase diagrams

Phys. Rev. Research 6, 043288 (2024)



Future steps in topology on quantum 
computers

● Next FiQCI quantum computers (20 and 50 
qubits) would allow tackling many-body 
topological models
– One dimensional topological spin liquids (S=1 

Haldane)
– Two dimensional topological spin liquids (S=1/2)



Take home

Currently available quantum computers allow 
computing topological invariants, and can be 
effectively benchmarked with tensor-networks

Thank you

Funding from

Phys. Rev. Research 6, 033325 (2024)
Phys. Rev. Research 6, 043288 (2024)
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