
DR
AF

T
2006/06/27 14:32

1 Efficient algorithms for max-margin

structured classification

Juho Rousu

Department of Computer Science
University of Helsinki, Finland
juho.rousu@cs.helsinki.fi

Craig Saunders, Sandor Szedmak and John Shawe-Taylor

Electronics and Computer Science
{cjs,ss03v,jst}@ecs.soton.ac.uk

Abstract
We present a general and efficient optimization methodology for max-margin

structured classification tasks. The efficiency of the method relies on the interplay
of several techniques: formulation of the structured support vector machine or max-
margin Markov problem as an optimization problem; marginalization of the dual
of the optimization; partial decomposition via a gradient formulation; and finally
tight coupling of a maximum likelihood inference algorithm into the optimization
algorithm, as opposed to using inference as a working set maintenance mechanism
only. The tight coupling also allows fast approximate inference to be used effectively
in the learning.

The generality of the method follows from the fact that changing the output
structure in essence only changes the inference algorithm, that is, the method can
to a large extent be used in a ‘plug and play’ fashion.

1.1 Introduction

Structured classification methods based on the Conditional Random Field (CRF)
model (Lafferty et al., 2001) are proving themselves in various application fields.
Recently, techniques inspired by support vector machines for learning the parame-

DR
AF

T
2006/06/27 14:32

2 Efficient algorithms for max-margin structured classification

ters of CRFs (Taskar et al., 2004b; Tsochantaridis et al., 2004; Lafferty et al., 2004)
or related graphical models (Altun et al., 2003; Bartlett et al., 2004) have emerged.

In this chapter, we present a general and efficient approach for max-margin
learning of CRF parameters when the CRF takes the form of a hypergraph. The
method benefits from many of the above works and also from the related research
on exponential families and their inference methods (Wainwright and Jordan, 2003;
Wainwright et al., 2003).

The main contribution of this chapter is to show that the max-margin optimiza-
tion relying on the marginal dual formulation (c.f. Taskar et al. 2004b) can be made
efficient without simplifying the problem or settling for approximations. Key ingre-
dients are feature and loss representations that adhere to the hypergraph structure,
a partial decomposition via gradient-based optimization and, finally, tight coupling
of the inference algorithm to conditional gradient optimization which avoids an
explicit description of the constraints.

Outline of the Chapter

The structure of this chapter is the following. In Section 1.2 we present the
classification framework, review loss functions and derive a quadratic optimization
problem for finding the maximum margin model parameters. In Section 1.3 we
present an efficient learning algorithm relying on a decomposition of the problem
into single training example subproblems, and then conducting iterative conditional
gradient ascent in marginal dual variable subspaces corresponding to single training
examples. We show that search directions of the conditional gradient method
can be efficiently found by solving an inference problem on the hypergraph. We
demonstrate the algorithm’s behaviour in Section 1.4 in a hierarchical classification
task. We conclude the chapter with a discussion in Section 1.5.

Notation

For a cartesian product S = S1 × · · ·×Sk of sets, and p = {p1, . . . , pl} ⊂ {1, . . . , k}
an index set, we use the shorthand Sp = Sp1

× · · ·×Spl
to denote the restriction of

S to the index set p. Similarly, we use s = (s1, . . . , sk) ∈ S and sp = (sp1
, . . . , spl

)
to denote the members of the set and their restrictions to p, respectively. When p
is clear from the context, we sometimes drop the subscripts and write s instead of
sp.

In this chapter we need to refer extensively to vectors with a nested block
structure; for example a marginal dual vector µ = (µi)

m
i=1, where µi = (µie)e∈E

(E will be a set of hyperedges introduced below with Ye the set of values over the
hyperedge node e) and µie = (µie(u))

u∈Ye
. To denote individual items in these

vectors we may use multi-indices µ(i, e,u) = µi(e,u) = µie(u). With no confusion
we sometimes transpose the vectors so that µe = (µie)

m
i=1; the subscript will make

clear which vector is meant.

DR
AF

T
2006/06/27 14:32

1.1 Introduction 3

e1

e

el

x1

xm

xi

xi

Ke

e1

el

e

e

KH

Kii’

eΔφ (
u x i) eΔφ (

u x i)T
K(i,e,u;i’,e,u’)=

Kei,ei’

’

u’

u

Figure 1.1 Illustration of the nested block structure of the kernels applied in this
chapter. The kernel block Kie,i′e′ (top, left) occurs as a block both in the edge-kernel Ke

(top, right) and the Kii′ kernel (bottom, left). The full marginalized kernel KH (bottom,
right) is composed of Ke blocks on the diagonal. Grey color indicates potentially non-zero
values.

For matrices with nested block structure similar conventions are used (Figure
1.1): the notation K = (Kii′)

m
i,i′=1, Kii′ = (Kie,i′e′)e,e′∈E and

Kie,i′e′ = (Kie,i′e′ (u,u′))
u∈Ye,u′∈Ye′

is used to refer to the blocks, and multi-indices

K(i, e,u; i′, e′,u′) = Kii′ (e,u; e′,u′) = Kie,i′e′(u,u′)

are used to access the individual items. Furthermore, different permutations will
be used Kee′ = (Kie,ie′)m

i=1 that will again be clear from the context. For diagonal
blocks the double subscript is sometimes replaced with a single one Ki = Kii, Ke =
Kee.

When referring to elements of the training set, when no confusion arises we
sometimes use the shorthand i in place of xi or yi, e.g. α(i,y) instead of α(xi,y),
and "e(i,ue) in place of "e(yie,ue).

DR
AF

T
2006/06/27 14:32

4 Efficient algorithms for max-margin structured classification

1.2 Structured Classification Model

In this chapter we use the conditional random field (CRF) model for structured
classification. We first briefly introduce the setting.

We consider data from a domain X × Y where X is a set and Y = Y1 × · · · × Yk

is a cartesian product of finite sets Yj = {1, . . . , |Yj |}, j = 1, . . . , k. A vector
y = (y1, . . . , yk) ∈ Y is called the multilabel and the components yj are called
microlabels.

We assume that a training set {(xi,yi)}
m
i=1 ⊂ X×Y has been given, consisting of

training examples (xi,yi) of a training pattern xi and multilabel yi. A pair (xi,y),
where xi is a training pattern and y ∈ Y is arbitrary, is called a pseudo-example in
order to denote the fact that the output may or may not have been generated by
the distribution generating the training examples.

The multilabels conform to a given fixed hypergraph structure H = (V, E) that
consists of nodes V = {1, . . . , k} and hyperedges E = {e1, . . . , er}, with eh ⊂ V
for h = 1, . . . , r. For some or all nodes v ∈ V , the singleton hyperedge {v} may be
contained in E. The existence of a hyperedge e = {v1, . . . , vl} ∈ E indicates that
there is a potential statistical dependency between the microlabels yv1

, . . . , yvl
.

In the conditional random field defined on H , the probability of a multilabel y
given a training pattern x is determined by the product of hyperedge potentials

P (y|x,w) =
1

Z(x,w)

∏

e∈E

ϕe(x,ye,w)

where Z(x,w) =
∑

u∈Y

∏

e∈E ϕ(x,ue,w) is the normalization factor also referred
to as the partition function. We concentrate on the case where the potentials are
given by an exponential family

ϕe(x,ye,w) = exp
(

wT
e φe(x,y)

)

,

where we is the vector of the appropriate block entries for that hyperedge. This
choice gives us a log-linear model

log P (y|x,w) = wTφ(x,y) − log Z(x,w). (1.1)

1.2.1 Max margin learning

Typically in learning probabilistic models one aims to learn maximum likelihood
parameters, which in the exponential CRF amounts to solving

argmax
w

log

(

m
∏

i=1

P (yi|xi,w)

)

= argmax
w

m
∑

i=1

[

wTφ(xi,yi) − log Z(xi,w)
]

.

This estimation problem is hampered by the need to compute the logarithm
of the partition function Z. For a general graph this problem is hard to solve.
Approximation methods for its computation are the subject of active research (c.f.

DR
AF

T
2006/06/27 14:32

1.2 Structured Classification Model 5

Wainwright et al. 2005). Also in the absence of regularization the max-likelihood
model is likely to suffer from overfitting

An alternative formulation (c.f Altun et al. 2003; Taskar et al. 2004b), inspired
by support vector machines, is to estimate parameters that in some sense maximize
the ratio

P (yi|xi,w)

P (y|xi,w)

between the probability of the correct labelling yi and the closest competing
incorrect labelling y. With the exponential family, the problem translates to the
problem of maximizing the minimum linear margin

wTφ(xi,yi) − wTφ(xi,y)

in the log-space.
In classical SVM learning the required margin between an example (x, y) and an

(incorrect) pseudo-example (x,−y) is taken to be constant. In structured classifi-
cation, it is proposed to grade the required margin based on the (structured) loss
"(y,yi), so that the margin requirement is a nondecreasing function γ(y,yi) of the
loss of corresponding pseudo-examples. We consider the detailed loss functions and
the margin scaling below.

Using the canonical hyperplane representation (c.f. Cristianini and Shawe-Taylor
2000) the problem can be exactly stated as the following minimization problem:

minimize
w

1

2
||w||2

s.t. wT∆φ(xi,y) ≥ γ(yi,y), for all i and y, (1.2)

where ∆φ(xi,y) = φ(xi,yi) − φ(xi,y) and γ(yi,y) is the margin required from
the pseudo-example (xi,y). Note that in the problem (1.2) the need to compute
the log-partition function has been avoided. Also, margin-maximization provides
resistance against overfitting.

As with SVMs we are not usually able to find a model satisfying margin con-
straints exactly, and so it is necessary to add slack variables ξi to allow examples
to deviate from the margin boundary. Altogether this results in the following opti-
mization problem

minimize
w

1

2
||w||2 + C

m
∑

i=1

ξi

s.t. wT ∆φ(xi,y) ≥ γ(yi,y) − ξi, for all i and y. (1.3)

DR
AF

T
2006/06/27 14:32

6 Efficient algorithms for max-margin structured classification

For many feature representations such as for example strings, images or graphs
the problem can be very high-dimensional making it advisable to seek a dual
representation:

maximize
α≥0

αTγ −
1

2
αT Kα, s.t.

∑

y

α(i,y) ≤ C, ∀i,y, (1.4)

where K = ∆ΦT ∆Φ is the joint kernel matrix for pseudo-examples (xi,y) and
γ = (γ(yi,y))i,y encodes the margin requirements for each (xi,y).

This approach makes it possible to avoid working with explicit feature vectors.
However, in the dual problem there are exponentially many dual variables α(i,y),
one for each pseudo-example. There are a few main routes by which the exponential
complexity can be circumvented:

Dual working set methods where the constraint set is grown incrementally by
adding the worst margin violator

argmin
i,y

wT∆φ(xi,y) − γ(yi,y)

to the dual problem. One can guarantee an approximate solution with a polynomial
number of support vectors using this approach (Altun et al., 2003; Tsochantaridis
et al., 2004).

Primal methods where the solution of the above inference problem is integrated
into the primal optimization problem, hence avoiding the need to write down the
exponential-sized constraint set (Taskar et al., 2004a).

Marginal dual methods, in which the problem is translated to a polynomially-
sized form by considering the marginals of the dual variables (Taskar et al., 2004b;
Bartlett et al., 2004).

The methodology presented in this chapter belongs to the third category.

1.2.2 Loss functions

We assume that associated with the set Y is a loss function " : Y × Y (→ R+ that
associates for each pair y,y′ ∈ Y a non-negative loss "(y,y′). There are many ways
to define loss functions for a multilabel classification setting, and it will depend on
the application which loss function is the most suitable. Nonetheless a few general
guidelines can be set. The loss function should obviously fulfil some basic conditions:
"(y,y′) = 0 if and only if y = y′, "(y,y′) is maximal when yj *= y′

j for every
1 ≤ j ≤ k, and " should be monotonically non-decreasing with respect to inclusion
of the sets of incorrect microlabels. These conditions are, for example, satisfied by
the zero-one loss

"0/1(y,y′) = [y *= y′].

DR
AF

T
2006/06/27 14:32

1.2 Structured Classification Model 7

News

Entertainment Sport Politics

Music Film Football Athletics

Jazz Classical Champions leagueWorld 2006

N,E,M

N,E

N

N,S P

AN,S,F

N,E,M,J N,E,M,C N,S,F,W N,S,F,C

N,E,F

Figure 1.2 A classification hierarchy represented as a tree (left) and a hypergraph
consisting of partial paths of the tree as hyperedges (right).

For structured classification, another useful property is that the loss decomposes so
that it can be expressed as a combination of the losses of the hyperedges. This is
beneficial for algorithmic efficiency and it is not a significant restriction: the need
to express the loss of some set of variables g ⊂ V implies a statistical dependency
between those variables. If this dependency is not preempted by the dependencies
of the hyperedges that intersect with g, then g really should be a hyperedge in H .
We therefore restrict ourselves to losses that are defined as weighted combinations
of hyperedge losses

"(y,y′) =
∑

e∈E

"e(ye,y
′
e).

The simplest way of defining a loss of this type is to take "e(ye,y′
e) = [ye *= y′

e],
in which case the overall loss is the number of incorrectly predicted hyperedges. If
all singleton hyperedges {v}, v ∈ V are in E, defining "e(ye,y′

e) = 0 for all non-
singleton hyperedges (|e| > 1) gives us the Hamming loss:

"∆(y,y′) =
∑

{v}∈E

[yv *= y′
v],

which penalizes the errors made in vertices individually, but does not take into
account the structure implied by the non-singleton hyperedges; this is also referred
to as the microlabel loss.

Example 1 For particular structures, one can define more elaborate losses. For
example, for hierarchical classification (c.f. Figure 1.2), predicting the parent mi-
crolabel correctly is typically more important than predicting the child correctly, as
the child may deal with some detailed concept that the user may not be interested
in; for example whether a document was about champions league football or not
may not be relevant to a person who is interested in football in general. Also,
from the learner’s point of view, if the parent class has already been predicted in-
correctly, we don’t want to penalize the mistake at the child. Loss functions with
these kinds of properties can be defined in more than one way. If one represents the

DR
AF

T
2006/06/27 14:32

8 Efficient algorithms for max-margin structured classification

classification hierarchy as a set of nodes and directed edges i (→ j, one may define
an edge loss

"H̃(y,y′) =
∑

e={i$→j}∈E

ce[yj *= y′
j & yi = y′

i],

that penalizes a mistake in a child only if the label of the parent was correct. If, on
the other hand, the hierarchy is represented as a hypertree with the hyperedges given
by the partial paths p = (v1, . . . , vk) where vi is the parent of vi+1, and vk is either
a leaf or an internal node, one can define a path loss

"H(y,y′) =
∑

p=(v1,...,vk)∈E

cp[yk *= y′
k & (yh = y′

h∀h ∈ anc(k))],

where anc(j) denotes the set of ancestors h of node j.

1.2.3 Scaling the margin requirement

As discussed above it is useful to enforce larger margins for pseudo-examples with
high loss and vice versa. A natural way to incorporate this is to define the required
margin to be a function γ(yi, y) that is monotonically increasing with respect to
the loss. Examples of margin scaling include:

Linear scaling (Taskar et al., 2004b,a): γ(yi,y) = "(yi,y). The benefit of linear
scaling is that any decomposability properties of the loss function are translated to
the margin requirement. The potential drawback is the fact that some capacity of
the learning machine is wasted in tuning the margins of high-loss pseudo-examples;
to some degree the classification problem is turned into an ordinal regression
problem.

Inverse scaling (Tsochantaridis et al., 2004): γ(yi,y) − ξi = 1 − ξi/"(yi,y). Here
the slack is downscaled so high loss examples receive smaller slacks. Inverse scaling is
strictly concave with respect to the loss, which makes the margin requirement loss-
sensitive in the low loss regime but less sensitive in the high-loss regime. However,
the margin requirement is in general not decomposable even if the loss function "
is.

Avoiding the tradeoff between retaining decomposability and the apparent waste
of capacity in enforcing high margins in the high loss regime seems difficult. In
this chapter, we follow the first approach, as we prefer to retain the possibility
of decomposing the learning problem, hence making it possible to tackle larger
structures and training sets.

1.2.4 Feature representation

In a learning problem, there are two general types of features that can be distin-
guished:

DR
AF

T
2006/06/27 14:32

1.2 Structured Classification Model 9

Global features are given by the feature map φx : X (→ Fx. They are not
tied to a particular vertex or hyperedge but represent the structured object as a
whole. For example, the bag-of-words of a document is not tied to a single class
of documents in a hierarchy, but a given word can relate to different classes with
different importance.

Local features, are given by a feature map φx
e : X (→ Fxe tied to a particular

vertex or hyperedge of the structure. For example, for sequence annotation based on
a Hidden Markov Model each position in the sequence is tied to a set of attributes,
e.g. the type and biochemical properties of the nucleotide or amino acid, location
specific sequence homology, and so on.

When the features are used in structured classification on a hypergraph H , the
features need to be associated with the labellings of the hypergraph. This is done
via constructing a joint feature map φ : X × Y (→ Fxy. There are important design
choices to be made in how the hypergraph structure should be reflected in the
feature representation.

Orthogonal feature representation is defined as

φ(x,y) = (φe(x,ye))e∈E ,

so that there is a block for each hyperedge, that in turn is divided into blocks for
specific hyperedge-labelling pairs (e,ue), i.e. φe(x,ye) = (φue

e (x,ye))ue∈Ye
.

The map φu
e should both incorporate the x-features relevant to the hyperedge

and encode the dependency on the labelling of the hyperedge. A simple choice is
to define

φue
e (x,ye) = [ue = ye] (φ

x(x),φx
e (x))T

that incorporates both the global and local features if the hyperedge is labeled
ye = ue, and a zero vector otherwise. Intuitively, the features are turned ‘on’ only
for the particular labelling of the hyperedge that is consistent with y.

Note that in this representation, global features get weighted in a context-
dependent manner: some features may be more important in labelling one hyperedge
than another. Thus, the global features will be ‘localized’ by the learning algorithm.
The size of the feature vectors grows linearly in the number of hyperedges, which
requires careful implementation if solving the primal optimization problem (1.3)
rather than the dual.

The kernel induced by the above feature map decomposes as

K(x,y;x′,y′) =
∑

e∈E

φe(x,ye)
Tφe(x

′,y′
e) =

∑

e∈E

Ke(x,ye;x
′,y′

e), (1.5)

which means that there is no crosstalk between the hyperedges:

φe(x,ye)
Tφe′(x, ye′) = 0

DR
AF

T
2006/06/27 14:32

10 Efficient algorithms for max-margin structured classification

if e *= e′, hence the name ‘orthogonal’. The number of terms in the sum when
calculating the kernel obviously scales linearly in the number of hyperedges.

Additive feature representation is defined as

φ(x,y) =
∑

e∈E

∑

u∈Ye

[ye = u] (φx(x),φx
e (x))T ,

thus the features of the hyperedges are added together.
This feature representation differs from the orthogonal one in a few important

respects. First, the dimension of the feature vector is independent of the size of the
hypergraph, thus optimization in the primal representation (1.3) is more feasible
for large structures. Second, as there are no hyperedge specific feature weights, the
existence of local features is mandatory in this approach, otherwise the hypergraph
structure is not reflected in the computed output. Third, the kernel

K(x,y;x′,y′) =

(

∑

e

φe(x,y)

)T (

∑

e

φe(x
′,y′)

)

=
∑

e,e′

φe(x,ye)
Tφe′(x,y′

e) =
∑

e,e′

Kee′(x,ye;x
′,y′

e)

induced by this representation typically has non-zero blocks Kee′ *= 0, for e *= e′,
reflecting cross-talk between hyperedges. There are two consequences of this fact.
First, the kernel does not exhibit the sparsity that is implied by the hypergraph,
thus it creates the possibility of overfitting. Second, the complexity of the kernel will
grow quadratically in the size of the hypergraph rather than linearly as is the case
of orthogonal features. This is another reason why a primal optimization approach
for this representation might be more justified than a dual approach.

In the sequel, we describe a method that relies on the orthogonal feature repre-
sentation that will give us a dual formulation with complexity growing linearly in
the number of hyperedges in H . The kernel defined by the feature vectors, denoted
by

Kx(x,x′) = φx(x)Tφx(x′),

is referred to as the x-kernel, while K(x,y;x,y′) is referred to as the joint kernel.

1.2.5 Marginal dual polytope

The feasible set of the dual problem (1.4) is a cartesian product A = A1× · · ·×Am

of identical closed polytopes

Ai = {αi ∈ R
|Y| | αi ≥ 0, ||αi||1 ≤ C}, (1.6)

with a vertex set Vi = {0, Ce1, . . . , Ce|Y|} ⊂ R|Y| consisting of the zero vector and
the unit vectors of R|Y|, scaled by C. The vertex set of A is the cartesian product
V1 × · · ·× Vm.

DR
AF

T
2006/06/27 14:32

1.2 Structured Classification Model 11

The dimension of the set A, dA = m|Y| is exponential in the length of the
multilabel vectors. This means that optimizing directly over the the set A is not
tractable. Fortunately by utilizing the structure of H , the set A can be mapped
to a set M of polynomial dimension, called the marginal polytope of H , where
optimization becomes more tractable (c.f Taskar et al. 2004b).

Given a subset p ⊂ {1, . . . , k} of vertices, and an associated labelling yp, the
marginal of α(i,y) for the pair (p, yp) is given by

µ(i, p, yp) =
∑

u∈Y

[yp = up]α(i,u), (1.7)

where the sum picks up those dual variables α(i,u) that have equal value up = yp

on the subset p ⊂ {1, . . . , k}.
For the hypergraph H , the marginal dual vector containing the hyperedge

marginals of the example xi is given by

µi = (µ(i, e,ue))e∈E,ue∈Ye
.

The marginal vector of the whole training set is the concatenation of the single
example marginal dual vectors µ = (µi)

m
i=1 . The vector has dimension dM =

m
∑

e∈E |Ye| = O(m|E|maxe |Ye|). Thus the dimension is linear in the number
of examples, hyperedges and the maximum cardinality of the set of labellings of a
single hyperedge.

The indicator functions in the definitions (1.7) of all relevant marginals can be
collectively represented by the matrix MH , MH(e,ue;y) = [ue = ye], and the
relationship between a dual vector α and the corresponding marginal vector µ is
given by the linear map MHαi = µi and µ = (MHαi)

m
i=1. The image of the set Ai,

defined by

Mi = {µi| ∃αi ∈ Ai : MHαi = µi}

is called the marginal polytope of αi on H .
The following properties of the set Mi are immediate:

Theorem 1 Let Ai be the polytope of (1.6) and let Mi be the corresponding
marginal polytope. Then

the vertex set of Mi is the image of the vertex set of Ai:

V µ
i = {µ| ∃α ∈ V α

i : MHα = µ}.

As an image of a convex polytope Ai under the linear map MH , Mi is a convex
polytope.

These properties underlie the efficient solution of the dual problem on the marginal
polytope.

DR
AF

T
2006/06/27 14:32

12 Efficient algorithms for max-margin structured classification

1.2.6 Marginal dual problem

The exponential size of the dual problem (1.4) can be tackled via the relationship
between its feasible set A = A1 × · · ·×Am and the marginal polytopes Mi of each
Ai.

Given a decomposable loss function

"(yi,y) =
∑

e∈E

"e(i,ye)

and linear margin scaling γ(y′,y) = "(yi,y), the linear part of the objective satisfies

m
∑

i=1

∑

y∈Y

α(i,y)"(i,y) =
m

∑

i=1

∑

y

α(i,y)
∑

e

"e(i,ye)

=
m

∑

i=1

∑

e∈E

∑

u∈Ye

∑

y:ye=u

α(i,y)"e(i, u) =
m

∑

i=1

∑

e∈E

∑

u∈Ye

µ(e, u)"e(i, u)

=
m

∑

i=1

µT
i "Mi

= µT "M, (1.8)

where "H = ("e(i, u))m
i=1,e∈E,u∈Ye

is the marginal loss vector.
Given an orthogonal feature representation inducing a decomposable kernel (1.5),

the quadratic part of the objective becomes

αKα =

=
∑

e

∑

i,i′

∑

y,y′

α(i,y)Ke(i,ye; i
′,y′

e)α(i′,y′)

=
∑

e

∑

i,i′

∑

u,u′

Ke(i,u; i′,u′)
∑

y:ye=u

∑

y′:y′

e=u′

α(i,y)α(i′,y′)

=
∑

e

∑

i,i′

∑

u,u′

µe(i,u)Ke(i,u; i′,u′)µe(i,u
′)

= µT KHµ, (1.9)

where KH = diag (Ke, e ∈ E) is a block diagonal matrix with hyperedge-specific
kernel blocks Ke.

The objective should be maximized with respect to µ whilst ensuring that there
exist α ∈ A satisfying Mα = µ, so that the marginal dual solution represents
a feasible solution of the original dual. By Theorem 1 the feasible set of the
marginalized problem is the marginal dual polytope, or to be exact the cartesian
product of the marginal polytopes of single examples (which are in fact equal):

M = M1 × · · ·× Mm

DR
AF

T
2006/06/27 14:32

1.3 Efficient optimization on the marginal dual polytope 13

In summary, the marginalized optimization problem can be stated in implicit
form as

max
µ∈M

µT "H −
1

2
µT KHµ. (1.10)

This problem is a quadratic programme with a linear number of variables in the
number of training examples and in the number of hyperedges. If the cardinality of
hyperedges is bounded by a constant, the number of variables is linear also in the
number of microlabels.

For optimization algorithms, an explicit characterization of the feasible set is
required. However, characterizing the polytope M in terms of linear constraints
defining the faces of the polytope, is in general infeasible. Singly-connected graphs
are an exception: for such a graph G = (V, E)), E ⊂ V × V , the marginal polytope
is exactly reproduced by the box constraints

∑

ue

µe(i,ue) ≤ C, ∀i, e ∈ E, µe ≥ 0 (1.11)

and the local consistency constraints
∑

yk

µkj(i, (yk, yj)) = µj(i, yj);
∑

yj

µkj(i, (yk, yj)) = µk(i, yk). (1.12)

In this case the size of the resulting constraint set is linear in the number of vertices
of the graph. Thus for small singly-connected graphs they can be written down
explicitly and the resulting optimization problem has linear size both in the number
of examples and the size of the graph. Thus the approach can in principle be made
to work, although not with off-the-shelf QP solvers (see sections 1.3 and 1.4).

For general graphs and hypergraphs the situation is more complicated (c.f
Wainwright and Jordan 2003): the local consistency of edges or hyperedges is not
sufficient to ensure global consistency, that is, there are marginal dual vectors µ for
which there exists no α ∈ A such that MHα = µ. For global consistency, one needs
to derive the junction tree of the hypergraph and write down the local consistency
constraints of the junction tree. Consequently, the size of the constraint set is linear
in the size of the junction tree, which, unfortunately, can be much more than the size
of the original hypergraph. Thus in general an explicit description of the constraint
set is not a tractable approach.

In the following, we derive an approach where we avoid the explicit consideration
of the constraints, which in part contributes towards an efficient optimization
approach.

1.3 Efficient optimization on the marginal dual polytope

Despite the polynomial number of dual variables, the marginal dual problem is still
a challenging one to solve if the hypergraph is large or dense. In the following,

DR
AF

T
2006/06/27 14:32

14 Efficient algorithms for max-margin structured classification

we describe an algorithm that enables us to tackle general graph structures with
reasonable computational complexity. The main ingredients are

Partial decomposition via a gradient-based approaches

Efficient optimization via the conditional gradient method

Computation of feasible descent directions via solving an inference problem on
the hypergraph.

1.3.1 Decomposition of the learning problem

The size of the optimization problem suggests that we should try to decompose it
in some way. However, the marginalized dual problem has a property that defies
full decomposition:

The constraints decompose by the examples, i.e. we can collect all the constraints
related to training example xi into the linear system Aµi ≤ b, Cµi = d. However,
decomposition by the hyperedges is not possible due to the consistency constraints
between hyperedges.

The kernel decomposes by the hypergraph structure as KH = diag (Ke, e ∈ E)
but the interactions between examples (represented by a non-sparse x-kernel Kx)
forbid a similar decomposition by the examples.

A partial decomposition becomes possible via gradient-based approaches. The
gradient of the objective obj(µ) = "T

Hµ − (1/2)µT KHµ,

g = ![obj(µ)] = "H − KHµ = ("i − (Ki1, . . . , Kim)µ)m
i=1 = (gi)

m
i=1

can be consulted and updated for each example independently. Thus a general
gradient-based iterative approach is possible:

1. For example xi, using the gradient information gi find ∆µi such that µi + ∆µi

is feasible and the objective value is increased, i.e. gT
i ∆µi > 0

2. If a stopping criterion is satisfied, stop, otherwise move to the next example, and
repeat.

In the next section, we describe the application of a conditional gradient algorithm
(c.f. Bertsekas 1999), which follows the above general template.

1.3.2 Conditional gradient algorithm

Let us consider optimizing the dual variables µi = (µe(i,u))e∈E,u∈Ye
of example

xi. We denote by "i = ("e(i,ue)e∈E the corresponding loss vector and by Kij =
diag(Keij , e ∈ E), where Keij = (Ke(i, u; j, v)u,v∈Ye

, the block of kernel values
between examples i and j, on edge e (Note that Kij also is block-diagonal like
the full marginalized kernel KH). Finally we denote by Ki· = (Kij)j∈{1,...,m} the
columns of the kernel matrix KH referring to example i.

DR
AF

T
2006/06/27 14:32

1.3 Efficient optimization on the marginal dual polytope 15

Obtaining the gradient for the xi-subspace requires computing the corresponding
part of the gradient of the objective function in (1.10) which is gi = "i − Ki·µ.
However when updating µi only, evaluating the change in objective and updating
the gradient can be done more cheaply. We have

∆gi = −Kii∆µi

and

∆obj = gT
i ∆µi −

1

2
∆µiKii∆µi.

Thus local optimization in a subspace of a single training example can be done
without consulting the other training examples. On the other hand, we do not want
to spend too much time in optimizing a single example: since the dual variables of
the other examples are non-optimal, so is the initial gradient gi. Thus the optimum
we would arrive at by optimizing µi whilst keeping other examples fixed, would not
be the global optimum of the quadratic objective. It makes more sense to optimize
all examples more or less in tandem so that the full gradient approaches its optimum
as quickly as possible.

In our approach, we have chosen to conduct a few optimization steps for each
training example using a conditional gradient ascent (see Algorithm 1.2) before
moving on to the next example. The iteration limit for each example is set by using
the Karush-Kuhn-Tucker(KKT) conditions as a guideline; the larger contribution
to the duality gap by an example, the higher the iteration limit.

The pseudocode of our algorithm is given in Algorithm 1.1. It takes as input the
training data, the hypergraph H , and the loss vector "µ = ("i)

m
i=1. The algorithm

chooses a chunk of examples as the working set, computes the kernel for each xi and
makes an optimization pass over the chunk. After one pass, the gradient, slacks and
the duality gap are computed and a new chunk is picked. The process is iterated
until the duality gap falls below a given threshold.

Note in particular, that the joint kernel is not explicitly computed, although
evaluating the gradient requires computing the product KHµ. We are able to take
advantage of the special structure of the feature vectors, where the interaction
between the labellings and the x-features of a hyperedge is given by a tensor
product, to facilitate the computation using the x-kernel and the dual variables
only.

1.3.3 Conditional Subspace Gradient Ascent

The optimization algorithm used for a single example is a variant of conditional
gradient ascent (or descent) algorithms (Bertsekas, 1999). The algorithms in this
family solve a constrained quadratic problem by iteratively stepping to the best
feasible direction with respect to the current gradient. It exploits the fact if µ∗ is
an optimum solution of a maximization problem with objective function f over the

DR
AF

T
2006/06/27 14:32

16 Efficient algorithms for max-margin structured classification

Algorithm 1.1 Maximum margin optimization algorithm for a Conditional Ran-
dom Field on a hypergraph.

Require: Training data S = ((xi,yi))
m
i=1, hyperedge set E of the hypergraph, a loss

vector !, and the feasibility domain M.
Ensure: Dual variable vector µ and objective value f(µ).
1: Initialize g = !µ, ξ = !,dg = ∞ and OBJ = 0.
2: while dg > dgmin & iter < max iter do

3: [WS, Freq] = UpdateWorkingSet(µ,g, ξ);
4: Compute x-kernel values KX,WS with respect to the working set;
5: for i ∈ WS do

6: Compute joint kernel block Kii and subspace gradient gi;
7: [µi, ∆obj] = CSGA(µi,gi, Kii, Mi, F reqi);
8: end for

9: Compute gradient g, slacks ξ and duality gap dg;
10: end while

feasibility domain Mi then it has to satisfy the first order optimality condition, that
is the inequality

∇f(µi)(µi − µ∗) ≥ 0 (1.13)

has to hold for any feasible µi chosen from Mi.
The pseudocode of our variant CSGA is given in Algorithm 1.2. The algorithm

takes as input the current dual variables, gradient, constraints and the kernel block
for the example xi, and an iteration limit. It outputs new values for the dual
variables µi and the change in objective value. As discussed above, the iteration
limit is set very tight so that only a few iterations will be typically conducted.

First we need to find a feasible µ∗ which maximizes the first order feasibility
condition (1.13) at a fixed µi. This problem is an LP

µ∗ = argmax
v∈Mi

gT
i v. (1.14)

The solution gives a direction potentially increasing the value of objective function
f . Then we have to choose a step length τ that gives the optimal feasible solution
as a stationary point along the line segment µi(τ) = µi + τ∆µ, τ ∈ (0, 1], where
∆µ = µ∗ − µi, starting from the known feasible solution µi.

The stationary point is found by solving the equation

d

dτ
gT

i µi(τ) − 1/2µi(τ)
T Kiiµi(τ) = 0, (1.15)

expressing the optimality condition with respect to τ . If τ > 1, the stationary point
is infeasible and the feasible maximum is obtained at τ = 1. In our experience, the
time taken to compute the stationary point was typically significantly smaller than
the time taken to find µ∗

i .

DR
AF

T
2006/06/27 14:32

1.3 Efficient optimization on the marginal dual polytope 17

Algorithm 1.2 Conditional subspace gradient ascent optimization step.
CSGA(µi,gi, Kii, Mi, maxiteri)

Require: Initial dual variable vector µi, gradient gi, the feasible region Mi, a joint
kernel block Kii for the subspace, and an iteration limit maxiteri.

Ensure: New values for dual variables µi and change in objective ∆obj.
1: ∆obj = 0; iter = 0;
2: while iter < maxiter do

3: % find highest feasible point given gi

4: µ∗ = argmax
v∈Mi

gT
i v;

5: ∆µ = µ∗ − µi;
6: q = gT

i ∆µ, r = ∆µT Kii∆µ; % taken from the solution of (1.15)
7: τ = min(q/r, 1); % clip to remain feasible
8: if τ ≤ 0 then

9: break; % no progress, stop
10: else

11: µi = µi + τ∆µ; % update
12: gi = gi − τKii∆µ;
13: ∆obj = ∆obj + τq − τ 2r/2;
14: end if

15: iter = iter + 1;
16: end while

1.3.4 Efficient computation of the feasible ascent direction

The main difficulty in optimizing the max-margin problem in the marginal dual
form arises from the need to ensure marginal consistency: the box constraints
are easy to satisfy by many algorithms, including variants of sequential margin
optimization, SMO (Platt, 1999), or simple steepest gradient search. For tree-
structured graphs the constraints can be written down explicitly, as in such graphs
local consistency of adjacent edges is sufficient to ensure global consistency. For
general graphs, such a relation does not hold: it is easy to find examples where a
locally consistent distribution can be globally inconsistent. In principle, a sufficient
constraint set for a general graph can be found via construction of the junction tree
of the graph and writing down consistency constraints of the hyperedges. However,
this approach suffers from the fact that, for a dense graph, the junction tree and
consequently the constraint set, may be very (exponentially) large. Thus, other
means need to be used to ensure global consistency of the marginal dual solution.

The basis of our solution is the following relationship, which can also be seen as
a consequence of (Wainwright and Jordan, 2003, theorem 4):

Lemma 2 For any gradient gi, there is a vertex α∗
i ∈ Ai such that µ∗

i = MHα∗
i is

an optimizer of (1.14).

Proof Since Mi is a polyhedron and the objective is linear, it follows that among
the optimal solutions of the conditional gradient (1.14) there is a vertex of Mi.
Denote this vertex by µ∗

i . Since the vertex set of Mi is the image of the vertex set
of Ai, µ∗

i is the image of some vertex α∗
i ∈ Ai.

DR
AF

T
2006/06/27 14:32

18 Efficient algorithms for max-margin structured classification

Thus, α∗
i corresponding to the conditional gradient is either the zero vector or a

unit vector corresponding to some multilabel y∗.

Lemma 3 If µ∗
i *= 0, then for all hyperedges e ∈ E we have µ∗

i (e,y
∗
e) = C, and

µ∗
i (e, u) = 0 for all y∗

e *= u.

Proof Since MHα∗
i = µ∗

i and α∗
i has a single non-zero component, α∗(i,y∗) = C,

µ∗
i is the y∗’th column of MH , multiplied by C. Thus the non-zero values of µ∗

i

equal C. Let us now assume, contrary to the claim, that µ∗
i (e,u) = µ∗

i (e,u
′) = C

for some u *= u′. But then by the definition of matrix MH we must have [y∗
e =

u] = 1 = [y∗
e = u′] which is a contradiction, and the claim follows.

Consequently, µ∗
i = µi(y∗) is directly defined by the optimal labelling y∗. The

lemma also gives a recipe for constructing µ∗
i given y∗.

We can now rewrite (1.14) in terms of the multilabels

y∗ = argmax
y

gT
i µ∗

i (y) = argmax
y

∑

e∈E

gT
ieµ

∗
ie(ye) = argmax

y

∑

e∈E

gie(ye)C, (1.16)

which is readily seen as an inference problem on the hypergraph H : one must find
the configuration y∗ that maximizes the sum of the hyperedge gradients gie(ye).

Thus we have translated our feasible ascent direction problem into an inference
problem on the hypergraph. If we can solve the inference problem (1.16) efficiently,
the conditional gradient method will be very efficient.

In addition, for our purposes there is no real need to compute the exact optimum,
a direction that promises ascent with high likelihood is sufficient. Hence, fast
approximate inference algorithms suffice here. Some examples of available methods
are the following.

For sequences and trees, inference can be implemented via dynamic programming
and it has generally a linear time-complexity.

Hypergraphs with low tree-width, can be converted to their junction trees and
dynamic programming can be used on the junction tree to find the maximizing
configuration. The size of the junction tree depends on the tree-width of the graph.

Loopy belief propagation (LBP) refers to the use of the message-passing algorithm
on a cyclic hypergraph. While this algorithm is not guaranteed to converge on such
graphs, it has a successful track record in practical applications. For our purposes,
the asymptotic convergence is not a central issue as long as the initial convergence
is fast enough to find a configuration y∗ corresponding to a descent direction.

Tree reparametrization algorithm (TRP) (Wainwright et al., 2003) based on
computing a series of spanning trees of the (hyper)graph. The convergence is often
faster than that of LBP. Also in the case of TRP, the algorithm can be stopped
after a few iterations once a configuration y∗ guaranteeing descent is found.

All of the methods can be viewed as instantiations of message-passing algorithms
(Wainwright and Jordan, 2003). In the next section we exemplify the optimization

DR
AF

T
2006/06/27 14:32

1.4 Experiments 19

approach on hierarchical problems, where exact inference can be implemented by
dynamic programming.

1.4 Experiments

We tested the presented learning approach on three datasets that have an associated
classification hierarchy:

Reuters Corpus Volume 1, RCV1 (Lewis et al., 2004). 2500 documents were used
for training and 5000 for testing. As the label hierarchy we used the ’CCAT’ family
of categories, which had a total of 34 nodes, organized in a tree with maximum
depth 3. The tree is quite unbalanced, half of the nodes residing in depth 1.

WIPO-alpha patent dataset (WIPO, 2001). The dataset consisted of the 1372
training and 358 testing document comprising the D section of the hierarchy. The
number of nodes in the hierarchy was 188, with maximum depth 3. Each document
in this dataset belongs to exactly one leaf category, hence it contains no multiple
or partial paths.

ENZYME classification dataset. The training data consisted of 7700 protein
sequences with hierarchical classification given by the Enzyme Classification (EC)
system. The hierarchy consisted of 236 nodes organized into a tree of depth three.
Test data consisted of 1755 sequences.

The two first datasets were processed into bag-of-words representation with TFIDF
weighting. No word stemming or stop-word removal was performed. For the EN-
ZYME sequences a length-4 subsequence kernel was used. Note that in the Reuters
Corpus multiple-partial paths exist: it is not the case that the correct classification
is simply a single path to a leaf node; for a single example multiple paths in the
hierarchy may be positively labelled, and it is not necessary that a path ends at a
leaf node.

We compared the performance of the presented max-margin conditional random
field (MMCRF)learning approach to three algorithms: svm denotes an SVM trained
for each microlabel separately, h-svm denotes the case where the SVM for a
microlabel is trained only with examples for which the ancestor labels are positive.

The svm and h-svm were run using the SVM-light package. After pre-computation
of the kernel these algorithms are as fast as one could expect, as they just involve
solving an SVM for each node in the graph (with the full training set for svm and
usually a much smaller subset for h-svm).

h-rls is a batch version of the hierarchical least squares algorithm described
in Cesa-Bianchi et al. (2004). It essentially solves for each node i a least squares
style problem wi = (I + SiST

i + xxT)−1Siyi, where Si is a matrix consisting of
all training examples for which the parent of node i was classified as positive, yi

is a microlabel vector for node i of those examples and I is the identity matrix of

DR
AF

T
2006/06/27 14:32

20 Efficient algorithms for max-margin structured classification

appropriate size. Predictions for a node i for a new example x is −1 if the parent
of the node was classified negatively and sign(wT

i x) otherwise.
h-rls requires a matrix inversion for each prediction of each example, at each

node along a path for which errors have not already been made. No optimization of
the algorithm was made, except to use extension approaches to efficiently compute
the matrix inverse (for each example an inverted matrix needs to be extended by
one row/column, so a straightforward application of the Sherman-Morrison formula
to efficiently update the inverse can be used).

The h-rls and MMCRF algorithms were implemented in MATLAB. The tests
were run on a high-end PC. For svm,h-svm and MMCRF, the regularization
parameter value C = 1 was used in all experiments as in initial experiments its
value did not seem to have a significant effect.

1.4.1 Obtaining consistent labellings.

As the learning algorithms compared here all decompose the hierarchy for learning,
the multilabel composed of naively combining the microlabel predictions may be
inconsistent, that is, they may predict a document as part of the child but not
as part of the parent. For svm and h-svm consistent labellings were produced by
post-processing the predicted labellings as follows: start at the root and traverse
the tree in a breadth-first fashion. If the label of a node is predicted as −1 then all
descendants of that node are also labelled negatively. This post-processing turned
out to be crucial to obtain good accuracy, thus we only report results with the post-
processed labellings. Note that h-rls performs essentially the same procedure (see
above). For the max-margin CRF models, we computed by dynamic programming
the consistent multilabel with maximum likelihood

ŷ(x) = argmax
y∈YT

P (y|x) = argmax
y

wTφ(x,y),

where YT is the set of multilabels that correspond to unions of partial paths in T .
This inference problem can be solved by the same dynamic programming algorithm
as the one used for learning, with the exception that the set of multilabels considered
is restricted to those consistent with the union of partial paths model.

1.4.2 Efficiency of optimization.

To give an indication of the efficiency of the MMCRF algorithm, Figure 1.3 shows
an example learning curve on the WIPO-alpha dataset. The number of marginal
dual variables for this training set is just over one million and the marginalized
kernel matrix KH—if computed explicitly—would have approximately 5 billion
entries. Note that the solutions for this optimization are not sparse, typically less
than 25% of the marginal dual variables are zero. Training and test losses ("∆)
are all close to their optima within 10 minutes of starting the training, and the
objective is within 2 percent of the optimum in 30 minutes.

DR
AF

T
2006/06/27 14:32

1.4 Experiments 21

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU time (seconds)

O
bj

ec
tiv

e
/ E

rr
or

 (%
 o

f m
ax

im
um

)

objective
tr.error
test.error

Figure 1.3 The objective function (% of optimum) and !∆ losses for MMCRF on
training and test sets (WIPO-alpha)

To put these results in perspective, for the WIPO data set svm (SVM-light) takes
approximately 50 seconds per node, resulting in a total running time of about 2.5
hours. The running time of h-rls was slower than the other methods, however this
could be due to our non-optimised implementation. It is our expectation that it
would be very close to the time taken by h-svm if coded more efficiently.

Therefore, the methods presented in this paper are very competitive from a
computational efficiency point of view to other methods which do not operate in
the large feature/output spaces of MMCRF.

Figure 1.4 shows for WIPO-alpha the efficiency of the dynamic programming
(DP) based computation of update directions as compared to solving the update
directions with MATLAB’s linear interior point solver LIPSOL. The DP based
updates result in an order of magnitude faster optimization than using LIPSOL.

In addition for DP the effect of the iteration limit for optimization speed is
depicted. Setting the iteration limit too low (1) or too high (50) slows down the
optimization, for different reasons. A too tight iteration limit makes the overhead
in moving from one example to the other dominate the running time. A too high
iteration limit makes the the algorithm spend too much time optimizing the dual
variables of a single example. Unfortunately, it is not straightforward to suggest a
iteration limit that would be universally the best.

DR
AF

T
2006/06/27 14:32

22 Efficient algorithms for max-margin structured classification

Table 1.1 Prediction losses !0/1 and !∆, precision, recall and F1 values obtained using
different learning algorithms. All figures are given as percentages. Precision and recall are
computed in terms of totals of microlabel predictions in the test set.

REUTERS !0/1 !∆ P R F1

svm 32.9 0.61 94.6 58.4 72.2

h-svm 29.8 0.57 92.3 63.4 75.1

h-rls 28.1 0.55 91.5 65.4 76.3

MMCRF-!∆ 27.1 0.58 91.0 64.1 75.2

MMCRF-!H̃ 27.9 0.59 85.4 68.3 75.9

WIPO-alpha !0/1 !∆ P R F1

svm 87.2 1.84 93.1 58.2 71.6

h-svm 76.2 1.74 90.3 63.3 74.4

h-rls 72.1 1.69 88.5 66.4 75.9

MMCRF-!∆ 70.9 1.67 90.3 65.3 75.8

MMCRF-!H̃ 65.0 1.73 84.1 70.6 76.7

ENZYME !0/1 !∆ P R F1

svm 99.7 1.3 99.6 41.1 58.2

h-svm 98.5 1.2 98.9 41.7 58.7

h-rls 95.6 2.0 51.9 54.7 53.3

MMCRF-!∆ 95.7 1.2 87.0 49.8 63.3

MMCRF-!H̃ 85.5 2.5 44.5 66.7 53.4

DR
AF

T
2006/06/27 14:32

1.5 Discussion 23

100 1000 10000
4000

4500

5000

5500

6000

6500

7000

CPU time (seconds)

O
bj

ec
tiv

e
LIPSOL
DP−1
DP−50
DP−10

Figure 1.4 Learning curves for MMCRF using LIPSOL and dynamic programming
(DP) to compute update directions (WIPO-alpha). Curves with iteration limits 1,10 and
50 are shown for DP. The LIPSOL curve is computed with iteration limit set to 1.

1.4.3 Comparison of predictive accuracies of different algorithms.

In our final test we compare the predictive accuracy of MMCRF to other learning
methods. For the MMCRF we include the results for training with "∆ and "H̃ losses
(see Section 1.2.2 for a discussion of loss functions). For training svm and h-svm,
these losses produce the same learned model.

Table 1.1 depicts the different test losses, as well as the standard information
retrieval statistics precision (P), recall (R) and F1 statistic (F1 = 2PR/(P + R)).
Precision and recall were computed over all microlabel predictions in the test set.
Flat svm is expectedly inferior to the competing algorithms with respect to most
statistics, as it cannot utilize the dependencies between the microlabels in any way.
The two variants of MMCRF are the most efficient in getting the complete tree
correct as shown by the lower zero-one loss. With respect to other statistics, the
structured methods are quite evenly matched overall.

1.5 Discussion

In this chapter we have introduced a general methodology for efficient optimization
of structured classification tasks in the max-margin setting. We discussed how the
choice of feature representation and loss function can affect the computational
burden imposed by the primal and dual formulations. We have shown that for

DR
AF

T
2006/06/27 14:32

24 Efficient algorithms for max-margin structured classification

the non-restrictive setting where an orthogonal feature representation is used in
combination with a loss function that is edge-decomposable, we can efficiently
solve the optimization problem using conditional gradient methods by exploiting
the block structure of the gradient. The resulting method has been tested on 3
datasets for which the labels are placed within a hierarchical structure. The first
two of these were document classification tasks that used the standard TF/IDF
feature representation. The third data set focussed on enzyme analysis and used a
string kernel as the feature mapping; this task would therefore not be practical in
alternative max-margin settings where only the primal objective function is used.
In all cases the approach in this chapter achieved high performance and took less
computation time.

Our method can be contrasted to the structured Exponentiated Gradient (EG)
approach presented in (Bartlett et al., 2004). Both algorithms are iterative gradient-
based algorithms but with significant differences. First, the update direction of the
MMCRF algorithm is towards the best feasible direction while the structured EG
update tends to look for sparse directions of steep ascent. Conditional gradient
updates are known to work well in the early stages of optimization but less so
in the final stages (Bertsekas, 1999). On the other hand, the emphasis on sparse
solutions should benefit EG in the final stages of optimization as the (full) dual
optimum typically is sparse. Finally, the tractable formulation of the structured
EG (Bartlett et al., 2004) relies on enforcing a Gibbs distribution (with polynomial
number of parameters) on the dual variables while our MMCRF does not make any
additional assumptions of the distribution of the dual variables. We leave as future
work to study the relative merits of these methods.

One advantage of the marginal approach used in this paper is that there is a clear
relationship between the complexity of the optimization and the representation of
the output structure which is used. For the hierarchical data sets used in this
paper, the inference step can be solved exactly and efficiently using dynamic
programming; thus ensuring that the computational complexity of the terms in
the objective function only grow linearly with the size of the output structure. In
the case of more general structures, then the inference step must either be solved
by considering junction trees where possible, or by applying approximate inference
methods such as loopy belief propagation. It is still an open question as to how the
performance of the algorithm would be effected should a technique such as LBP
be used on a more complex output structure. Given that the inference is only used
to find a suitable direction across which to optimize, one could expect that exact
inference is unnecessary and a good approximation is more than sufficient to guide
the optimization process. In general though this is an open question and will be the
subject of future research.

Acknowledgments

This work was supported in part by the PASCAL Network of Excellence, IST-2002-
506778. C. Saunders is supported in part by the EPSRC grant no GR/S22301/01

DR
AF

T
2006/06/27 14:32

1.5 Discussion 25

(Development and Application of String-Type Kernels). The work by J. Rousu was
partially funded by a Marie Curie Individual Fellowship HPMF-2002-02110 and
undertaken whilst visiting Royal Holloway, University of London.

DR
AF

T

DR
AF

T
2006/06/27 14:32

References

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector
machines. In International Conference of Machine Learning, 2003.

P. L. Bartlett, M. Collins, and B. Taskar amd D. McAllester. Exponentiated gra-
dient algorithms for large-margin structured classication. In Neural Information
Processing Systems, 2004.

D. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

N. Cesa-Bianchi, C. Gentile, A. Tironi, and L. Zaniboni. Incremental algorithms
for hierarchical classification. In Neural Information Processing Systems, 2004.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, UK, 2000.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: representation and
clique selection. In Proc. 21th International Conference on Machine Learning,
pages 504–511, 2004.

J. D. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilis-
tic modeling for segmenting and labeling sequence data. In 18th International
Conference on Machine Learning ICML, 2001.

David D. Lewis, Y. Yang, Tony G. Rose, and Fan Li. Rcv1: A new benchmark
collection for text categorization research. JMLR, 5:361–397, Apr 2004.

J. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. J. C. Burges, and A.J. Smola, editors, Advances
in Kernel Methods - -Support Vector Learning, pages 185 – 208, Cambridge, MA,
1999. MIT Press.

B. Taskar, V. Chatalbashev, and D. Koller. Learning associative markov networks.
In Proc. 21th International Conference on Machine Learning, pages 807–814,
2004a.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Neural
Information Processing Systems 2003, 2004b.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y.n Altun. Support vector
machine learning for interdependent and structured output spaces. In Proc. 21th
International Conference on Machine Learning, pages 823–830, 2004.

M. Wainwright, T. Jaakkola, and A. Willsky. Tree-based reparameterization frame-
work for analysis of sum-product and related algorithms. IEEE Transactions on

DR
AF

T
2006/06/27 14:32

28 References

information theory, 49:1120–1146, May 2003.

M. Wainwright, T. Jaakkola, and A. Willsky. Map estimation via agreement
on (hyper)trees: Message-passing and linear-programming approaches. IEEE
Transactions on Information Theory, 51(11):3697–3717, 2005.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,
and variational inference. Technical Report 649, UC Berkeley, Department of
Statistics, September 2003.

WIPO. World Intellectual Property Organization.
http://www.wipo.int/classifications/en. 2001.

