
A general design method for scaffold-free DNA
wireframe nanostructures

Antti Elonen1, Abdulmelik Mohammed2, and Pekka Orponen1

1 Department of Computer Science, Aalto University, Finland
antti.elonen@aalto.fi, pekka.orponen@aalto.fi

2 Department of Biomedical Engineering, San José State University, USA
abdulmelik.mohammed@sjsu.edu

Abstract. In the area of DNA nanotechnology, approaches to compos-
ing wireframe nanostructures exclusively from short oligonucleotides,
without a coordinating long scaffold strand, have been proposed by
Goodman et al. (2004) and Wang et al. (2019). We present a general
design method that extends these special cases to arbitrary wireframes,
in the sense of graphs linearly embedded in 2D or 3D space. The method
works in linear time in the size of the given wireframe model and is al-
ready available for use in the online design tool DNAforge. We also inter-
pret the method in terms of topological graph embeddings, which opens
up further research opportunities in developing this design approach.

Keywords: DNA origami, DNA wireframes, scaffold-free nanostructure
design, strong anti-parallel traces, cycle covers, topological graph embed-
dings

1 Introduction

The research area of DNA nanotechnology [26] uses DNA as a generic, highly
programmable building material for creating nanoscale structures and devices.
Since almost 20 years now, the technique of DNA origami, introduced by Paul
Rothemund in 2006 [24] has been the leading approach to DNA nanostructure
design. In DNA origami, a long natural scaffold strand, typically the ca. 7200 nt
(nucleotides) long cyclic genome of the M13 bacteriophage, is guided to fold
into the desired shape by a large number of ca. 20–200 nt long staple strands.
Over the years, this technique has been used to create an amazing collection of
nanostructures for a wide variety of interests and purposes [2].

A recent direction of interest have been wireframe 2D and 3D DNA
nanostructures, where very general design methods based on the origami ap-
proach have already been developed [1,29,23], together with fully automated
tools [1,29,16,8]. Sparse wireframe structures have the prospective advantage of
being more strand-efficient and more stable in natural low-salt conditions than
the commonly used helix-packed designs [4,3].

A critical limitation of the otherwise extremely versatile and robust DNA
origami design method is its dependence on the global scaffold strand. For ambi-
tious designs, the ∼7200 nt scaffold length provided by the M13 genome variants

is quite limited, and while research into longer strands has provided some re-
markable demonstrations (e.g. [21,35]), these novel strands are not widely avail-
able, and because of little experience with them may also carry unidentified
weaknesses such as decreased product yield.

As an alternative route forward, methods for scaffold-free nanostructure de-
signs have been proposed [34,33,18,22,32]. These designs comprise only short
single-stranded oligonucleotides, which are interleaved to constitute the target
structure. Using the scaffold-free approach, designs 100 times larger than what
is achievable using a single M13 scaffold strand have been synthesised [22], al-
though the product yield starts to decrease for really large designs.

For similar reasons as in scaffolded DNA origami, there is emerging interest
in wireframe scaffold-free nanostructures. The earliest precedent of these kinds of
designs is possibly the (pre-origami) DNA tetrahedron by Goodman et al. [12],
where the wireframe structure was constituted by routing the four faces of a
tetrahedron by one 55-nt oligonucleotide each, in counterclockwise direction.
The base sequences in these single-stranded oligos were designed so that for
each edge of the tetrahedron, the antiparallel segments of the oligos on both
sides of the edge were perfectly matching, in the complementary Watson-Crick
pairing sense. (And also so that there were not too long nonspecific pairing
domains elsewhere.) This idea was generalised and further developed by Wang
et al. [32], who designed a number of convex 3D polyhedral wireframes and 2D
wireframe lattices using this approach, and also some 3D cubic lattices by a
different approach based on combining 6-arm vertex motifs.

We continue this line of research by presenting in Section 2 a simple
and efficient design method that works for any reasonable 2D or 3D wire-
frame model, that is, a graph linearly embedded in space. This method is al-
ready implemented and available for use in our online design tool DNAforge
(https://dnaforge.org) [8]. Section 3 then discusses the task of finding good
nucleotide sequences for DNA wireframes created using this design method, and
Section 4 introduces an interesting connection to topological graph embeddings.
Section 5 explains the use of the DNAforge tool with design examples, and Sec-
tion 6 presents some concluding remarks and suggestions for further work.

2 The Cycle-Cover Design Method

Our general goal is to render a given wireframe model, which we take to be a
finite, connected simple graph, with no leaf vertices, that is linearly embedded in
2D or 3D space, as a DNA structure with single-duplex edges. This entails two
conditions on the DNA strand arrangement: (i) each edge of the target wirefame
must be rendered by two strand segments that traverse the edge in anti-parallel
directions (ignoring for the moment any inter-oligo nicks that may be located
on the edge), and (ii) the crossover arrangement of the strands meeting at each
vertex v must be such that v is stable. By this we mean that if one considers
two edges e and e′ incident to v as locally connected at v when there is a strand
segment that enters v along e and exits along e′ or vice versa, then these local

https://dnaforge.org

edge connections in the neighbourhood of v form a simple cycle. (The local
routing pattern of the strands at a vertex is called a “transition” in [10,6] and
the local edge-connectivity graph the “vertex figure” in [9].)

(a) An unstable vertex that
has two disjoint repetition
neighbourhoods.

(b) A stable vertex whose
neighbours constitute a sin-
gle repetition neighbour-
hood.

Fig. 1

An alternative view of condition (ii) is provided by the concept of repetitions
at a vertex v (Figure 1) [9]. A repetition neighbourhood of a vertex v is a set N of
neighbouring vertices, such that every strand segment that enters v from N also
exits v to N . A vertex is then stable, if and only if all its neighbours constitute
a single repetition neighbourhood. Figure 1 illustrates how an unstable vertex is
at risk of becoming detached in a DNA rendering.

The conditions (i) and (ii) were recognised by Fijavž et al. [9] in their notion
of a strong anti-parallel trace, by which they mean a closed edge walk on the
graph that traverses each edge twice, in opposite directions, and so that no vertex
has disjoint repetition neighbourhoods. (A complementary perspective on this
approach is provided in [5], where the vertex stability condition is called “cyclic
compatibility”.)

Strong anti-parallel traces give a good characterisation of feasible single-
strand designs for DNA wireframes. They, however, exist only in limited cases:
more precisely if and only if every component of any co-tree of the target wire-
frame graph is of even size [9]. (Co-trees are the edge-complements of spanning
trees in a graph [14, p. 751].) Many interesting polyhedra lack this characteris-
tic. For instance, a tetrahedron has six edges and four vertices, so any spanning
tree of a tetrahedron has three edges and so does its co-tree; which means that
every co-tree must have at least one odd-sized component. (In fact all co-trees of
a tetrahedron are connected and of size three.) This means that a tetrahedron
does not admit a strong anti-parallel trace, and consequently does not have
a good single-stranded rendering in DNA: any anti-parallel double trace of a
tetrahedron contains at least one unstable vertex (Figure 2(a)).

However, in a scaffold-free setting one does not need to be constrained to a
single trace for covering the wireframe. Both of the conditions (i) and (ii) can

(a) An anti-parallel double trace
of a tetrahedron, with an unsta-
ble vertex.

(b) An s.a.p. cycle cover of a
tetrahedron.

Fig. 2

also be satisfied by covering the graph with multiple oriented edge cycles. This
idea gives rise to the concept of a strong antiparallel cycle cover (briefly s.a.p.
cycle cover). An s.a.p. cycle cover likewise traverses each edge twice, once in
both directions, in a way that satisfies the vertex stability requirement, but it
consists of multiple cyclic traces. (We are somewhat abusing the term “cycle”
here, because our covering cycles may repeat edges, and so are precisely speaking
closed walks on the graph.) We note that while the use of antiparallel cycle double
covers for the construction of abstract DNA graphs was suggested already by
Ellis-Monaghan in [6], the vertex stability condition was addressed there only in
terms of antiparallel single-cycle covers that have no repetition neighbourhoods
of size 1, which is not sufficient in the case of vertices of degree greater than
three.

(a) A vertex with incident
edges split into pairs of an-
tiparallel directed edges.

(b) A routing around the
vertex in numerical order:
1 → 2 → 3 → 4 → 5 → 1

(c) A visually more pleasing
representation of the rout-
ing in (b).

Fig. 3

One can aim to construct s.a.p. cycle covers in two simple ways: either top-
down or bottom-up. One first ensures vertex stability by assigning to each vertex
v of degree d some local edge-traversal order by numbering the edges incident
to v cyclically as (1, 2, . . . , d). Then, whenever a cycle enters vertex v along edge
i, it must exit along edge (imod d) + 1. As will be discussed in Section 4, this
procedure is equivalent to finding facial cycles of an embedding of the graph in
some orientable surface, and results in a single repetition neighbourhood at each
vertex, i.e., the routing will be strong. The construction is illustrated in Figure 3.

If the input mesh constitutes an orientable surface, there exists a natural
clockwise traversal order on it that has many nice properties, but in principle
any family of cyclic permutations of the edges around the vertices induces an
embedding of the mesh wireframe in some orientable surface (see Section 4).

Not all edge permutations may result in physically favourable routings, how-
ever, and some care should be taken if the input mesh does not constitute a
surface. In that case, a reasonable edge permutation around a vertex v can be
determined by finding a shortest Hamiltonian cycle in a metric connectivity
graph around v. This graph is constructed by adding one new vertex on each
of the edges incident to v at one unit distance away from v, and by fully con-
necting all of these new vertices to each other. This procedure minimises the
total length of the eventual spacer nucleotide segments between strands, and
should also mitigate nucleotide congestion at the vertices. (A refined version of
this approach in the setting of scaffold-strand routings is proposed in [7].)

In the top-down approach one then initiates the construction of the first
cyclic walk in the cover from some vertex v0 with degree d0 = deg(v0) along
the local edge 1, say. Then one follows the vertices’ local routing rules, until
one eventually returns to vertex v0 along edge d0. (The walk on the graph may
of course have revisited the vertex v0 along other edges already earlier.) After
closing this first walk, one checks if there still remains some edge {u, v} that has
not yet been double-covered. If so, then one chooses either vertex u or v as the
new start vertex, depending on which of them has a free exit direction (both
will have if the edge {u, v} has not yet been traversed in either direction), and
initiates a new cyclic walk from there.

The bottom-up approach is even simpler. One first splits each undirected edge
{u, v} in the wireframe graph in two directed edges (u, v) and (v, u). Suppose
then that edge {u, v} has index i in the local numbering at u, and index j in the
local numbering at v. Then we give the edges (u, v) and (v, u) local identities
as (u, v) = out(u, i) = in(v, j) and (v, u) = out(v, j) = in(u, i). Now the s.a.p.
cover cycle ensemble can be constructed bottom-up, without any touring of the
graph, by including in it for every vertex u, of degree du, the walk segments
[in(u, i), out(u, i + 1)], for i = 1, . . . , du (mod du). (Experimentally, a similar
approach as this was already used implicitly by Wang et al. in their design of
4×4×4 and 8×8×4 cubical lattices in [32].)

With proper data structures and bookkeeping, both approaches can be im-
plemented to run in linear time, that is in time O(|E|), where |E| is the number
of edges in the wireframe graph. For instance, the top-down method is essentially

Hierholzer’s classical (1873) linear-time algorithm for finding an Eulerian cycle
in an Eulerian graph [17, Algorithm 2.3.1], adapted to Eulerian digraphs and
simplified by not merging the intermediate cycles into a single covering cycle.

3 Sequence Design

When the cycle cover is converted into DNA strands, it will initially consist of
a number of long cyclical strands, which are then cut into shorter individual
strands without compromising the structural stability of the wireframe. The
longer the hybridised area between two overlapping antiparallel strands is, the
stronger their chemical bond. However, this length also affects the total length
of the strand, which should ideally be as short as possible, since long strands are
difficult and expensive to produce.

Given a minimum hybridisation length parameter, N , determining the pre-
cise placement of strand gaps, or nicks, becomes a global optimisation problem.
Short edges, in particular, present a challenge, as they lack sufficient space for
accommodating multiple strand gaps. This means that adding a strand gap to
one strand at one particular edge might prevent adding a strand gap to another
strand at all.

For instance, an edge shorter than 2N nucleotides lacks sufficient space for
even a single strand gap, while an edge of length 2N can accommodate only
one strand gap on only one of the two strands. On the other hand, an edge
spanning 5N nucleotides provides enough room for at least two strand gaps on
each strand.

Once the strand gaps are placed, some strands will traverse at least a portion
of two different edges and a possible single-stranded segment of linker/spacer
nucleotides in between. These strands tend to be the longest, and minimising
their lengths poses the trickiest problem. An edge that spans 5N nucleotides
allows for these vertex-adjacent strands to be as short as possible on both sides
of the edge, facilitating the nicking process for long edges. Short edges, however,
remain a challenge, since placing a strand gap at one strand might impede nicking
its complementary strand.

Our simple cycle cover nicking algorithm places strand gaps greedily for each
edge of length 3N or more, i.e., edges that admit one or more nicks at both
strands, so that the strands neighbouring the vertices are as short as possible.
Next, the algorithm selects all edges of lengths from 2N to 3N − 1 and selects
the longer of the two strands and places the strand gap on that one. If any
cyclical strands remain, or if any strand is longer than the maximum allowed,
the nicking procedure fails and the algorithm needs to be run again with different
parameters.

The primary sequence for a cycle cover design is generated with a local
search algorithm previously described in [8]. The search algorithm, based on
the Focused Metropolis Search method [27], aims to minimise the length of the
longest repeated substring to avoid non-specific and unintended pairings, while
also adhering to the given constraints of GC-content, forced bases, and prohib-

ited subsequences. Although fully complementary non-specific pairings can exist
only if repeated substrings exist, a repeated substring does not necessarily mean
that there is potential for a non-specific pairing. Since this distinction is not
very restrictive, it was chosen as the optimisation target. Due to computational
complexity, the algorithm only considers substrings contained entirely within
strands, rather than subsequences or substrings spanning across more than one
strand.

The search algorithm works by first assigning each nucleotide a random com-
plementary base and then checking if the constraints are satisfied. If not, a
random base corresponding to an unsatisfied constraint is chosen, and it is ran-
domly changed to another. If the number of unsatisfied constraints is decreased,
the change is accepted. Otherwise it is reverted with a probability of 1− η. This
process is repeated until all constraints are satisfied. Then, the algorithm uses
the same procedure with the repeated substrings: If a repeat of length R exists,
a random base associated with such a repeat is changed, and the change is again
accepted if no constraints were broken and if the number of repeats decreased.
Otherwise, it is reverted with a probability of 1− η. This search process is iter-
ated for K cycles, or until no repeats of length R exist. Afterwards, if repeats
do exist, R is increased by one, and otherwise it is decreased by one. The search
algorithm can then be run again with the updated value of R.

This algorithm generally performs well. A strand of length L even without
any secondary structure whatsoever must contain repeated substrings of length
⌊(log4L)⌋, and this algorithm typically yields primary sequences with the longest
repeat equal to that number or larger by only one unless the constraints are
unusually restrictive.

4 Cycle Covers and Graph Embeddings

The s.a.p. cycle cover design problem can be formulated in terms of graph em-
beddings in surfaces. We recall that a (closed) surface is a compact topological
space where every point has a neighbourhood topologically equivalent to the
plane and that a surface is orientable if it does not contain the Möbius strip.
The classification theorem of closed orientable surfaces states that such a surface
is either a sphere or a sphere with g handles attached, where g is the genus of
the surface [20]. For instance, the surface of the bunny mesh model 4, which
is the union of all the points in all the polygons (including their interiors), is
topologically equivalent to a sphere.

A graph embedding in a surface is an injective mapping of the graph vertices
to surface points, along with a mapping of the edges to arcs in the surface, such
that a) the interiors of the arcs are disjoint, b) for each edge, the ends of its arc
meet the points associated with the end vertices of the edge and c) no vertex
is mapped to the interior of an arc. Removing the image of the graph from the
surface results in a collection of distinct regions called faces, and when these faces
are all topological open disks the embedding is said to be a 2-cell embedding.

In a mesh model such as the bunny in Figure 4, the surface is given in 3D as
the boundary of the solid, and the embedded graph comprises the points and lines
of the mesh. However, graphs can also be embedded in abstract representations
of surfaces, such as that of the torus as a square where the horizontal and vertical
boundaries are appropriately identified to be glued. For a target wireframe like
the 3×3×3 lattice in Figure 4, no polygonal faces are present, and an embedding
of the abstract graph in an abstract surface will be needed for interpreting the
s.a.p double covers in terms of graph embeddings in surfaces.

An s.a.p cycle cover of a wireframe is equivalent to a double cover by face-
bounding cycles of a 2-cell embedding of the abstract graph in some orientable
closed surface. The equivalence of s.a.p cycle covers and facial cycle covers is ev-
ident by looking at pure rotation systems that capture the combinatorial struc-
ture of 2-cell graph embeddings in orientable surfaces [13]. A pure rotation system
Π(G) of a graph G assigns to each vertex v in the graph a cyclic permutation πv

of the edges incident to v. A 2-cell embedding of a graph induces a pure rotation
system by fixing the πv to be the clockwise order of the arcs in the local neigh-
borhood of v. Conversely, a pure rotation system Π(G) uniquely determines, up
to orientation preserving equivalence, a graph embedding in an orientable sur-
face. The faces of the embedding can be identified using a face tracing algorithm
that generates the oriented bounding cycles of the faces [13, p. 115]. For each
vertex incident edge pair (v, e), the rotation system induces an oriented transi-
tion (e, v, πv(e)). The face tracing algorithm finds the oriented boundary cycles of
the faces by joining the transitions. For example, the two transitions (e, v, πv(e)),
(πv(e), w, πw(πv(e)) can be naturally joined as (. . . , e, v, πv(e), w, πw(πv(e), . . .).

There are many ways of selecting a pure rotation system for an abstract
graph. If the target wireframe is the edge-skeleton of a given underlying ori-
entable surface mesh, the s.a.p. cycle cover method chooses the pure rotation
system that is induced by clockwise cyclic orderings of edges incident to the ver-
tices. If the target wireframe is given without an underlying surface mesh, the
s.a.p. cycle cover method extracts a pure rotation system from the geometric
proximity of local edges in the real 3-space of the wireframe, as described in
Section 2.

The set of cycles generated by the method can be seen as the oriented bound-
ary cycles C = {C1, . . . , Ck} of the faces by the face tracing algorithm. There
are four oriented transitions associated with an edge e = {u, v} in the equivalent
rotation system: the two transitions (e, u, πu(e)), (π

−1
u (e), u, e) at u and the two

transitions (π−1
v (e), v, e), (e, v, πv(e)) at v. Thus, the cycles in C that trace e will

contain the segments (π−1
u (e), u, e, v, πv(e)) and (π−1

v (e), v, e, u, πu(e)), travers-
ing e in antiparallel directions. One can easily show that in this case the repeti-
tion neighborhood N of any vertex v induced by C is the regular neighborhood
of v, i.e. the set of all vertices adjacent to v: Let πv = (e0, e1, . . . , ed−1) and
ei = {v, ui}, for 0 ≤ i ≤ d− 1, where d is the degree of v. For any 0 ≤ i ≤ d− 1,
the vertices ui, ui+1 mod d are in the same repetition neighborhood because of the
transition (ei, v, ei+1 mod d). Thus all ui are in the same repetition neighborhood
as desired for a stable vertex.

A graph can be cellularly embedded in orientable closed surfaces of different
genera. The number of faces in the embedding is related to the genus through
the generalised Euler’s polyhedron formula |V | − |E| + |F | = 2 − 2g, where g
is the genus of the surface and |F | denotes the number of faces. The number of
circular strands used by the s.a.p. cycle cover method is thus directly connected
to the surface we choose to embed the graph into as the number of faces in the
embedding. Along this line, Jonoska and Saito [15] have used thickened graph
models to show that the maximum number of circular strands needed to assemble
an abstract connected 3-regular graph is at most β1+1, where β1 = |E|−|V |+1
is the co-tree size of the graph, also known as its first Betti number.

If the fewest possible circular strands is desirable, a maximum genus em-
bedding should be used. Ideally, a one face embedding would result in a strong
antiparallel cover by a single cycle, but as noted earlier this is only possible if
and only if each connected component of the co-tree has an even number of
edges [9]. Ellis-Monaghan [6] has proved for instance that the minimum number
of circular strands needed to assemble the tetrahedral graph is two. Interestingly,
the minimum number of circular strands needed for an s.a.p. cycle cover can ac-
tually be computed in polynomial time using maximum genus embeddings [11].
If, on the other hand, the number of circular strands should be maximised, a
minimum genus embedding can be used. In general, deciding whether a graph
can be cellularly embedded into a surface of a given genus g is NP-complete [28]
and thus there will not likely be a polynomial time algorithm for determining
the maximum number of circular strands for an s.a.p. cover.

5 Design Examples

The s.a.p. cycle cover method is integrated in the DNAforge web application,
which provides an automated platform for designing nucleic acid nanostructures
based on 3D wireframe models. With this method, labelled CC-DNA in the
DNAforge user interface, users can generate s.a.p. cycle cover routings and nu-
cleotide level models from any target wireframe with a single click. The workflow
of the tool is illustrated in Figure 4, which showcases the examples of a bunny
and a 3×3×3 lattice. Note that while the bunny mesh model is provided with
explicit faces and as embedded on a sphere-equivalent surface, the 3×3×3 lattice
mesh model contains just the wireframe, because the 3×3×3 lattice as a 3D
linearly embedded graph does not have any natural face structure.

The implementation offers users the flexibility to influence the design by
adjusting several parameters such as the scale, minimum hybridisation length,
and GC-content of the structures. The user can also optionally reduce strain in
the designed structure with a DNA-duplex level physical simulation.

Once the DNA wireframe is designed, it can be exported in various formats,
including as a PDB file, a UNF file [19] or as oxDNA files [31] for simulation or
further editing, or as a CSV file containing the primary sequences. The nucleotide
model can also be simulated directly from the interface, provided the DNAforge

(a) Bunny mesh model (b) Bunny routing model (c) Bunny nucleotide model

(d) 3×3×3 mesh model (e) 3×3×3 routing model (f) 3×3×3 nucleotide model

Fig. 4: The CC-DNA design workflow in DNAforge for a bunny and a 3×3×3
lattice. The user first uploads a 3D model in the standard OBJ format (a, d).
With a click of a button, DNAforge constructs an s.a.p. cycle cover routing for
the mesh (b, e). The cycle cover is then automatically converted into a nucleotide-
level model (c, f).

backend together with the oxDNA molecular simulation package [31,25,30] are
locally installed.

6 Conclusions and Further Work

We have introduced a general and efficient design method for scaffold-free DNA
wireframe nanostructures via strong antiparallel cycle covers. An implementation
of the method is available on the online design tool DNAforge, accessible at
https://dnaforge.org/.

In some application settings, the user might be interested in the minimum
genus embedding of their wireframe model, and this can in principle be de-
termined via the connection of strand count to embedding surface genus. The
task is NP-complete, but a combinatorial search might work in many practical
scenarios. Also exploring maximum-genus embeddings with the goal of minimis-
ing the strand count is of interest, and we are looking forward to experimental
validations of the design method.

https://dnaforge.org/

References

1. Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P.,
Högberg, B.: DNA rendering of polyhedral meshes at the nanoscale. Nature
523(7561), 441–444 (2015), doi: 10.1038/nature14586

2. Dey, S., Fan, C., Gothelf, K.V., Li, J., Lin, C., Liu, L., Liu, N., Nijenhuis, M.A.D.,
Saccà, B., Simmel, F.C., Yan, H., Zhan, P.: DNA origami. Nature Reviews Methods
Primers 1(1), 13 (2021), doi: 10.1038/s43586-020-00009-8

3. Dietz, H., Douglas, S.M., Shih, W.M.: Folding DNA into twisted and curved
nanoscale shapes. Science 325(5941), 725 (2009), doi:10.1126/science.1174251

4. Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-
assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–
418 (2009), doi:10.1038/nature08016

5. Ellingham, M.N., Ellis-Monaghan, J.A.: Bi-eulerian embeddings of graphs and di-
graphs (2024), preprint arXiv:2404.00325, doi:10.48550/arXiv.2404.00325

6. Ellis-Monaghan, J.A.: Transition polynomials, double covers, and biomolecular
computing. Congressus Numerantium 166, 181 (2004)

7. Ellis-Monaghan, J.A., McDowell, A., Moffatt, I., Pangborn, G.: DNA origami
and the complexity of Eulerian circuits with turning costs. Natural Com-
puting 14(3), 491–503 (2015), https://doi.org/10.1007/s11047-014-9457-2,
doi:10.1007/s11047-014-9457-2

8. Elonen, A., Wimbes, L., Mohammed, A., Orponen, P.: DNAforge: A design tool
for nucleic acid wireframe nanostructures. Nucleic Acids Research (to appear),
preprint: https://research.cs.aalto.fi/nc/papers/dnaforge 2024.pdf

9. Fijavž, G., Pisanski, T., Rus, J.: Strong traces model of self-assembly polypeptide
structures. MATCH Communications in Mathematical and in Computer Chem-
istry 71, 199–212 (2014), preprint: https://doi.org/10.48550/arXiv.1308.4024

10. Fleischner, H.: Eulerian Graphs and Related Topics. Part 1, Volume 1, Annals of
Discrete Mathematics, vol. 45. North-Holland Publishing Co., Amsterdam (1990)

11. Furst, M.L., Gross, J.L., McGeoch, L.A.: Finding a maximum-genus graph imbed-
ding. Journal of the ACM (JACM) 35(3), 523–534 (1988), doi: 10.1145/44483.44485

12. Goodman, R.P., Berry, R.M., Turberfield, A.J.: The single-step synthesis of
a DNA tetrahedron. Chemical Communications 40(12), 1372–1373 (2004), doi:
10.1039/B402293A

13. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Courier Corporation (2001)
14. Gross, J.L., Yellen, J., Zhang, P.: Handbook of Graph Theory, 2nd Ed. CRC Press

(2014)
15. Jonoska, N., Saito, M.: Boundary components of thickened graphs. In: Jonoska,

N., Seeman, N.C. (eds.) DNA Computing. pp. 70–81. Springer Berlin Heidelberg
(2002), doi:10.1007/3-540-48017-X 7

16. Jun, H., Wang, X., Parsons, M.F., Bricker, W.P., John, T., Li, S., Jackson, S., Chiu,
W., Bathe, M.: Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami.
Nucleic Acids Research 49(18), 10265–10274 (2021), doi: 10.1093/nar/gkab762

17. Jungnickel, D.: Graphs, Networks and Algorithms. Algorithms and Computation
in Mathematics, Springer Berlin Heidelberg (2013)

18. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-
assembled from DNA bricks. Science 338(6111), 1177 (2012), doi: 10.1126/sci-
ence.1227268

19. Kuťák, D., Poppleton, E., Miao, H., Šulc, P., Barǐsić, I.: Unified Nan-
otechnology Format: One way to store them all. Molecules 27(1) (2022),
doi:10.3390/molecules27010063

https://doi.org/10.1038/nature14586
https://doi.org/10.1038/s43586-020-00009-8
https://doi.org/10.1126/science.1174251
https://doi.org/10.1038/nature08016
https://doi.org/10.48550/arXiv.2404.00325
https://doi.org/10.1007/s11047-014-9457-2
https://doi.org/10.1007/s11047-014-9457-2
https://research.cs.aalto.fi/nc/papers/dnaforge_2024.pdf
https://doi.org/10.48550/arXiv.1308.4024
https://doi.org/10.1145/44483.44485
https://doi.org/10.1039/B402293A
https://doi.org/10.1007/3-540-48017-X_7
https://doi.org/10.1093/nar/gkab762
https://doi.org/10.1126/science.1227268
https://doi.org/10.1126/science.1227268
https://doi.org/10.3390/molecules27010063

20. Lee, J.: Introduction to Topological Manifolds, vol. 202. Springer Science & Busi-
ness Media (2010)

21. Marchi, A.N., Saaem, I., Vogen, B.N., Brown, S., LaBean, T.H.: Toward larger
DNA origami. Nano Letters 14(10), 5740–5747 (2014), doi: 10.1021/nl502626s

22. Ong, L.L., Hanikel, N., Yaghi, O.K., Grun, C., Strauss, M.T., Bron, P., Lai-Kee-
Him, J., Schueder, F., Wang, B., Wang, P., Kishi, J.Y., Myhrvold, C., Zhu, A.,
Jungmann, R., Bellot, G., Ke, Y., Yin, P.: Programmable self-assembly of three-
dimensional nanostructures from 10,000 unique components. Nature 552(7683),
72–77 (2017), doi: 10.1038/nature24648

23. Orponen, P.: Design methods for 3D wireframe DNA nanostructures. Natural Com-
puting 17(1), 147–160 (2018), doi:10.1007/s11047-017-9647-9

24. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature
440(7082), 297–302 (2006), doi: 10.1038/nature04586

25. Rovigatti, L., Šulc, P., Reguly, I.Z., Romano, F.: A comparison between paralleliza-
tion approaches in molecular dynamics simulations on GPUs. Journal of Compu-
tational Chemistry 36(1), 1–8 (2015), doi:10.1002/jcc.23763

26. Seeman, N.C., Sleiman, H.F.: DNA nanotechnology. Nature Reviews Materials 3,
17068 (2017), doi:10.1038/natrevmats.2017.68

27. Seitz, S., Alava, M., Orponen, P.: Focused local search for random 3-satisfiability.
Journal of Statistical Mechanics: Theory and Experiment 2005(06), P06006 (2005),
doi:10.1088/1742-5468/2005/06/P06006

28. Thomassen, C.: The graph genus problem is NP-complete. Journal of Algorithms
10(4), 568–576 (1989), doi:10.1016/0196-6774(89)90006-0

29. Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W., Bathe,
M.: Designer nanoscale DNA assemblies programmed from the top down. Science
(2016), doi:10.1126/science.aaf4388

30. Šulc, P., Romano, F., Ouldridge, T.E., Doye, J.P.K., Louis, A.A.: A nucleotide-level
coarse-grained model of RNA. The Journal of Chemical Physics 140(23), 235102
(2014), doi:10.1063/1.4881424

31. Šulc, P., Romano, F., Ouldridge, T.E., Rovigatti, L., Doye, J.P.K., Louis, A.A.:
Sequence-dependent thermodynamics of a coarse-grained DNA model. The Journal
of Chemical Physics 137(13), 135101 (2012), doi:10.1063/1.4754132

32. Wang, W., Chen, S., An, B., Huang, K., Bai, T., Xu, M., Bellot, G., Ke, Y., Xiang,
Y., Wei, B.: Complex wireframe DNA nanostructures from simple building blocks.
Nature Communications 10(1), 1067 (2019), doi:10.1038/s41467-019-08647-7

33. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded
DNA tiles. Nature 485(7400), 623–626 (2012), doi: 10.1038/nature11075

34. Yin, P., Hariadi, R.F., Sahu, S., Choi, H.M.T., Park, S.H., LaBean, T.H., Reif,
J.H.: Programming DNA tube circumferences. Science 321(5890), 824–826 (2008),
doi:10.1126/science.1157312

35. Zhang, H., Chao, J., Pan, D., Liu, H., Huang, Q., Fan, C.: Folding super-sized DNA
origami with scaffold strands from long-range PCR. Chemical Communications
48(51), 6405–6407 (2012), doi:10.1039/c2cc32204h

https://doi.org/10.1021/nl502626s
https://doi.org/10.1038/nature24648
https://doi.org/10.1007/s11047-017-9647-9
https://doi.org/10.1038/nature04586
https://doi.org/10.1002/jcc.23763
https://doi.org/10.1038/natrevmats.2017.68
https://doi.org/10.1088/1742-5468/2005/06/P06006
https://doi.org/10.1016/0196-6774(89)90006-0
https://doi.org/10.1126/science.aaf4388
https://doi.org/10.1063/1.4881424
https://doi.org/10.1063/1.4754132
https://doi.org/10.1038/s41467-019-08647-7
https://doi.org/10.1038/nature11075
https://doi.org/10.1126/science.1157312
https://doi.org/10.1039/c2cc32204h

	A general design method for scaffold-free DNA wireframe nanostructures

