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helical domain cannot be hybridised due to a closed kissing-loop pair blocking the winding of the13

strand relative to the polymerase–DNA-template complex; and secondly, minimising the number of14
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XX:2 Secondary Structure Design for Cotranscriptional 3D RNA Origami Wireframes

1 Introduction27

Concurrently to the advances in DNA nanotechnology, there has been increasing interest in28

using RNA as the fabrication material for self-assembling bionanostructures. In comparison29

to DNA, the appeal of RNA is that the strands can be produced by the natural process30

of polymerase transcription, and the structures can thus be created in room temperature31

in vitro, and possibly eventually in vivo, from genetically engineered DNA templates. The32

challenge, on the other hand, is that the folding process of RNA is kinetically more complex33

and hence less predictable than DNA helix formation, at least at the present stage of RNA34

engineering.35

The first design technique applied in this area of RNA nanotechnology was modular “RNA36

tectonics”, in which naturally occurring RNA structures are connected together to create37

bigger target complexes using specific connector motifs such as sticky-end pairings and a38

variety of pseudoknots [10, 11]. A complementary top-down method of “RNA origami”, in39

which a task-specific strand is rationally designed to fold into the desired target structure, was40

then introduced in a pioneering work by Geary et al. in 2014 [7]. Geary et al. demonstrated41

the feasibility of their method by synthesising 2D “RNA tiles” of different sizes, and this42

approach has since then been further developed with new design motifs, techniques, and43

tools [13, 5]. (For an overview, see [16].)44

Figure 1 Cotranscriptional folding of a 2D RNA origami tile structure from a DNA template,
mediated by an RNA polymerase enzyme. (Reprinted with permission from [6].)

One emphasis in the work of Geary et al. [7, 5] has been the cotranscriptional nature of45

the polymerase transcription process, that is, the way the transcribed RNA strand starts46

to fold into secondary structures already while being spooled off the polymerase enzyme47

(Figure 1). This characteristic of natural RNA generation introduces new challenges and also48

opportunities for the rational design process, some of which we shall explore in the present49

work.50

In the following, Section 2 presents a spanning-tree based framework for self-assembly51

of wireframe structures by co-transcriptional folding, and introduces the topological folding52

obstacle of polymerase trapping. Section 3 then demonstrates how this obstacle can always53

be avoided by using a depth-first-search (DFS) based design scheme. Section 4 introduces54

the notion of the KLX number of a DFS tree. This corresponds to the maximum number of55

kissing loops that are simultaneously “open” in the folding process, and hence need different56

designs in order to avoid nonspecific pairings. Minimising this number provides the possibility57

of reusing KL designs. However, as proved in Section 5, the KLX minimisation problem is in58

the general case NP-hard. Section 6 thus provides a branch-and-bound type enumeration59

algorithm for the problem. Section 7 provides some examples of using the DNAforge tool60

to compute the DFS tree based designs and KLX minimisation. Section 8 summarises the61

results and suggests some directions for further work.62



P. Orponen and S. Seki and A. Elonen XX:3

2 Wireframe RNA origami and the polymerase trapping obstacle63

An extension of the RNA origami method to the design of 3D wireframe structures was64

presented by Elonen et al. in [3]. We conduct our discussion in this framework, but the basic65

ideas apply, mutatis mutandis, also to the task of designing 2D RNA origami tiles (cf. [14]).66

The general spanning-tree based 3D wireframe design scheme is outlined in Figure 2.67

(a) (b) (c) (d)

Figure 2 A spanning-tree based design scheme for 3D RNA wireframe origami. (a) Targeted
wireframe model. (b) A spanning tree and strand routing of the wireframe graph. (c) Routing-based
stem and kissing-loop pairings. (d) Helix-level model. (Adapted with permission from [3].)

In this scheme, one starts from the targeted wireframe, which in the case of Figure 2(a)68

is a simple tetrahedron. (Or more precisely the wireframe skeleton of a tetrahedral mesh.)69

In the first design step (Figure 2(b)) one chooses some spanning tree T of the wireframe70

graph G,1 and designs the primary structure of the RNA strand so that it folds to create a71

twice-around-the-tree walk on T , covering each edge of T twice in antiparallel directions. In72

the second design step (Figure 2(c)) one then extends the walk halfway along each of the73

co-tree (= non-spanning tree) edges of G into a hairpin loop, and designs the base sequences74

at the termini of the hairpins so that pairwise matching half-edges are connected by the 180°75

kissing-loop design motif introduced in [7], thus constituting the co-tree edges. Figure 2(d)76

presents a helix-level model of the eventual nanostructure.77

(a) (b) (c)

Figure 3 A tetrahedron design based on a 3-star spanning tree. (a) Spanning tree and co-tree of
the tetrahedral graph. (b) Strand routing and kissing-loop pairs for the design. (c) Domain-level arc
diagram of the design.

One potentially significant topological obstacle to cotranscriptional folding in this frame-78

work is the phenomenon of polymerase trapping, identified by Geary and Andersen in [8] and79

analysed by Mohammed et al. in [14].80

To explain this concern, let us review the previous tetrahedron design, presented in more81

detail in Figure 3. Figure 3(a) shows the tetrahedral wireframe as a Schlegel diagram, that82

1 A spanning tree of a graph G is an acyclic subgraph that connects all the vertices of G.

DNA31
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is, as a planar projection from a point above one of the tetrahedron’s faces. The edges of the83

chosen spanning tree, which in this case is a 3-pointed star, are indicated by solid black lines,84

and the co-tree edges by dashed red lines.85

Figure 3(b) depicts again the corresponding twice-around-the-tree strand routing (blue)86

and the complementary kissing-loop pairings (red). The helix junctions in the design, which87

constitute the vertices of the eventual 3D nanostructure, are now indexed according to their88

first-visit order in the strand routing.89

The schematic in Figure 3(c) presents the design as a domain-level arc diagram, where90

the strand is laid out along a line in the 5´ to 3´ direction, the vertex visits are marked91

by the corresponding indices, the domain-to-domain helical pairings are indicated by solid92

blue arcs, and the kissing-loop pairings by red dashed arcs. (For simplicity and clarity, the93

half-edge stem pairings flanking each kissing-loop hairpin are not presented.)94

Consider now how a cotranscriptional folding process of this structure might proceed.95

Instead of thinking of the RNA strand being spooled out of the polymerase starting at the96

5´ end and folding as the appropriate base pairings become available, it may be easier to97

visualise the large polymerase–DNA-template complex as traversing the 5´-3´ strand route98

outlined in Figure 3(c) and transcribing the nucleotide domains as it goes.99

First the domains 1-2 and 2-3 are transcribed, and the RNA strand stays linear until the100

transcription of domain 3-2 begins. (For simplicity, we are ignoring any transient nonspecific101

nucleotide pairings that arise during the folding process.) Between the completion of domain102

2-3 and the initiation of domain 3-2, the two opening hairpins for the kissing loops 3-4 and103

3-1 are transcribed. (The best relative ordering of these two transcriptions is a geometric and104

sequence-design issue, and we leave this choice open in this high-level view.) After (or while)105

the complementary domains 2-3 and 3-2 hybridise, domain 2-4 is transcribed, and after that106

the closing hairpin of the 3-4 kissing loop and the opening hairpin of the 4-1 kissing loop, in107

some order.108

Consider now what happens when the polymerase reaches domain 4-2 (marked with a109

black cross in diagram 3(b)), where it should create a double-stranded helix with domain 2-4,110

by winding the strand around it in antiparallel direction. If the 3-4 kissing loop (marked with111

a red arrow in 3(b)) has already closed, the strand with the big polymerase–DNA complex112

coupled to it cannot achieve this, since the kissing-loop pairing is blocking the pathway.113

(This is of course also a time-scale issue, and depends among other things on the strand114

distance between the closing hairpin of the kissing loop and the closing domain of the helical115

pairing; but let us again ignore these lower-level details at this presentation.)116

(a) (b) (c)

Figure 4 A tetrahedron design based on a 4-path spanning tree. (a) Spanning tree and co-tree of
the tetrahedral graph. (b) Strand routing and kissing-loop pairs for the design. (c) Domain-level arc
diagram of the design.

Schematically, one can see that the risk of this kind of “polymerase trapping” topological117

obstacle emerges when a kissing-loop pair that has been initiated (opened) before a given118
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helical pairing closes between the opening and closing of the helical pairing; or in terms of119

our arc diagram when a “red arc” that has been initiated before a “blue arc” closes inside120

that blue arc.121

As another example, let us consider the tetrahedron design presented in Figure 4. As122

shown in Figure 4(a), in this case the spanning tree is a simple 4-vertex path. Figure 4(b)123

again outlines the corresponding strand route and kissing-loop pair arrangement, with the124

helix junctions numbered according to their first-visit order. As witnessed by Figure 4(c), this125

time there is no risk for the polymerase trapping obstacle. That is, every kissing loop closes126

only after the completion of all the helical pairings that were open when the kissing-loop127

pair was initiated.128

Such complete absence of polymerase traps seems like a very particular property, and129

one may wonder for which kinds of wireframe models this condition can be achieved. As we130

shall see in the next section, however, such an arrangement of the helical and kissing loop131

pairings can in fact be found for any connected wireframe graph, by an application of the132

fundamental algorithmic method of depth-first search [1, Sec. 20.3].133

3 Cotranscription-friendly secondary structure design134

Algorithm 1 Depth-first search of a graph G = (V, E) from root vertex r ∈ V

1: Initially all vertices v ∈ V and edges e ∈ E are set to be unmarked.
2:
3: function DFS(G, r)
4: mark vertex r as visited
5: for each edge e = {r, v} incident to r do
6: if vertex v is not marked as visited then
7: mark e as a tree edge
8: perform search DFS(G, v)
9: else

10: mark e as a back edge, unless it is already marked (= edge to parent)
11: end if
12: end for
13: end function

To streamline the presentation, we assume henceforth that any graph under consideration135

is connected and undirected, unless stated otherwise. The depth-first search (DFS) method136

for systematically traversing and labelling a (connected, undirected) graph is presented as137

Algorithm 1.138

Consider a graph G = (V, E) with |V | = n vertices and |E| = m edges. Then a DFS139

traversal of G, starting from any chosen root vertex r ∈ V , partitions the set of edges E in140

time O(m) in two disjoint classes: n− 1 tree edges and m− n + 1 back edges. The tree edges141

constitute a spanning tree T of G, which can be considered to be rooted at r and oriented142

accordingly, and the back edges (which constitute the corresponding co-tree E \ T ) have the143

important property that they can always be oriented to point “upward” towards the root of144

the tree, that is, there are no “cross edges” connecting two different branches of the directed145

tree. (For examples, see Figures 5 and 6.)146

To make this precise, and to introduce another important notion, consider such a DFS147

(spanning) tree for a graph G = (V, E) to be a four-tuple T = (V, S, r, δ), where S ⊆ E is the148

set of tree or stem edges, r ∈ V is the chosen root which determines the orientation of the149

DNA31
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(a) (b) (c) (d)

Figure 5 A cube design based on a path-like DFS tree. (a) DFS tree and co-tree of the cube
mesh. (b) Corresponding Schlegel diagram. (c) DFS tree with back edges. (d) Arc diagram of the
resulting design.

(a) (b) (c) (d)

Figure 6 A cube design based on a branching DFS tree. (a) DFS tree and co-tree of the cube
mesh. (b) Corresponding Schlegel diagram. (c) DFS tree with back edges. (d) Arc diagram of the
resulting design.

tree, and δ : V → [1..n] is a pre-ordering that labels the vertices in order of their first visits150

in the traversal process. Because of the depth-first manner of construction, any edge of G is151

either a part of the stem of T or connects a vertex and its ancestor, that is, some vertex on152

the unique path in T from the vertex to the root.153

Note that the tree T can be embedded in the plane in such a way that the children of154

each vertex are ordered from left to right in increasing order of their δ values. A pre-order155

traversal of T in this embedding involves tracing its contour, starting from the root r, and156

writing down the label of each vertex at every visit. This sequence of labels is called a DFS157

arrangement of the vertices. For example, all the DFS trees of a tetrahedron are isomorphic158

(each is a simple 4-path), and the corresponding DFS arrangement is 1, 2, 3, 4, 3, 2, 1 (see159

Figures 4(a) and (c)).160

Observe that every edge of a graph G occurs exactly twice in any DFS arrangement of G:161

the first occurrence corresponds to traversing the edge forward when tracing the contour,162

and the second corresponds to traversing it backward later. Hence all DFS arrangements of163

a graph G = (V, E) are of length 2|V | − 1.164

In the proposed use of a (rooted, ordered) DFS tree T = (V, S, r, δ) as a scaffold whose165

contour is traced by a single-stranded RNA w co-transcriptionally, each edge of T is to be166

assembled as an anti-parallel RNA helix, made of two (non-overlapping) complementary167

factors of w, while any other edge of G, which is a back edge as T is a DFS tree, is to be168

spanned by a kissing loop, which is made of two hairpins, sticking out of the both endpoints.169

A tree edge is spanned by one of the factors while being traversed forward, and remains170

single-stranded until it is wound around by the complementary factor into the helix. We say171

that a tree edge is opened when it is traversed forward, and closed once it has been traversed172

backward, that is, when it is completed as a helix. In contrast, we say that a back edge is173

opened once one of its hairpins has formed, while it is closed when both of them are “ready.”174

In order to be completed as a blueprint of a co-transcriptional folding pathway, the175
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DFS arrangement is to be augmented with edges as “arcs” from their time point of being176

opened to that of being closed. Tree edges can be thus added uniquely since every tree177

edge occurs exactly twice there. Now, it suffices to add back edges. Multiple occurrences178

of internal vertices (neither a root nor a leaf) provide us with freedom to choose, for each179

back edge (a, b), at which visits of a and b to have its two hairpins form. It is known to be180

kinetically unfavorable to close a cycle at a tree edge. This experimental obstacle motivates181

the “big-endian” principle. Recall that the vertices a and b are labelled with distinct integers182

δ(a) and δ(b), respectively, and whichever labelled smaller is an ancestor of the other. This183

principle says that, if δ(a) < δ(b), then the assembly of this edge (by a kissing loop) should184

begin at b and end at a.185

▶ Lemma 1. The big-endian principle prevents any cycle of G from being closed at a tree186

edge.187

Proof. Any cycle of G involves a back edge as T is acyclic. Let E′ be the set of edges in this188

cycle. Hence, the following inequality is well-defined:189

min
(a,b)∈E′\S

{min(δ(a), δ(b))} ≤ min
(u,v)∈E′∩S

{min(δ(u), δ(v))},190

and certainly holds. Thus, this cycle is closed at a back edge that is incident to the vertex191

with the smallest value of δ among the vertices of the cycle. ◀192

The BE (big-endian/back edge) principle does not yet fully eliminate the freedom in193

drawing an arc for (a, b) since b is visited more than once before the last visit at a, unless194

b is a leaf. In terms of the kissing loop crossing (KLX) number, discussed shortly, the arc195

should be drawn as short as possible, that is, from the last occurrence of b to the immediate196

occurrence of a (as a is an ancestor of b, the search returns to a after the last visit to b).197

However, this criterion of KLX optimisation does not pay any attention to possible adverse198

topological effect of focusing a lot of hairpin formations at one time point. Let us hence199

leave this freedom in the following formalisation of arc diagram. A (BE-)arc diagram of200

G = (V, E) is a pair of a DFS arrangement p1, p2, . . . , pm based on a DFS tree T = (V, S, r, δ)201

of G and a mapping α : E \ S → [1..m] × [1..m] with m = 2|V | − 1 such that for all back202

edge e = (a, b) ∈ E \ S with δ(a) < δ(b), if α(e) = (o, c), then o < c, po = b, and pc = a. As203

|S| = |V | − 1, all arc diagrams of G are provided with |E| − |V |+ 1 arcs for kissing loops.204

An arc diagram of the tetrahedron is shown in Figure 4 and those of the cube without205

any branch and with a branch are shown respectively in Figures 5 and 6, where the arcs for206

kissing loops are coloured in red, while those for the tree stem are in blue, though they are207

not explicitly included in the formalisation.208

4 Minimising kissing loop crosstalk209

A set of kissing loop types should be as orthogonal as possible in the sense that mismatching210

hairpins barely hybridise. However, sets of kissing loops that have proven orthogonal enough211

in the laboratory are limited in size (see, e.g., [9]). The size of largest orthogonal KL sets212

available in reality serves as a standard for deciding whether a specific (rooted, ordered)213

DFS tree should be chosen or not. If the tree leaves more than this number of kissing loops214

open simultaneously at any point of folding, it should not be chosen. Recall that any DFS215

arrangement corresponds one-to-one with a rooted and ordered DFS tree. Given a BE-arc216

diagram D = ((p1, . . . , pm), α) of a DFS tree T = (V, S, r, δ) of a graph G = (V, E), the217

DNA31
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KLX number of a segment (pi, pi+1) is the number of arcs that cross the vertical line drawn218

between pi and pi+1. It is defined formally as219

χ(pi, pi+1) =
∣∣{e ∈ E \ S | α(e) = (o, c), o ≤ i, i + 1 ≤ c}

∣∣. (1)220

The maximum of these values across all segments is the KLX number of this diagram D,221

that is, χ(D) = max1≤i<m{χ(pi, pi+1)}. Finally, the KLX number of the graph G, denoted222

by χ(G), is the minimum among the KLX numbers of all the possible BE-arc diagrams of G.223

The 1-to-1 correspondence between DFS arrangements and pairs of a graph and its rooted224

and preordered DFS tree justifies the introduction of the notation χ(G, T ) as an alias of225

ξ(G).226

▶ Lemma 2. Let G = (V, E) and T = (V, S, r, δ) be its rooted DFS tree. Let T ′ be a227

(connected) subtree of T , and G′ be the subgraph of G induced by the vertex set of T ′. Then228

χ(G′, T ′) ≤ χ(G, T ).229

Proof. It is known that T ′ becomes a DFS tree of G′ [12]. Indeed, it suffices to traverse T ′
230

according to the preorder δ. Note that T ′ may preorder the vertices differently and more231

favorably for the KLX number. ◀232

This lemma can be used to prune the search tree for DFS trees with small KLX number,233

as outlined in Section 6.234

As an algorithmic tool, it is useful to exclude some back edges from computing of the KLX235

number. For a subset of back edges B ⊆ E \ S, the KLX number of the segment (pi, pi+1)236

restricted to B, denoted by χB(pi, pi+1), can be computed by replacing the occurrence of237

E \ S in Eq. (1) with B. It is also convenient to define the KLX number of a tree edge e ∈ S238

as the number of kissing loops that are opened but yet to be closed during the backward239

traversal across the edge; the following inequality justifies this definition.240

▶ Lemma 3. In the setting above, let (pi, pi+1) and (pj , pj+1) be the segments that correspond241

to the forward and backward traversals through an edge (u, v) of T , that is, pi = pj+1 = u242

and pi+1 = pj = v. Then χ(pi, pi+1) ≤ χ(pj , pj+1).243

Proof. In order for this inequality not to hold, there must be an arc (o, c) that crosses the244

segment (pi, pi+1) but not (pj , pj+1), that is, o ≤ i and i + 1 ≤ c ≤ j. Then δ(po) < δ(pc)245

would hold, but this contradicts the big-endian principle. ◀246

▶ Example 4 (KLX number of the cube). See an arc diagram of the cube in Figure 5 (d);247

χ(h, g) = χ(b, a) = 2, χ(g, f) = χ(c, b) = 3, χ(f, e) = χ(d, c) = 4, and χ(e, d) = 3, and248

therefore, the KLX number of this diagram is 4. Compare this with another diagram of the249

cube in Figure 6 (d), whose KLX number is 5. Consequently, the KLX number of the cube250

is at most 4.251

Recall that, with one DFS tree fixed along with the preorder δ, any back edge (a, b) with252

δ(a) < δ(b) should be opened at the last visit to b and then closed ASAP, that is, at the253

next visit to a. No other timing of opening/closing this edge that respects the big-endian254

principle improves in terms of KLX minimisation.255

Given a rooted DFS tree T = (V, S, r) without any preorder specified, the sibling order256

with the minimum KLX number can be computed bottom-up. Consider a branch v with257

its siblings v1, . . . , vd, and suppose that they are visited in this order: v1 first, v2 next,258

and so on. Then any back edge between the subtree rooted at vi and a vertex strictly259

above v increments by 1 the KLX number of all the segments corresponding to the edges260
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(v, vi+1), (v, vi+2), · · · , (v, vd) or all the subtrees below them, although this contribution may261

not be very clear on the drawing of a DFS tree annotated with back edges, unless the tree262

is without any branch. Compare (c) with (d) in Figure 6; the back edges (d, a) and (d, c)263

even cross the segments that correspond to the whole traversal of the other subtree of e,264

which consists of the edges (e, h) and (h, g); this is as clear as day on the arc diagram. The265

subtrees below v1, · · · , vi−1 are spared this increment because they have been fully explored266

before such an edge is opened. The back edges that cross over v increase the KLX numbers267

of the path from the root to v independently of the order in which the children of v are268

visited. These observations allow the KLX-minimum sibling orders for a given rooted but269

unordered tree to be computed in a bottom-up manner, starting from leaves, by comparing270

at each branch (the factorial number of) all permutations of its children.271

Let v be a vertex with k children v1, v2, . . . , vd, Tv be the subtree of T below v, and Ti272

be the subtree of T below vi. Let B be the set of back edges one of whose endpoints is in Tv,273

and let Bi be defined analogously with respect to Ti. Suppose that for all edges e in Ti with274

1 ≤ i ≤ k, the KLX numbers restricted to the back edges opened below vi, that is, χBi(e),275

have already been calculated. Let us compute the KLX number restricted less severely to276

the back edges opened below v. The back edges that come from inside Ti and go outside,277

that is, towards the path of T from the root to v can be categorised into those ending at v278

and those that go beyond; let us count them and denote the counts, respectively, by χ(Ti, v)279

and by χ(Ti, > v). Suppose that the children v1, . . . , vd of v are visited in this order. The280

KLX number of an edge e in Ti would be then incremented by
∑

k<i χ(Tk, > v), that is,281

χB(e) = χBi(e) +
∑
k<i

χ(Tk, > v). (2)282

That of an edge (v, vi) would be set as283

χB((v, vi)) =
(∑

k<i

χ(Tk, > v)
)

+ χ(Ti, v) + χ(Ti, > v). (3)284

With the maximum among these numbers in Eqs. (2) and (3), this order competes with285

the others, and the children of v should be ordered according to the one that achieves the286

minimum; then the KLX number restricted to the back edges opened below v should be287

updated for all tree edges below v accordingly.288

Ordering the children of even a single vertex in this way may require time factorial in289

|V |. For the class of 3 regular graphs, quadratic time suffices as a vertex can have at most290

two children.291

5 The minimum kissing loop crossing and minimum tree depth292

problems293

The minimum KLX (kissing loop crossing) number problem (MinKLX) asks, given an294

undirected, connected graph G and a positive integer k, if there exists a BE-arc diagram of295

G whose KLX number is at most k.296

▶ Theorem 5. The MinKLX problem is NP-hard.297

Proof. The proof is based on the proof by Gavril [4] for the NP-hardness of computing the298

cutwidth of a graph G = (V, E), which asks, given also an integer k, to arrange the vertices299

of G along a horisontal line in such a way that, for any vertical line drawn between adjacent300

vertices, diving V into those to its left and those to its right,301

DNA31
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The reduction is from Max Cut, which asks to split the vertex set V of a given weighted302

graph G = (V, E) into two subsets V ′ ⊆ V and V \V ′ so as to maximise the sum of the weights303

of edges that connect these subsets in G. Given a pair (G, w) of a n-vertices graph G = (V, E)304

and a positive integer w, let us convert this instance of max cut into an instance of KLX305

computation problem (G, k) as follows. With a “large enough” r, let U = {u1, u2, . . . , ur} be306

a set of auxiliary “universal” vertices. Let G = (V ∪U, E) with E = ((V ∪U)× (V ∪U)) \E.307

Note that, for any x ≥ 1, all DFS trees of the complete graph Kx are equivalent, they are308

indeed a path (no branch), and their KLX number f(x) = ⌈x/2⌉× ⌊x/2⌋ can be computed in309

polynomial time. Let k = f(n + r)− w. Now we are ready to show that G has a cut (A, B)310

with at least w edges between A and B = V \A if and only if the KLX number of G is at311

most k.312

Firstly, suppose G has such a cut, and let A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn−m}.313

The linear arrangement of V ∪ U314

a1, u1, a2, u2, · · · , um−1, am, um, um+1 · · ·ur−(n−m−1), b1, ur−(n−m−1)+1, · · · , ur, bn−m315

amounts to a DFS tree of G thanks to a universal “glueing” vertex between ai and ai+1 (or316

bj and bj+1), which are not necessarily connected in G (indeed, by definition, they are not317

connected in G iff they are connected in G). With large enough r, a tree edge that is crossed318

by the largest number of back edges is located in the interval um, . . . , ur−(n−m−1), and this319

number is at most k. Thus, the KLX number of G is at most k.320

For the opposite implication, suppose that G has a DFS tree T whose KLX number is321

at most k. This tree must be “almost” a path in the sense that below a branch, if any,322

no universal vertex can appear in order not to introduce any cross edge between subtrees323

below the branch. Therefore, the path from the root of T to its first branch, if any, is of324

length at least r, and since r is large enough, an edge e that determines the KLX number of325

this DFS tree is somewhere along this path. This path can be extended into a DFS path326

P of the complete graph Kn+r. The edge which is crossed by f(n + r) back edges is on327

this path. Among these back edges, at most k of them belong to E, and the others are328

edges of the original graph; let E1 be the subset of E that consist of these edges. Then,329

f(n + r) ≤ k + |E1|, which implies |E1| ≥ f(n + r)− k = w. Let S be the set of vertices in V330

that occur above this edge. Then (S, V \S) is a cut which is crossed by at least w edges. ◀331

Another relevant problem is that of determining the depth of the shallowest DFS tree for332

a given graph, because finding a shallower DFS tree decreases the number of helical domains333

kept open in parallel, and may result in a sequence with fewer helical domain types. This334

quantity is known as the tree-depth of the graph, a measure of how far the graph is from335

being a star. Computing tree-depth (the MinTD problem) is NP-hard even for the class of336

triangulated graphs [2].337

6 Solving the MinKLX and MinTD problems by enumeration338

The NP-hardness of the MinKLX and MinTD problems may not leave us any algorithmic339

option but somehow enumerating DFS trees of a given graph G = (V, E) to find a good340

co-transcriptional folding pathway, although the latter theorem is too weak to exclude the341

possibility that the KLX and TD numbers could be actually computable in a polynomial342

time for certain classes of graphs of practical significance such as that of 3-regular graphs,343

in which all the vertices have exactly 3 neighbours. As any graph can be approximated by344

a 3-regular one by replacing each vertex by a network of vertices of degree 3, it is highly345

prioritised to figure out whether these problems remain hard for this class. The related346
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Figure 7 Intrinsic orientation of a branch, an internally contradicting block, and global prohibition
of root by a single branch. Dotted red lines indicate a bypass around the center of a branch, which
is necessary for a graph to be biconnected.

cutwidth problem, described in the proof of Theorem 5, is NP-hard for the class of planar347

graphs with maximum degree 3 [15] (the bipartite graph K3,3 is an example of 3-regular,348

non-planar graph).349

The graph G = (V, E) and its free spanning tree T = (V, S) can be uniquely decomposed350

into a set of biconnected components, or blocks, Gi = (Vi, Ei), which cannot be disconnected351

by removing one vertex, along with a spanning tree Ti = (Vi, Si) induced by restricting352

T onto Vi, and these blocks are further organised into a so-called block-cut tree via edges353

between blocks that share (exactly one) vertex in common, which is an articulation point354

of G (removing it disconnects G); any articulation point of G thus serves as an interface355

between two or more blocks. The resulting blocks can be categorised into the following three356

classes:357

Branching. involving a branch of T , which consists of a vertex v and three edges in S358

that are incident to v;359

Spinal. involving at least three vertices but not branching;360

Edge. consisting of one edge.361

A spinal block has at most two interfaces, while a branching one can have more.362

As no ancillary edge (of G but not in T ) crosses an articulation point or even an edge363

block, the KLX number of G according to T is the maximum of those of the branching and364

spinal blocks. The computation actually does not require T to be rooted, but suffices for365

these blocks to know at or beyond which interfaces of them is the global root of T . It is366

well known that a free DFS tree of a biconnected graph cannot be rooted anywhere but its367

leaf. This implies that in our problem setting, for Ti to be a DFS tree of the block Gi, it368

must be rooted at one of its interfaces with adjacent blocks or at its leaf. For this reason, at369

most one block that is either spinal or branching can accommodate the global root inside.370

The KLX number of a spinal block does not change even if the block is “flipped upside371

down,” that is, regardless of beyond which of its possible two interfaces the global root is. In372

contrast, branching blocks deny free rotation by restricting where the global root can be due373

to intrinsic orientation of each of their branches, as we see from now on.374

Once rooted, all edges of T become fully oriented; let us assume that orientations are375

from the root (top) towards the leaves (bottom). If this orientation makes T into a DFS tree,376

then the induced orientation by Vi makes Ti also into a DFS tree of Gi. This is, in fact, the377

only rooting that endows Ti with the DFS property due to the following critical observation378

by Korach and Ostfeld [12]: given a biconnected graph and its free spanning tree, if the tree379

has a branch, there exists at most one vertex where the tree can be rooted in such a way380
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a1 a2 a1

incoming
a2 a1

not a tree leaf

spinal/branching

Figure 8 The three admissible edge additions between two trees: (left) between two articulation
points that are not incoming; (middle) between two articulation points exactly one of which is
incoming; (right) between a non-incoming articulation point and an internal vertex of a spinal or
branching block that is not a tree leaf. In the latter two cases, the added edge is oriented towards
the non-incoming articulation point, a1 here, and makes the whole tree where the point is, that is,
the left tree here, incoming, that is, prohibited from being rooted.

that the resulting rooted spanning tree is a DFS tree, and furthermore, the vertex must be381

a leaf of the spanning tree; without such a leaf, the tree cannot be obtained by any DFS382

regardless of where we being the search. Let us reproduce the essence of this result. Assume383

in contradiction that there are two such vertices a and b. If rooted at a, the branch has at384

least 2 subtrees T1 and T2, neither of which contains a; without loss of generality, we assume385

that T1 does not contain b. Since the tree becomes a DFS tree by being rooted at a, and v is386

not an articulation point, there must be a backward edge from T1 to some vertex above v387

along the unique tree path from v to the root a, but this would become a cross edge once388

the tree was rooted at b, a contradiction.389

Every branch inside a branching block is intrinsically oriented; among the edges incident390

to it, one is incoming and all the others are outgoing, as illustrated in Figure 7, globally391

prohibiting any vertex beyond these outgoing edges from becoming the root by labeling them392

“incoming.” At this point, a branch already proves itself ineligible to be part of a DFS tree if393

any two of its three subtrees come and go by bypass, indicated by red dashed lines. Let us394

emphasise that the branch cannot have all the edges incident to it be outgoing and become395

the root because Ti must be rooted at its leaf to become a DFS tree of Gi. These local396

orientations globally restrict where T can be rooted, unless they contradict each other, for397

example, by yielding a vertex with more than one incoming edge. In other words, any rooting398

of T that does not respect the intrinsic orientation of a single branch cannot be a DFS tree399

of G. This observation and the downward closedness of the KLX number along a specific400

spanning tree (Lemma 2) enable us to enumerate the spanning trees of G by recursively401

deciding whether an edge of G should be part of the spanning tree T under construction or402

not and, if chosen, added to a tree or between trees in a spanning forest that is part of T403

in an admissible manner (see Figure 8). An edge can be added to a tree unless it results404

in a cycle. In case of bridging two trees T1 and T2 by a (tree) edge, all the other edges405

between them are ruled out as a candidate of tree edges and introduced rather as an ancillary406

edge unless they result in a bad configuration; for example, if one of these ancillary edges is407

between u1 and u2, another is between v1 and v2, and all these four vertices are pairwise408

distinct, then the tree must rooted globally at u1 or u2 in order for the edge not to become a409

cross edge, and v1 or v2 claims the ownership of the global root analogously, but these two410

claims are obviously not compatible. Bridging two trees by an edge may bundle some of the411

blocks in T1 and in T2 into one. The resulting block can be computed efficiently [17] but its412

KLX number should also be computable more efficiently from those of the bundled blocks413

and from the cost due to the newly added ancillary edges than being computed from scratch.414

The performance of such enumerative algorithms relies heavily on how efficiently they415
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Algorithm 2 Enumerative KLX minimisation for a graph G = (V, E)
1: Let n = |V |, m = |E|, and edges be indexed as E = {e1, e2, . . . , em}
2:
3: function KLXT(T ) ▷ Compute KLX number of tree T

4: return the maximum of the KLX numbers of the blocks of tree T

5: end function
6:
7: function KLX(F , k)
8: ▷ Compute min KLX number over all completions of forest F with edges in {ek, . . . , em}
9: if F comprises a single tree with n− 1 edges then

10: klxtree ← KLXT(F )
11: klxmin ← min{klxmin, klxtree}
12: return klxtree
13: end if
14: if edge ek does not create a cycle and is admissible in F then ▷ See Figure 8
15: F ′ ← F ∪ {ek} ▷ ek included as a tree edge
16: let T be the tree that contains edge ek in forest F ′

17: if KLXT(T ) ≥ klxmin then ▷ Prune if cost of T ≥ klxmin
18: klx1 ← m

19: else
20: klx1 ← KLX(F ′, k + 1)
21: end if
22: end if
23: klx0 ← KLX(F, k + 1) ▷ ek not included as a tree edge
24: return min{klx1, klx0}
25: end function
26:
27: klxmin ← m

28: return KLX(∅, 1) ▷ Start with an empty forest

prune unproductive branches. Both the KLX number of a forest and bad configurations416

should be utilised for pruning. The algorithms record the KLX-best DFS tree found so far417

along with its KLX number, and once a forest under construction exceeds the threshold, it418

should be rejected immediately. A forest with a bad local configuration should be rejected as419

well. The latter pruning requires a proper data-structure for early and effective detection of420

bad configurations. The number of available orthogonal sets of helical domains also spares421

the algorithms from redundant explorations as an upper bound on the tree-depth.422

7 Examples423

The cotranscription-friendly DFS-tree based design method presented in Section 3 is imple-424

mented and available for use in the online design tool DNAforge (https://dnaforge.org),425

together with an option for minimising the KLX cost of the design with a preliminary version426

of the enumeration method presented in Section 6.2427

2 Design method ST-RNA, additional parameters “co-transcriptional route” and “minimise the number of
kissing loop sequences”
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(a) (b) (c)

(d) (e) (f)

Figure 9 Upper row: a dodecahedron design based on a randomly chosen spanning tree. (a)
Strand routing on the 3D wireframe. (b) Spanning tree (solid blue) and back edges (dashed red)
on the Schlegel diagram. (c) Domain-level arc diagram. (Long helical domain pairings thick,
short kissing-loop domain pairings thin.) Lower row (d)-(f) A dodecahedron design based on a
KLX-optimised DFS spanning tree (KLX = 6).

(a) (b) (c)

Figure 10 Designs for a 3D mesh model of a bunny. (a) Wireframe model. (b) Arc diagram
of random spanning tree routing. (c) Arc diagram of KLX-optimised DFS spanning tree routing
(KLX = 33).

Figures 9 and 10 illustrate some outcomes from the tool. Figure 9 shows designs of428

wireframe dodecahedra based on a randomly chosen spanning tree (upper row) and a DFS429

spanning tree (lower row). The DFS-tree based design has also been KLX-optimised, resulting430

in a reduction from a KLX number of 9 in the initial DFS tree to 6 in the optimal one.431

(The spanning tree diagrams in Figures 9(b) and (e)) have been manually reconstructed432

from the tool-generated diagrams in Figures 9(c) and (f).) Figure 10 displays random-tree433

and DFS-tree designs for a 66-vertex, 192-edge wireframe model of a bunny. Also here the434

DFS-tree based design has been KLX-optimised, resulting in a KLX number reduction from435

60 in the initial DFS tree to 33 in the optimal one. Table 1 summarises the KLX number436

reductions for some basic mesh models.437

8 Conclusions and further work438

We have presented models and algorithms for addressing two tasks in secondary structure439

design for cotranscriptionally folding DNA origami wireframe nanostructures: avoiding the440
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Model Vertices Edges Initial KLX Min KLX

Tetrahedron 4 6 3 3
Cube 8 12 4 4
Octahedron 6 12 6 5
Dodecahedron 20 30 9 6
Icosahedron 12 30 12 10
Bunny 66 192 60 33

Table 1 Effect of KLX minimisation on some 3D mesh models.

topological folding obstacle of polymerase trapping and minimising the number of distinct441

kissing loop designs (the KLX number). The key tools in this work have been the algorithmic442

method of depth-first search in graphs and the ensuing DFS spanning trees. Our branch-and-443

bound approach to the KLX minimisation problem can also be used for any other effectively444

computable objective function on DFS trees, such as the DFS tree depth of a given graph445

(the TD number).446

Relevant directions for further work include for instance the following:447

1. Nucleotide-level sequence design for DNA origami wireframes in the cotranscriptional448

setting.449

2. Efficient combinatorial algorithms for minimising the KLX and TD numbers in some450

interesting classes of graphs, such 3-regular or polyhedral graphs, or proving the problems451

NP-hard in these classes.452

3. Efficient fixed-parameter or approximation algorithms for minimising the KLX and TD453

numbers in some relevant classes of graphs.454

4. Improved enumeration of DFS trees in polyhedral graphs.455
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