
Algorithmic Design of Cotranscriptionally
Folding 2D RNA Origami Structures?

Abdulmelik Mohammed1, Pekka Orponen1, and Sachith Pai1

Aalto University, Department of Computer Science
FI-00076 Aalto, Finland

abdulmelik.mohammed@aalto.fi,
pekka.orponen@aalto.fi,
sachith.pai@aalto.fi

Abstract. We address a biochemical folding obstacle of “polymerase
trapping” that arises in the remarkable RNA origami tile design frame-
work of Geary, Rothemund and Andersen (Science 2014). We present
a combinatorial formulation of this obstacle, together with an optimisa-
tion procedure that yields designs minimising the risk of encountering the
corresponding topological trap in the tile folding phase. The procedure
has been embedded in an automated software pipeline, and we provide
examples of designs produced by the software, including an optimised
version of the RNA smiley-face tile proposed by Geary and Andersen
(DNA 2014).

Keywords: RNA origami, RNA tiles, RNA nanotechnology, Rational
design, Cotranscriptional folding, Grid graphs, Spanning trees

1 Introduction

Following the introduction of Paul Rothemund’s DNA origami technique in
2006 [14], the research area of DNA nanotechnology [15] has made rapid progress
in the rational design of highly complex 2D and 3D DNA nanostructures and
their applications [10, 12, 13, 16, 18]. In the past few years, there has also been
increasing interest in using RNA, rather than DNA, as the fundamental construc-
tion material for similar purposes [5, 7–9]. One great appeal of this alternative is
that while the production of designed DNA nanostructures typically proceeds by
a multi-stage laboratory protocol that involves synthesising the requisite nucleic
acid strands and hybridising them together in a thermally controlled process,
RNA nanostructures can in principle be produced in quantity by the natu-
ral process of polymerase transcription from a representative DNA template,
isothermally at room temperature, in vitro and eventually in vivo.

The challenge in this approach, however, is that in contrast to DNA, RNA
characteristically exists in single-stranded form, and the varied 3D conformations

? Research supported by Academy of Finland grant 311639, “Algorithmic Designs for
Biomolecular Nanostructures (ALBION)”.

of RNA molecules are the result of a given strand folding upon itself in tertiary
structures whose formation is quite difficult to predict and control algorithmi-
cally. Nevertheless, in the emerging field of RNA nanotechnology, there have also
been several approaches to the rational design of RNA nanostructures [7, 9]. For
instance, in “RNA tectonics” [1, 3, 17], well-characterised elementary structural
modules are linked together by connector motifs to form intricate 2D and 3D
complexes.

On the other hand, the approach of de novo algorithmic structure design,
which has been so successful in the case of DNA origami, has been less explored
in the context of RNA, most likely because of the higher complexity of RNA’s
single-stranded folding kinetics. One notable exception has been the work of
Geary, Rothemund and Andersen [5], which presents an approach to designing
2D “RNA origami tiles” by a systematic scheme of intra-structure couplings of
collinear helical stem segments by crossover and kissing-loop motifs.

Fig. 1: Cotranscriptional folding of a 2D RNA origami tile from a DNA template,
mediated by an RNA polymerase enzyme. Reprinted with permission from [4].

Geary et al. [5] also demonstrate experimentally that the designed tiles can be
folded in the laboratory both by a heat-annealing protocol from prefabricated
RNA strands, and by a cotranscriptional protocol, whereby the RNA strand
folds into its 2D conformation concurrently to being transcribed from its DNA
template by an RNA polymerase enzyme (Figure 1).

While such cotranscriptional folding of de novo designed RNA nanostructures
is a remarkable achievement, there appear to be some challenges in extending the
methodology of [5] to bigger and more complex structures, related in particular
to risks of kinetic and topological traps in the folding process. We shall discuss
in this paper a systematic design approach that addresses one potentially signif-
icant topological obstacle which we call polymerase trapping. This involves the
cotranscriptional folding of the RNA strand proceeding in such a way that the
design’s intra-structure kissing-loop interactions block its downstream helices
from forming while the structure is still coupled to its large polymerase-DNA
template complex.

In the following, Section 2 discusses the basic structure of the RNA origami
tiles from [5] and introduces the polymerase trapping problem. Section 3 then
presents a more abstract view of origami tiles as renderings of 2D grid graphs,
and how minimising the risk of polymerase trapping can be formulated as a
combinatorial optimisation task in this general framework. Section 4 discusses

a branch-and-bound solution method for this task, which requires a somewhat
nontrivial search in the very large space of spanning trees of a given grid graph.
Section 5 outlines our software pipeline that leads from a bitmap design of a
targeted 2D pattern to a secondary-structure description of an RNA strand
that would fold to render that pattern as a generalised tile, with minimal risk
of polymerase trapping.1 This Section also contains some examples of (almost)
completely trap-free designs, including a smiley-face design embedded on 14× 6
-grid, similar to the one presented in article [6]. Section 6 concludes with some
general observations and further challenges.

2 RNA Tiles, Cotranscriptional Folding and Polymerase
Trapping

(a) Helix diagram of the 2H-AE tile (b) 180◦ KL motif

(c) Strand-path diagram of the 2H-AE tile

Fig. 2: (a) A helix-level diagram of the 2H-AE RNA origami tile from [5]. (b)
The 180◦ kissing loop motif used as intra-structure connector. (c) A strand-path
schematic of the tile. Figures (a) and (b) adapted with permission from [5].

We start our discussion by considering the structure of the 2H-AE tile, the
simplest design from article [5]. Figure 2a presents a helix-level diagram of the
3D structure of this molecule. The 5’ end of the RNA strand, marked here with a
black dot, is located in the middle of the lower helix. From there the strand winds
towards the right end of the diagram, creates a hairpin loop (marked in red),
crosses to the upper helix, creates another hairpin loop etc. The most interesting

1 We are currently working on the challenge of transforming the secondary-structure
descriptions to actual RNA sequences, but lab-proof sequence design is a nontrivial
task, and validating that the generated sequences really fold as intended requires
experimental work.

part of the design is the kissing-loop motif (marked in blue) in the middle of the
upper helix. This is a naturally occurring (dimerization initiation site of HIV-1
RNA) arrangement of two antiparallel RNA hairpin loops that hybridise together
trans-helically to form a very precise 180◦ coupling between their respective
hairpins: geometrically this is almost as if the helix constituting the stem of
one hairpin continued into the other, even though there is no continuity in the
strand. Figure 2b displays a slightly expanded view of this motif.

Figure 2c exhibits a more abstract strand-path diagram of the structure.
Here the vertical dotted lines indicate the intra-helical stem pairings, and the
dashed horizontal lines the trans-helical kissing-loop interactions. The 5’ end of
the strand is marked with a black dot and the 3’ end with an arrowhead.

A

A*

B B*

C

C*

D

D*

E

E*

FF*

G

G*5' 3'

(a) Strand-path diagram of a 3H-AE tile

A B C D E GA* B* D* E* C* G*

(b) Arc diagram of the 3H-AE tile

Fig. 3: (a) Strand path diagram of a 3H-AE tile. (b) A domain-level arc diagram
of the 3H-AE tile.

Let us then consider the design of a 3H-AE tile, an extension of the 2H-
AE tile with a third helical layer, and using the specific strand-path routing
outlined in Figure 3a. One could also route the strand and arrange the kissing-
loop connections differently for the same high-level 3×2 tile scheme (3 horizontal
helices, 2 vertical cross-over seams), and we will return to this issue in Section 3.
But for now let us focus on the specific H-like design shown in Figure 3a.

In Figure 3a, each main domain of the strand constituting the tile is la-
belled with a capital letter, and its complementary domain with the same letter
followed by an asterisk. Figure 3b presents an arc diagram that outlines the
pairings between these domains: the intervals between tick marks correspond to
the respective strand segments, stem domain pairings are indicated with dotted

arcs and kissing loop interactions with dashed arcs. Note that compared to the
2H-AE tile from [5], our 3H-AE design has been simplified so that the perimeter
kissing loops (denoted by red in Figure 2a), which are used to connect tiles to
each other in [5], have been replaced by simple nonpairing tetraloop “caps”.

Let us then consider how a cotranscriptional folding process for the 3H-AE
tile structure presented in Figure 3 might proceed. Instead of thinking of the
RNA strand being spooled out of the polymerase starting at the 5’ end and
folding as the appropriate base pairings become available, it may be easier to
visualise the large polymerase-DNA template complex as traversing the 5’-3’
strand route outlined in Figure 3a and generating the bases as it goes. Generating
the A and B strand segments is uneventful, and the RNA strand stays linear
until sometime after the A* segment has been generated. (In reality of course
several transient nonspecific pairings will arise during the folding process, but
we are ignoring these in this simplified discussion.) Then segment A gets paired
to segment A*, D to D*, the kissing loop B–B* closes etc.

Consider now what happens when the polymerase reaches domain C* which
should constitute a double-strand helix with domain C by winding strand seg-
ment C* around C. If kissing loop B–B* has already closed, the strand with
the big polymerase-DNA complex coupled to it cannot achieve this, since the
kissing-loop pairing is blocking the pathway.

This topological folding obstacle of “polymerase trapping” is briefly ad-
dressed by Geary and Andersen in article [6] (Section 4.4), which discusses the
technical design principles of RNA origami tiles. However, this article does not
explain the background of this design constraint in any detail or formulate it in a
general way. (The authors kindly explained these issues in a personal discussion.)

Viewed more closely, the significance of the polymerase trapping obstacle
depends on the relative timescales of kissing loop formation and the speed of
polymerase transcription. (In a purely combinatorial sense, the problem arises
already in the 2H-AE tile design of Figure 2a, but there the time from kissing
loop formation to the completion of the transcription is apparently so short
that the issue does not significantly affect the experimental results.) This can
be understood more clearly by considering the situation in the representative
arc diagram: in the case of the 3H-AE tile, the problem is created by the long
forward stem pairing C–C* that emerges from inside the kissing loop pairing B–
B*. The longer the arc, the more time the enclosing kissing loop has to close, and
the higher the likelihood that the folding process gets trapped by this obstacle.

In Section 3, we formulate the goal of minimising the risk of polymerase
trapping as a design objective for tile design, and in Section 4 we discuss a
computational approach to optimising this objective.

3 Tiles, Grids and Spanning Trees

In this Section, we introduce a combinatorial model for designing 2D RNA
shapes, presented here for rectangular shapes and discussed in a more general
framework in Section 4.

(a) The grid model (b) An H spanning tree and tile

(c) A U spanning tree and tile (d) An E spanning tree and tile

Fig. 4: (a) 3 x 2 grid model for a 3-helix tall, ∼2-turn wide RNA rectangular
shape, and (b)–(d) three tiles derived from three different spanning trees of the
grid. The tiles are formed by routing the RNA strands around the spanning tree
and bulging out kissing hairpin loops in towards non-spanning tree edges. In (b)–
(d), the thick outer paths indicate the tiles’ strand routings, the thin internal
schematics outline the spanning trees of the grid, and the dashed horizontal lines
in between the loops indicate kissing loop interactions.

In our combinatorial model, we represent an M -helix tall, (N x u)-turn wide
rectangular shape (tile) by an M x N grid. We assume the vertical dimension
of the target shape to be a multiple of the diameter of an RNA A-helix (∼2.3
nm) and the horizontal dimension to be approximately a multiple u of A-helical
turns (∼3.2 nm), where u ≥ 1 is the minimum number of full-turns needed to
implement an HIV-1 DIS type 180◦ kissing loop complex. For instance, the 3H-
AE tile sketched in Figure 3 implements a rectangular shape derived from the
3 x 2 grid illustrated in Figure 4a. Correspondingly, the 2H-AE tile design by
Geary et al. [5] in Figure 2a could be rendered from a 2 x 2 grid model; the
four perimeter hairpin domains flanking the crossovers would then constitute an
approximation error in the horizontal dimension.

Having employed a grid to model a rectangular shape, we aim to render the
horizontal edges of the grid as either continuous A-helical stem domains, or as
kissing-loop complexes, and a selected set of vertical edges as crossover locations.
Note that since the vertical edges correspond to potential crossover locations,
they essentially have zero length, even though they are presented, for the sake of
clarity, with non-zero length in the schematics. The set of edges corresponding to
the helical domains and the crossover locations are selected based on a spanning
tree of the grid graph.2

2 A spanning tree of a graph is a cycle-free subset of the graph that includes all the
vertices of the graph [2, Chapter 23].

(a) Arc diagram of the U tile

(b) Arc diagram of the E tile

Fig. 5: Arc diagrams of the U and E tiles from Figure 4. Dotted arcs indicate
stem pairings while dashed arcs show kissing loop pairings. The arc diagram
in (a) reveals that the horizontal spanning tree edge of the U tile has no cost
since the corresponding long stem pairing only crosses the kissing loops in the
backward direction. Hence, the U tile only has a trivial cost due to the second
hairpins of the kissing loops. The arc diagram in (b) shows that the E tile has
a zero cost since it has no kissing loops. For clarity, the stem pairing arcs of the
perimeter stem loops have been left out in both (a) and (b).

Accordingly, in order to design an RNA tile corresponding to the input shape,
a spanning tree of the grid model is first computed and the single stranded RNA
strand is routed twice around this tree.3 Such a routing pairs distal segments of
the RNA strand in an antiparallel fashion on the spanning tree edges, thus mak-
ing it suitable for rendering horizontal spanning tree edges as A-helical domains
and the vertical spanning tree edges as crossovers. Next, at every non-spanning
tree horizontal edge, two hairpins are spliced into the strand routing at the
edge’s endpoints such that the hairpin loops kiss at the centre of the edge. To
ensure every crossover is flanked by helical arms, short stems capped with in-
active tetraloops are finally spliced to the routing at perimeter vertices, with
the tetraloops facing horizontally outward. Three different tiles derived in such
a manner from three different spanning trees of the 3 x 2 grid in Figure 4a are
shown in Figures 4b, 4c and 4d. We refer to these three tiles as the “H”, “U”
and “E” tiles based on the resemblance of their associated spanning trees to the
respective Latin letters. (The H tile is the 3H-AE example from Section 2.)

After generating a tile from a spanning tree, we can linearise its strand routing
to an arc diagram and investigate it for cotranscriptional polymerase trapping.
Note that the pairings in the tile, and correspondingly the arcs in the arc dia-
gram, are determined by the strand routing; in particular, we place short arcs
corresponding to the stems of the tetraloop capped perimeter hairpins, long-
range stem arcs corresponding to the long-range A-helix stem pairings on the

3 This standard graph algorithm technique is discussed e.g. in [2, Section 35.2].

spanning tree edges, and long-range kissing loop arcs corresponding to the kiss-
ing loop complexes on the non-spanning tree edges. The arc diagram of the H
tile is shown in Figure 3b, while those of the U and E tiles are shown in Figure 5.

Recall that cotranscriptional polymerase trapping is a risk if there is a stem-
pairing arc crossing a kissing-loop arc in the forward direction. Moreover, the
trapping is more likely if the later segment of the stem pairing (e.g. segment
C* in Figure 3b) is transcribed much later than the second hairpin loop of
the kissing loop (e.g. segment B* in Figure 3b.) Hence, in case a stem pairing
crosses a kissing loop in the forward direction, we associate a cost to the stem
pairing proportional to the strand-distance between the second hairpin loop of
the kissing loop and the stem pairing’s second segment. If a stem pairing crosses
multiple kissing loops, we associate with it the maximum cost over all the kissing
loops it crosses. In this formulation, a stem pairing which does not cross any
kissing-loop arc in the forward direction will have zero cost. For instance, the
central stem pairing of the H tile (Figure 4b) has non-zero cost because it crosses
the top kissing loop in the forward direction (cf. Figure 3b), but the bottom stem
pairing of the U tile (Figure 4c) has zero cost since it crosses neither kissing loop
in the forward direction (cf. Figure 5a). Also note that the stems of tetraloop
capped perimeter stem loops have zero cost since they cross no kissing loops.

We set the cost of a tile to be the maximum over all costs of its stem pairings.
Note that since the stem of the second hairpin of every kissing loop complex (e.g.
stem D–D* in Figure 3b) crosses the kissing loop (e.g. KL B–B* in Figure 3b),
every tile with a kissing loop has this trivial non-zero cost. In this regard, only the
E tile (Figure 4d) has zero polymerase trapping cost (compare its arc diagram
in Figure 5b with the other tiles’ arc diagrams). Nevertheless, the U tile has a
cost no more than the trivial hairpin stem cost since the only long range stem
pairing, which corresponds to the horizontal spanning tree edge, has zero cost (cf.
Figure 5a). In contrast, the H tile has non-trivial cost because the stem pairing
on the spanning tree edge crosses the upper kissing loop (cf. Figure 3b). Even
though the U tile thus technically has slightly larger cost than the E tile, it is
more likely to stay well-formed than the E tile, due to its two-crossovers-per-row
design that limits rotational flexibility compared to the single crossovers of the
E tile. Hence our tile design scheme always imposes this constraint.

Note that the cost of a stem pairing depends on the 5’ to 3’ routing direction
since the cost definition involves the crossing of a kissing-loop arc in the forward
direction. In this regard, the main stem pairing of the U tile would have had a
non-zero cost if the routing direction was reversed. Indeed, if the transcription
direction was reversed in the arc diagram of Figure 5a, the stem pairing would
have crossed both kissing-loop arcs in the forward direction. Furthermore note
that, given a fixed spanning tree, the cost of a routing depends also on the
starting point of the routing. For instance, starting a clockwise routing at the
lowest left vertex of the U spanning tree (Figure 4c) would have yielded a non-
trivial cost in the resulting tile because the spanning-tree-edge stem pairing
would then have had a non-trivial cost. In particular, since the upper segment of
the stem pairing would have preceded the complementary lower segment in the

linearisation to an arc diagram, the stem-pairing arc would have crossed both
kissing-loop arcs in the forward direction. Since there are an infinite number of
possible starting points, we limit routings to only start at vertices. Given the
above two considerations, we associate with a spanning tree the minimum cost
among all the possible combinations of starting points and directions (clockwise
or counterclockwise).

4 Search Algorithm

In principle, we can develop the search for good spanning trees on arbitrary
finite connected subgraphs of the infinite rectangular grid. To model reasonable
2D RNA shapes, we however limit our attention to subgraphs corresponding to
bitmap shapes carved from the infinite grid (see Figure 6c). In particular, we
shall consider the input to our algorithm to be a finite subgraph derived from a
finite set of connected pixels (faces) of the infinite grid; we consider two pixels
to be connected if there is a common vertex bounding both pixels. The input is
then the set of vertices and edges bounding the selected pixels. To build RNA
tiles out of such partial grids, we follow the same procedure as in the case of
rectangular shapes (cf. Section 3), except that in this case, every vertex in the
partial grid which only has one horizontal edge incident to it will be considered
a perimeter/boundary vertex and will be flanked with a tetraloop capped stem
loop in the missing horizontal edge (see e.g. the vertices bounding the eyes of
the smiley-face in Figure 7).

Finding a good strand routing, i.e. one that is least likely to cause cotranscrip-
tional polymerase trapping, entails searching through a large number of possible
spanning trees of the input grid. For instance, even in the relatively small 6 x 6
complete grid, the number of spanning trees is approximately 3.2 ∗ 1015 [11].
To effectively manage such a large search space, we developed a search proce-
dure (Algorithm 1) that applies a branch-and-bound search on the spanning tree
space of the underlying grid graph of the given shape. The branch-and-bound
process conceptually performs an exhaustive search of all spanning trees, but
prunes the search paths based on lower bounds evaluated from partial solutions,
which in this case, correspond to trees spanning an incomplete set of vertices.

The algorithm’s branch-and-bound search tree is based on binary choices
for edges. At each step, the algorithm selects an edge and decides whether to
include or exclude this edge (Lines 15 and 18); two branches corresponding to this
decision are generated in the search tree. The choice edge is selected at random
from the list of edges adjacent to the current spanning tree, i.e. to the current
partial solution (Line 14 of Algorithm 1). To bound the search tree effectively, we
use the cost of this spanning tree as the lower bound for all spanning trees which
can be extended from it in the current search path. Note that the search process
here evolves a single partial spanning tree to eventually find a tree that spans the
complete target shape. This structuring of the search tree, combined with the
bounding mechanism, makes it possible to find minimum-cost spanning trees
for large designs such as the smiley-face in Figure 7. Alternatively, one could

Algorithm 1 Find a spanning tree that minimises risk of polymerase trapping

Input: A grid graph G modelling a 2D shape
Output: A minimum cost spanning tree
1: best tree← Randomly generated spanning tree of G
2: min cost← Cost(best tree)
3: Recursive search(G,G, some vertex v of G)
4: return best tree
5:
6: procedure Recursive search(G, residual, tree)
7: if tree is a valid spanning tree of G then
8: if Cost(tree) < best cost then
9: min cost← Cost(tree)

10: best tree← tree
11: return
12: end if
13: end if
14: new edge← Select from residual a random edge which is adjacent to tree but

does not create a cycle when added to tree.
15: if Cost(tree ∪ new edge) < min cost then
16: Recursive search(G, residual − new edge, tree ∪ new edge)
17: end if
18: if new edge is not a cut edge in residual then
19: Recursive search(G, residual − new edge, tree)
20: end if
21: end procedure

have decided on arbitrary edges instead of edges adjacent to the current tree.
However, this entails growing forests of trees as partial solutions, and leads to
several difficulties in obtaining a lower-bounding function for the search process.

Efficient search through branch-and-bound search is possible because of the
monotonically increasing cost function. Recall that the cost is incurred by stem-
pairing arcs crossing kissing-loop arcs in the forward direction in the arc diagram
representing the routing. When an edge is selected to extend the tree, it only
adds a small segment to be spliced into the arc diagram of a routing around the
tree. Clearly, this can never decrease the strand-distance of the forward crossing
arcs. Therefore, adding edges to any tree can only increase the cost of the tree.
The algorithm also prevents the possibility of a vertex from not being spanned
through a connectivity check before the exclusion of an edge (lines 18-20). This
connectivity check ensures the graph does not become disconnected as the result
of an edge exclusion.

5 Design Pipeline and Examples

We have integrated our spanning tree search algorithm into a software design
pipeline for generating RNA tiles from 2D meshes. The pipeline, along with a
representative example, is presented in Figure 6. The design process starts in

 Min cost
spanning tree

search

c

DIMACS+

Spanning tree searchBitmap to grid graph Secondary structure

2D mesh
design

a

Bitmap

Convert
bitmap to grid

graph

b

DIMACS

Spanning tree
to dot-bracket

notation

d

Dotbracket
notation

Scale &
parameter

Manual

Automated

(a) Complete software pipeline

(b) Bitmap design (c) Grid graph
(d) Spanning tree with a
min cost strand-routing

(((....)))))(((((....)))))(((((....)))))(((((....)))))((((((..
[[[[[[..))))))((((((..[[[[[[..))))))((((((..[[[[[[..))))))))))))))))))))))))))))(((((((..]]]]]]..)))))))
(((((((..]]]]]]..)))))))(((((((..]]]]]]..)))))))(((((((((((((((((((((((((((....)))))(((((....)))))((((((..
[[[[[[..))))))))))))))))))))))))))))(((((((..]]]]]]..)))))))((((((..[[[[[[..))))))))))))))))))))))))))))
(((((((..]]]]]]..)))))))(((((....)))))(((((....)))))

(e) The final secondary structure including kissing loops

Fig. 6: Our software pipeline for designing 2D RNA shapes.

a custom 2D mesh design tool we developed, whereby the user first sets the
dimensions of the grid and henceforth selects a set of pixels constituting the
target shape. After exporting the mesh as a bitmap, the user can run a script to
generate an RNA secondary structure, including the kissing loop interactions,
in the standard dot-bracket notation.

The pipeline, as shown in Figure 6a, consists of three modules. The first mod-
ule, framed in the “Bitmap to grid graph” box in Figure 6a, is used to manually
design a 2D pattern as a bitmap image and convert it to a grid graph represen-
tation in the standard DIMACS format. For the current example, the input and
output of this module are shown in Figures 6b and 6c, respectively. Note that
the edges and vertices bounding the selected pixels define the grid graph. Hence,
the right vertical edge bounding the unselected pixel is not part of the output
grid graph. The second module reads the input grid graph and searches, using
Algorithm 1, for a minimum cost spanning tree. The output spanning tree for
the running example is shown in Figure 6d. The module outputs the spanning
tree in DIMACS format with additional comments on the starting position and
direction of the minimum cost strand routing. The final module performs a twice
around the tree traversal and generates a secondary structure in dot-bracket no-
tation, augmented with information about the kissing-loop interactions. In our

example, the resulting secondary structure is shown in Figure 6e, where the
matching square brackets indicate the kissing-loop pairings. This module also
allows one to input secondary structure parameters and other design choices
such as the number of turns per one horizontal edge, size and structure of the
perimeter caps, kissing loop design, etc.

Fig. 7: A (near) zero cost strand routing of a smiley-face shape.

We demonstrate the capability of our software pipeline to produce polymerase-
untrapped designs by running it on our grid representation of the smiley-face
shape from [6]. We carved the smiley-face from a 14 by 6 canvas by deleting
pixels corresponding to the two eyes, the mouth and the background. Our algo-
rithm produced a spanning tree and routing, as shown in Figure 7, which only
has the trivial cost. In the figure, black vertices correspond to the input grid

graph, while grey vertices are only placed to hint at the canvas from which the
shape was carved. The fact that our pipeline found a (near) zero cost solution
illustrates the utility of our algorithmic approach for finding designs that avoid
polymerase trapping even in relatively large shapes. Nevertheless, we note, for
instance, that our supplementary two-crossover-per-row constraint is insufficient
to overcome flexibility in partial grids and further modelling is required to fully
capture other constraints of RNA design of complex shapes.

6 Conclusions and Future Work

In the framework of RNA origami tile design, we have identified the topolog-
ical folding obstacle of polymerase trapping, formulated it as a combinatorial
problem, and designed an optimisation procedure and operational software to
minimise the risk of encountering this obstacle. The software pipeline still needs
to be extended to include sequence generation, but this involves several further
considerations that we are currently investigating.

In the process, we have observed that in fact zero-cost routings (according to
our present cost measure) are quite prevalent, and are planning another paper
on a combinatorial characterisation of those.

In the actual biochemical setting, our present cost measure and design con-
straints are certainly too simplistic, and other considerations need to be taken
into account. However the optimisation framework should be able to accommo-
date such changes quite conveniently.

Acknowledgments. We thank Ebbe Andersen and Cody Geary for introducing
us to the problem of polymerase trapping in RNA origami tile design, and their
encouragement to proceed with the solution approach discussed in this paper.

References

1. Chworos, A., Severcan, I., Koyfman, A.Y., Weinkam, P., Oroudjev, E., Hansma,
H.G., Jaeger, L.: Building programmable jigsaw puzzles with RNA. Science
306(5704), 2068–2072 (2004), https://doi.org/10.1126/science.1104686

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2009)

3. Geary, C., Chworos, A., Verzemnieks, E., Voss, N.R., Jaeger, L.: Composing RNA
nanostructures from a syntax of RNA structural modules. Nano Lett. 17(11), 7095–
7101 (2017), https://doi.org/10.1021/acs.nanolett.7b03842

4. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Programming biomolecules than
fold greedily during transcription. In: Proceedings, 41st Intl. Conf. on Mathemati-
cal Foundations of Computer Science (MFCS 2016), LIPIcs, vol. 58, pp. 43:1–43:14.
Dagstuhl Publishing (2016), http://doi.org/10.4230/LIPIcs.MFCS.2016.43

5. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for
cotranscriptional folding of RNA nanostructures. Science 345(6198), 799 (2014),
https://doi.org/10.1126/science.1253920

6. Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA origami
structures. In: Proceedings, 20th Intl. Conf. on DNA Computing and Molecular
Programming (DNA20), LNCS, vol. 8727, pp. 1–19. Springer (2014), https://

doi.org/10.1007/978-3-319-11295-4_1

7. Guo, P.: The emerging field of RNA nanotechnology. Nat. Nanotech. 5, 833–842
(2010), https://doi.org/10.1038/nnano.2010.231

8. Han, D., Qi, W., Myhrvold, C., Wang, B., Dai, M., Jiang, S., Bates, M., Liu, Y.,
An, B., F, Z., Yan, H., Yin, P.: Single-stranded DNA and RNA origami. Science
358(6369), eaao2648 (2017), https://doi.org/10.1126/science.aao2648

9. Jasinski, D., Haque, F., Binzel, D.W., Guo, P.: Advancement of the emerging field
of RNA nanotechnology. ACS Nano 11(2), 1142–1164 (2017), https://doi.org/
10.1021/acsnano.6b05737

10. Kohman, R., Kunjapur, A.M., Hysolli, E., Wang, Y., Church, G.M.: From designing
the molecules of life to designing life: Future applications derived from advances
in DNA technologies. Angew. Chem. Intl. Ed. accepted manuscript online (2018),
https://doi.org/10.1002/anie.201707976

11. Kreweras, G.: Complexité et circuits eulériens dans les sommes tensorielles de
graphes. Journal of Combinatorial Theory, Series B 24(2), 202–212 (1978), https:
//doi.org/10.1016/0095-8956(78)90021-7

12. Li, Y., Mao, C., Deng, Z.: Supramolecular wireframe DNA polyhedra: Assembly
and applications. Chin. J. Chem. 35(6), 801–810 (2017), https://doi.org/10.

1002/cjoc.201600789

13. Orponen, P.: Design methods for 3D wireframe DNA nanostructures. Natural Com-
puting 17(1), 147–160 (2018), https://doi.org/10.1007/s11047-017-9647-9

14. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature
440(7082), 297–302 (2006), https://doi.org/10.1038/nature04586

15. Seeman, N.C.: Structural DNA Nanotechnology. Cambridge University Press
(2015)

16. Seeman, N.C., Sleiman, H.F.: DNA nanotechnology. Nature Reviews Materials 3,
17068 (2017), https://doi.org/10.1038/natrevmats.2017.68

17. Westhof, E., Masquida, B., Jaeger, L.: RNA tectonics: Towards RNA de-
sign. Folding and Design 1(4), R78–R88 (1996), https://doi.org/10.1016/

S1359-0278(96)00037-5

18. Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: State
of the art and future perspective. J. Am. Chem. Soc. 136(32), 11198–11211 (2014),
https://doi.org/10.1021/ja505101a

