
Unknotted Strand Routings of Triangulated Meshes

Abdulmelik Mohammed1? and Mustafa Hajij2

1 Aalto University, Espoo, Finland,
abdulmelik.mohammed@aalto.fi

2 University of South Florida, Tampa, Florida,
mhajij@usf.edu

Abstract. In molecular self-assembly such as DNA origami, a circular strand’s
topological routing determines the feasibility of a design to assemble to a target.
In this regard, the Chinese-postman DNA scaffold routings of Benson et al. (2015)
only ensure the unknottedness of the scaffold strand for triangulated topological
spheres. In this paper, we present a cubic-time 5

3
−approximation algorithm to

compute unknotted Chinese-postman scaffold routings on triangulated orientable
surfaces of higher genus. Our algorithm guarantees every edge is routed at most
twice, hence permitting low-packed designs suitable for physiological conditions.

Keywords: DNA origami · knot theory · graph theory · Chinese postman problem

1 Introduction

Since the pioneering work of Ned Seeman in 1982 [29], DNA has emerged as a ver-
satile, programmable construction material at the nanoscale. Accordingly, DNA-based
polyhedra [3,4,13,16,30,33], periodic- [36] and algorithmic [28] crystals, custom two-
[2,27,34] and three-dimensional shapes [6,20] have since been demonstrated in the lab.
With the introduction of the experimentally robust DNA origami technique [27], highly
automated and well-abstracted derivative design methods [3,33] have become prominent,
enabling design and synthesis of evermore complex three-dimensional geometries.

In the Chinese-postman-tour DNA origami design of triangulated topological spheres
by Benson et al. [3], the long circular scaffold strand is first routed on the mesh skeleton
and then held in place with hundreds of short staple strands. Henceforth, double helices,
comprised half-and-half from the scaffold and staples, constitute the edges of the mesh,
while the set of nearby strand transitions between edges form the vertices. However, the
limitation of the method to topological spheres excludes simple but natural wireframes
such as the nested cube synthesized by Veneziano et al. [33]. Evident with the view of
the nested cube as a toroidal mesh, the class of higher-genus surfaces permits a much
larger class of spatially embedded wireframes to be designed.

A fundamental topological constraint when employing a circular strand for assembly
is that the strand routing must be unknotted. In a recent paper, Ellis-Monaghan et
al. [8] have shown the scaffold routings of Benson et al. [3] can be knotted on higher-
genus surfaces. In Figure 1, we present another example of a knotted Chinese-postman-
tour/Eulerian-tour routing on a triangulated torus. We leave it to the reader to verify
? Corresponding author.

that the routing corresponds to a trefoil knot on the torus. For higher-genus surfaces
such as tori, a routing can also be knotted or unknotted depending on how the surface is
embedded in real space. For instance, the Chinese-postman-tour/Eulerian-tour routing
in Figure 2 is knotted if the embedding of the torus is knotted (as in Figure 3), but is
unknotted if the embedding is standard. This can be verified by noting that the routing
helically follows the meridional (horizontal) direction.

In this work, we examine the problem of finding unknotted Chinese-postman tours
on the 1-skeleton of higher-genus triangulated surfaces. We present a cubic-time approx-
imation algorithm to compute unknotted Chinese postman tours on such surfaces. Our
algorithm further guarantees that the tour routes each edge at most twice, thus allowing
low-packed helix bundle designs suitable for low-salt solutions [3,33].

Fig. 1. Left: a planar representation of the 1-skeleton of a torus mesh. The torus is reconstructed,
in a standard way, by glueing the horizontal boundaries together and likewise glueing the vertical
boundaries together. Right: a knotted routing as a detached Chinese postman tour/Eulerian tour on
the mesh skeleton. Note that since the boundaries of the planar representation are identified for
glueing, only one copy of a boundary edge in the representation is visited by the Eulerian routing.

Fig. 2. Left: a planar representation of the 1-skeleton of a torus mesh. Right: a detached Chinese
postman tour/Eulerian tour on the skeleton which is unknotted in a standard embedding of the
torus, but is knotted in a knotted embedding of the torus. Note that a column of the mesh is a
repeatable unit and thus this construction naturally leads to an infinite family of knotted and
unknotted routings depending on the embedding of the torus in R3.

2 Preliminaries and Problem Definition

Assuming familiarity with basic topology [23] and graph theory [19], we only provide
definitions to formally state our computational problem and prove our claims.

2.1 Triangulated Surfaces

A surface is a topological space that is Hausdorff, second countable, and locally homeo-
morphic to R2. We exclusively consider compact, connected, orientable surfaces, and
for brevity refer to them as surfaces. Unless stated otherwise, a surface is assumed to
be without boundary. The classification theorem of (compact, connected, orientable)
surfaces states that any surface is homeomorphic to either the sphere or the connected
sum of g tori, for g ≥ 1. Surfaces without boundary can be classified up to homeomor-
phism via the Euler characteristic : χ(S) = 2 − 2g, where g is the genus. Intuitively,
the genus of a surface is the number of handles in that surface. For instance, a torus has
genus one. A surface of genus zero and no boundary components is a topological sphere.
A topological sphere with a single boundary component is called a topological disk. In
practice surfaces are usually approximated by triangulated meshes (c.f. Figure 3), or
more formally by simplicial complexes.

Fig. 3. A triangulated surface (torus) embedded in R3 in a knotted manner.

Let k be a positive integer and A = {v0, · · · , vk} be a set of points in Rn. We say
that v0, · · · , vk are affinely independent, if v0 − v1, · · · , v0 − vk are linearly indepen-
dent.3 A k-dimensional simplex, or simply a k-simplex, is the set σk = [v0, · · · , vk] =
{
∑k
i=0 λivi ∈ Rn :

∑k
i=0 λi = 1, λ ≥ 0}. Note that a simplex is completely deter-

mined by its set of vertices. We often call a 0-simplex a vertex, a 1-simplex an edge and
a 2-simplex a face. Given a simplex σA on a set A, any non-empty subset T of A is also
affinely independent and determines a simplex σT called a facet of σA.

A k-dimensional simplical complex is a finite collection Σ of simplices of dimension
at most k that satisfies the following conditions. First, if σ is in Σ, then all the facets of
σ are also in Σ. Second, if σ1, σ2 ∈ Σ, σ1 ∩ σ2 6= ∅, then σ1 ∩ σ2 is in Σ. Last, every

3 By convention, if k = 0, then v0 is affinely independent.

point inΣ has a neighborhood that intersects at most finitely many simplices ofΣ. The i-
skeleton of a simplicial complex Σ is the union of the simplices of Σ of dimensions less
than or equal to i. If Σ is a simplicial complex and σ ∈ Σ then star(σ) := {µ ∈
Σ such that µ contains σ, or is a facet of a simplex which contains σ}. We denote by
|Σ| the set obtained by taking the union of all simplices of a simplicial complex Σ, and
equipped with the relative subspace topology of the usual topology of Rn.

In this paper we only need 2-dimensional simplicial complexes. IfΣ is a 2-dimensional
simplicial complex then we denote by V (Σ), E(Σ) and F (Σ) the set of vertices, edges
and triangles ofΣ, respectively. A simplicial surface S is a simplicial complex consisting
of a finite set of faces such that (1) Every vertex in Σ belongs to at least one face in
F (Σ) and (2) For every v in V (Σ), |star(v)| is homeomorphic to a 2-disk. If Σ is a
simplicial surface and in addition there is a piecewise-linear embedding F : |Σ| −→ R3

then we call (Σ,F) a triangulated surface, or simply a mesh. Note that if Σ is a tri-
angulated surface then |Σ| is a topological surface embedded in R3. Figure 3 shows
an example of a triangulated surface. The Euler characteristic of a mesh Σ is given by
χ(Σ) = |V (Σ)| − |E(Σ)|+ |F (Σ)|.

2.2 Postman Tours and Knots

In this paper, we only consider finite, undirected, loopless graphs. By graph, we mean a
simple graph, reserving the term multigraph for graphs which can have parallel edges. We
denote a multigraph as G = (V,E), and use V (G) and E(G) to refer to its vertices and
edges, respectively. A walk W of length l ≥ 0 on a multigraphG = (V,E) is a sequence
of vertices and edges (v0, e0, v1, e1, · · · , el−1, vl) such that ei = [vi−1, vi] ∈ E(G). We
say W visits or traces an edge e if e ∈ W . A walk is said to be closed if v0 = vl. A
path is a walk without repeated vertices and a cycle is like a path except that v0 = vl. A
trail is a walk with distinct edges, and a trail is said to be closed if the walk is closed.
A multigraph is said to be connected if there is a walk between any two vertices. A
connected cycle-free graph is called a tree and more generally a cycle-free graph is
called a forest.

A postman tour [7] is a closed walk which traces every edge at least once. The length
of a postman tour is the length of the walk. A Chinese postman tour is a postman tour
with minimum length. An Eulerian tour is a closed walk which visits every edge exactly
once. A multigraph which admits an Eulerian tour is said to be Eulerian. A classical
theorem of Euler [10] and Hierholzer [17] states that a multigraph is Eulerian if and
only if it is connected and does not contain any odd-degree vertices. For an Eulerian
multigraph, the notion of a Chinese postman tour and an Eulerian tour coincide (see
the planar representations of Eulerian torus meshes and related routings in Figures 1
and 2.) In our work, we only work with postman tours on (simple) graphs. Moreover, we
mostly view a postman tour on a graph as being an Eulerian tour on a related multigraph.
In particular, the multiple traces of an edge by the postman tour are viewed as visits of
independent copies of the edge in the Eulerian multigraph [7]. For further illustrations
related to the concepts here, check the right most graph in Figure 6, a Chinese postman
tour of this graph depicted on the right in Figure 7 and the related Eulerian multigraph
shown on the left in Figure 7.

An embedding of a multigraph G in R3 is a representation of G in R3 where the
vertices of G are represented by points on R3 and the edges of G are represented by
simple arcs on R3 such that: (1) no two arcs intersect at interior points to either of
them, (2) the two vertices defining an edge e are associated with the endpoints of the arc
associated with e, and (3) there is no arc which includes points that are associated with
other vertices. Here we are interested in multigraphs that are embedded on meshes. In
particular, we are interested in the 1-skeleton of a surface mesh M which corresponds to
the embedded graph G = (V,E), where V = V (M) and E = E(M).

A knot in R3 is a (piece-wise) linear embedding of the circle S1 in R3. Knots are
considered up to ambient isotopy, that is two knots are said to be ambient isotopic if
we can continuously deform one to the other without tearing or self intersection. An
unknot is a knot ambient isotopic to the standard circle on the plane. Equivalently, an
unknot is a knot that bounds an embedded piece-wise linear disk in R3 [24]. For a formal
treatment of knot theory see [24,26]. Note that the standard definition of a postman
tour as presented above is purely combinatorial and does not yet specify a curve to be
analyzed as a knot. In the next section, we introduce an interpretation of a postman tour
as a knot which permits any postman tour as a candidate solution for the unknotted
Chinese postman tour routing problem (c.f. Problem 1.)

2.3 The Unknotted Chinese Postman Tour Problem

For a graph G embedded in R3, suppose the embedding of a postman tour T on G is
the curve implied by the image of the vertex-edge sequence of the tour except that the
repeated edges are mapped to parallel but non-overlapping curves which only meet at the
endpoints. Consider the related Eulerian multigraph G′. Unless G′ is a cycle, T repeats
vertices, and hence the embedding of T either touches or intersects itself at vertices. For
formal treatment of T as a knot, we need to make the embedding a simple curve while
keeping the curve within the vicinity of G. For this purpose, we define the notion of a
detachment of a postman tour embedding, which is simply a local unpinning of all the
edge transitions at the vertices, as follows.

Let T = (v0, e0, v1, e1, · · · , el−1, vl = v0) be a postman tour on a graph G embed-
ded in R3. Construct a new graph ∆ with vertex set {δ0, δ1, · · · , δl−1} and edge set
{α0, α1, · · · , αl−1}, where αi = [δi, δi+1], for 0 ≤ i ≤ l − 2, and αl−1 = [δl−1, δ0].
Clearly, ∆ is a cycle and has an Eulerian tour T∆ = (δ0, α0, δ1, α1, · · · , αl−1, δl = δ0).
Observe that while T might repeat vertices, T∆ does not. Suppose we embed ∆ as
follows: (1) Each δi is at most a small ε > 0 distance, in R3, away from vi, (2) Each
edge αi is embedded exactly like ei, except at its ends where it is incident to δi and δi+1

instead of vi and vi+1. Note that by construction, all the vertices of ∆ are at distinct
locations. We call the induced embedding on T∆ a detachment of T .4 A detachment
of a postman tour is simple and is thus a knot. We say that a detached postman tour is
unknotted if the detachment is an unknot. Recall Figure 1 for an example of a knotted
detachment of a Chinese postman tour on the 1-skeleton of a torus standardly embedded
in R3. We now state our problem as follows.

4 Detachments are also defined in the literature [11] for multigraphs without an associated
embedding.

Problem 1. Unknotted Chinese postman tour problem (UCPT): Given a triangulated
oriented surface without a boundary and of genus g ≥ 1, find a minimum length postman
tour along its 1-skeleton which is detachable to an unknot.

An example input instance of UCPT, a genus one triangulated mesh, is shown on
the left in Figure 4. Next, we present a 5

3 -approximation algorithm for UCPT, that is a
postman tour with length at most two-thirds greater than any unknotted Chinese postman
tour, which moreover guarantees that no edge is traced more than twice. Although the
notion of detachment is important for the consideration of all possible postman tours as
solutions to UCPT, our algorithm outputs non-crossing postman tours (c.f. Section 3.3
and Figure 7) where the detachments are clear without explicit construction.

1

2

3

813
4

9

14

6

10
15

5
12

11
7

15

7 8

12

6

11

13

14 11

11

8

2

9

9
10

9

14

4

11

4

9

14

2

4

4

3

3 3

10

15

9

Fig. 4. Left: A toroidal mesh. Right: A polygonal schema of the mesh.

3 A Cubic Time Algorithm for Finding Unknotted Postman Tours

The main idea of our algorithm is to transfer the problem of finding an unknotted Chinese
postman tour on an arbitrary surface mesh to the case of finding such a tour on the mesh’s
cutting to a topological disk. After such cutting, we can compute an unknotted Chinese
postman tour on the disk, which then simply lifts to an unknotted approximate Chinese
postman tour on the surface mesh. To be presented in detail in the subsequent sections,
our algorithm, which we name as the cut-and-route algorithm, proceeds along the
following steps:

1. Cut the input surface mesh M to obtain a topological disk D where a re-gluing of
partnered boundary edges reconstructs M .

2. Remove one instance of the partnered edges of D and extract an embedded subgraph
H on D whose edges are in a one-to-one correspondence with M .

3. Find a non-crossing Chinese postman tour on H , which then maps to the desired
unknotted approximate Chinese postman tour on M .

3.1 Cutting a Surface to a Disk

Surface cutting is a problem that has been extensively studied due to its importance in
surface parameterization and texture mapping [12,9]. For our algorithm, we adopt the

Algorithm 1: Mesh2disk: Cutting a triangulated surface to a disk.
Input: A triangulated surface M given as a face-to-face adjacency list.
Output: A polygonal schema D of M .

1 s← the first face, D ← an empty adjacency list, Q← empty queue of faces;
2 Enqueue s to Q;
3 for all faces f ∈M do Mark f as not visited;
4 while Q is not empty do
5 f ← dequeue from Q;
6 Mark f as visited;
7 for g neighbor of f in M do
8 if g is not visited then
9 Enqueue g to Q;

10 Append g to D[f] and f to D[g];
11 return D;

basic algorithm of Dey and Schipper [5] for computing a polygonal schema. A polygonal
schema [9] of a triangulated surface M is a topological disk that consists of all faces of
M . A polygonal schema can be obtained by cutting a graph, called a cut graph, on the
the 1-skeleton of M . Dey and Schipper’s cutting algorithm starts with topological disk
D which consists of a single face f on the surface M and keeps expanding D by gluing
faces to its boundary. We present it in Algorithm 1, named as Mesh2disk, for analysis
within our cut-and-route algorithm.

Mesh2disk is simply a breadth first search (BFS) on the dual graph implied by the
face-to-face adjacency list of M , and the BFS tree represents the connectivity of the
faces inD. For the torus mesh in Figure 4, the first few rounds of face addition are shown
in Figure 5 and the resulting polygonal schema is shown on the right in Figure 4. Next,
we prove three lemmas useful for the analysis of the cut-and-route algorithm.

Lemma 1. Mesh2disk outputs a topological disk D.

Proof. Let (f1, f2, f3, · · · , f|F (M)|) be the order in which the faces of M are visited
by Mesh2disk. Let Dj , for j = 1 to |F (M)|, be the simplicial complex after faces
f1 through fi have been appended. We prove Dj is a disk by induction on j. For the
base case, D1 consists of a single face f1 and hence is a disk. Now assume, Dj−1 is
a disk. When fj is added to Dj by gluing edge-wise to fi for some i < j, |V (Dj)| =
|V (Dj−1)|+ 1, |E(Dj)| = |E(Dj−1)|+ 2 and |F (Dj)| = |F (Dj−1)|+ 1 (c.f. Figure
5.) Hence, χ(Dj) = χ(Dj−1). The number of boundary components remains the same.
By the classification theorem of surfaces with boundary, Dj is a disk. ut

Lemma 2. For the input-output pair (M,D) of Mesh2disk, |V (D)| = |F (M)|+ 2.

Proof. Following the notation of Lemma 1, the claim follows by observing that Dj has
one more vertex than Dj−1, for j ≥ 2, and a straightforward induction on the number of
faces of M . ut

1

7676

2

1 1

76

2

12

1

76

2

12

5

Fig. 5. Initial stages of Mesh2disk (Algorithm 1) constructing a polygonal schema of the torus
mesh in Figure 4.

Lemma 3. The algorithm Mesh2disk runs in O(|F (M)|) time.

Proof. Mesh2disk is simply BFS as implied by the face-to-face adjacency list of M
and thus takes O(|F (M)|+ |E(M)|) time. By double counting of edges, 3|F (M)| =
2|E(M)|. The claim follows. ut

Each edge in the cut graph of a mesh determines exactly two boundary edges in the
polygonal schema [5,9]. The boundary edges on D always come in pairs and if we glue
all such pairs together we obtain the original mesh M . If e and e′ are two boundary
edges coming from the same edge in M , we say that e and e′ are partners.

3.2 Removing Duplicate Edges on Disk Boundary

In principle, we can construct a Chinese postman tour on the polygonal schema D and
map it back to an approximate Chinese postman tour on the input mesh M . However, an
attempt to build a Chinese postman tour directly on D can repeat the cut graph edges on
the mesh M three or four times since these edges appear twice as boundary edges of
D. To guarantee that no edge of the mesh is traced more than twice, we instead find a
Chinese postman tour on an embedded subgraph H of D with the following properties:

1. For any two partnered edges in D, exactly one of the two edges is in E(H). Thus,
the edge set of H has a one-to-one correspondence with the edge set of M .

2. H is a connected spanning subgraph of D, that is V (H) = V (D).

After extracting such a spanning subgraph H , we can find a Chinese postman tour on
H , which then maps to an approximate Chinese postman tour on M that visits the mesh
edges at most twice. To extract H , we first identify two types of faces of D. A face in D
is said to be a peripheral face of type I if it is bounded by only one boundary edge, and
of type II if it is bounded by two boundary edges; see the boundary edges in the left-most
image in Figure 6. Our algorithm, named Declone and presented as Algorithm 2, runs
through the peripheral faces, identifying partnered edges and removing the clones along
the way. For the polygonal schema of the torus in Figure 4, an intermediate output of
Delcone is shown in the center in Figure 6 while the final output is shown on the right.

To prove Declone’s outputH satisfies the two properties listed in Section 3.2, we first
define a new graph X? which we refer to as the cut-dual.5 The cut-dual is constructed
by creating a vertex corresponding to each peripheral face in D, and adding an edge
between two vertices u and v if and only if u’s face contains an edge which has a partner

5 X? is the subgraph of the dual of M induced by the duals of the cut edges.

Algorithm 2: Declone: Remove clone edges on a polygonal schema’s boundary.
Input: A polygonal schema D of a surface mesh M .
Output: An embedded subgraph H of D with the two properties listed in Section

3.2.
1 for all faces f ∈ D do
2 Mark f as not processed;
3 if f has a single boundary edge then append f to FI ;
4 else if f has two boundary edges then append f to FII ;
5 H ← D;
6 for all faces f ∈ FI do
7 if f is not processed then
8 a← a boundary edge of f ;
9 Remove a from H;

10 Mark f as processed;
11 g ← the face which contains a’s partner;
12 while g has two boundary edges do
13 b← the boundary edge in g different from a’s partner;
14 Remove b from H;
15 Mark g as processed;
16 g ← the face which contains b’s partner;
17 a← b’s partner;
18 Mark g as processed;
19 for all faces f ∈ FII do
20 if f is not processed then
21 g ← f;
22 a← a boundary edge of g;
23 while g is not processed do
24 b← the other boundary edge of g;
25 Remove b from H;
26 Mark g as processed;
27 g ← the face which contains b’s partner;
28 a← b’s partner;
29 return H

in v’s face. For clarity, we refer to the vertices in X? through their corresponding faces
in D. Note that X? has a maximum degree two since a peripheral face has at most two
boundary edges. Hence, X? is a disjoint union of connected components, each of which
is either a path or a cycle. Each path starts and ends with a type I face but is otherwise
composed of type II faces. Analogously, each cycle is completely composed of type II
faces. With X? in mind, we now prove the following lemmas about Declone.

Lemma 4. Let e and e′ be two partner boundary edges in a polygonal schema D of a
surface mesh M , then exactly one of the two edges e or e′ is removed in H . Hence, there
is a one-to-one correspondence between E(H) and E(M).

15

7 8
10

12

6

11

13

14
15 11

11

8

2

9

9 10

9

14

4

11

4

9

14

2

4

4

3

3 3

15

7 8
10

12

6

11

13

14
15 11

11

8

2

9

9 10

9

14

4

11

4

9

14

2

4

4

3

3 3

9

15

7 8
10

12

6

11

13

14
15 11

11

8

2

9

9 10

9

14

4

11

4

9

14

2

4

4

3

3 3

9
9

Fig. 6. Left, the 1-skeleton of the polygonal schema D of the torus mesh. Middle and right figures
illustrate an intermediate output and the final output of Algorithm Declone, respectively. In the
left and middle figures, the dashed edges highlight unprocessed type I peripheral faces while the
dotted edges highlight unprocessed type II peripheral faces.

Proof. To show that exactly one of the edges e and e′ is removed in H , consider the
peripheral faces f and g that contain the edges e and e′, respectively. By construction of
the cut-dual X?, f and g appear in the same path or the same cycle component of X?.

Suppose f and g appear in a path P . Let s be the type I face of P appended first to
FI and let t be the other type I face in P . Suppose we orient P from s to t. Declone
(Line 6 to 19) processes the faces in P from s to t . Suppose, w.l.o.g, f appears before g
in the (oriented) P . If f = s, then e gets removed in Line 9, but e′ is retained, whether
g is a type II face (in the while loop), or it is a type I face (outside the while loop.) If
f 6= s, then it gets processed in the while loop. Once again, e gets removed (Line 14)
and e′ gets retained whether we stay in the while loop or exit it in the next iteration.
Analogously, e′ gets removed and e gets retained when g appears before f in P .

Now suppose f and g appear in a cycle C of X?. Since C contains no type I face,
none of the faces in C are processed before the third for loop (Line 19). Let s be the face
of C which appears first in FII . Orient C from s outward based on the selected edge a
in Line 22. If f precedes g in the path along the oriented C starting from s, then f gets
processed before g and e is removed while e′ is retained. If g precedes f , e′ is removed
while e is retained. ut

Lemma 5. Declone computes a connected spanning subgraph H of the input D.

Proof. Since no vertex is deleted in H , V (H) = V (D). Hence, we only need to show
that H is connected. Further noting that only a subset of the boundary edges of D get
deleted, let us first analyze the state of the peripheral faces of D. In particular, we first
show that for any peripheral face f in D, at most one boundary edge of f is deleted and
the vertices of f remain connected in H .

Let u, v, w be the vertices of f and let a = {u, v}, b = {v, w}, c = {w, u} be its
edges. If f is a type I face, only one edge is a boundary edge and is potentially removed.
If indeed the edge, w.l.o.g suppose a , is removed, its endpoints u and v remain connected
through the path (u, c, w, b, v).

Now suppose f is a type II face, and w.l.o.g, assume that a and b are the boundary
edges. Let g and g′ be the two peripheral faces containing the partners of a and b,
respectively. Reconsider the cut-dual X? and the orientation of its paths and cycles (see

proof of Lemma 4.) In the oriented path or cycle, the order is either (g, f, g′) or (g′, f, g).
In the first case, b is removed while a is retained while in the second case, the reverse
holds. If a gets removed, then u and v remain connected through the path (u, c, w, b, v)
while if b is removed, v and w are connected through (v, a, u, c, w).

We can now show that H is a connected graph. Since D is connected, there is a walk
W between any vertices u, v. For every boundary edge of D that appears in W but is
deleted in H , replace it with one of the paths described above. This results in a new walk
between u and v in H , and thus H is connected. ut

Lemma 6. Declone runs in O(|F (M)|) time.

Proof. Let p be the number of peripheral faces in D. Since the peripheral faces are a
subset of the faces of D, p ≤ |F (D)| = |F (M)|. The first for loop iterates |F (D)| =
|F (M)| times, each time consuming constant time. Note that checking face incidence
takes constant time since each face is incident to three other faces. This also implies that
the copy in Line 5 is linear in |F (M)|.

For the next two for loops, recall the proof in Lemma 4 and observe that each
peripheral face gets processed once, either in a path or a cycle of X?. Hence, there
are only p iterations of the total work done inside the while loops. The book-keeping,
edge-removal and partner-checking can all be done in constant time, once again since
each face is incident to three faces. ut

3.3 Finding Non-crossing Chinese Postman Tours on the Polygonal Schema

By Lemma 5, Declone outputs a connected spanning subgraph H of the polygonal
schema D. Since H is generally a non-Eulerian graph, cut-and-route proceeds by adding
a minimal set of duplicate edges which converts H to an Eulerian multigraph H ′ using
Edmonds’ Blossom algorithm [7,19]. For the H graph shown on the right in Figure 6,
the resulting Eulerian multigraph H ′ is shown on the left in Figure 7. To keep H ′ in the
polygonal schema, the duplicate edges are added in the interior side of the polygonal
schema. In principle, we can then compute an Eulerian tour on H ′ with Hierholzer’s
algorithm [17,19], but such a tour can generally have crossings, which complicates the
analysis of the unknottedness of the tour.

15

7 8
10

12

6

11

13

14 15 11

11

8

2

9

9 10

9

14

4

11

4

9

14

2

4

4

3

3 3

15

7 8
10

12

6

11

13

14
15

11

11

8

2

9

9 10

9

14

4

11

4

9

14

2

4

4

3

3 3

Fig. 7. Left, an Eulerian multigraph of H obtained by Edmonds algorithm. Right, a non-crossing
Chinese postman tour on H , which then maps to an unknotted postman tour on the torus 1-skeleton.

To make the notion of crossing precise, note that a multigraph embedded on an
orientable surface induces a local cyclic rotational order (fixed either clockwise or
counterclockwise) of the incident edges of vertices. We say two pairs of consecutive
edges in a closed-trail, all of which are incident to a common vertex, cross if the two
pairs interleave with respect to the cyclic order of edges around the vertex. In other terms,
a crossing is a quadruple of edges incident to a common vertex which can be grouped
into two pairs according to their contiguity in the closed trail such that cyclically visiting
edges around the vertex one alternates between the pairs. An Eulerian tour is said to be
non-crossing if it does not contain any two crossing pairs of consecutive edges. Visually,
a non-crossing Eulerian tour on a surface embedded multigraph can be drawn as a simple
closed curve on the surface. In this sense non-crossing Eulerian tours detach to simple
closed curves and are easier to analyze for unknottedness.

Abraham and Kotzig [1] as well as Grossman and Reingold [31] have shown that
all Eulerian multigraphs embedded on a plane admit non-crossing Eulerian tours. More
recently, Tsai and West [32] presented a technique to convert an arbitrary Eulerian tour
on a multigraph embedded on a plane to a non-crossing one by a vertex-local re-splicing
of the tour at crossing pairs.6 Inspired by the proof of Grossman and Reingold [31], we
introduce a linear-time algorithm in Lemma 7 to compute non-crossing Eulerian tours
for multigraphs embedded on orientable surfaces. Briefly, the algorithm first computes
an initial non-crossing closed-trail decomposition of the multigraph, and then iteratively
resplices independent closed trails at each vertex, finally yielding a non-crossing Eulerian
tour.

For a more precise description, we need the additional notion of a transition system
of an Eulerian multigraph. A transition system [11] of an Eulerian multigraph is a set
of partitions of edges, where each element of the set is a grouping (partitioning) of the
incident edges of a vertex into (unordered) pairs. In a transition system, each edge is in
two pairs corresponding to its’ pairings at its’ two end-points. There is a bijection between
transition systems and closed-trail decomposition of Eulerian multigraphs [15]. In this
setting, the pairs in the partitions of the transition system correspond to consecutive edges
in the trails of the closed-trail decomposition. Given a transition system, we can compute
the closed-trail decomposition in linear time by directionally following the pairings. The
notion of non-crossing closed-trails extends naturally to closed-trail decompositions
(and transition systems), in the sense that the closed trails are both self non-crossing and
mutually non-crossing.

Lemma 7. Let G be an Eulerian multigraph embedded on an orientable surface. There
is an O(|V (G)|+ |E(G)|) algorithm to compute a non-crossing Eulerian tour on G.

Proof. As an input, assume that the embedded multigraph G is given as an adjacency
list, describing for each vertex the list of the incident edges in the rotation order. The
algorithm proceeds as follows. We first obtain an initial transition system by going
through each vertex, and for each vertex, cycling around the incident edges in the
rotation order and pairing the first with the second, the third with the fourth, etc. From

6 Although stated only for Eulerian multigraphs embedded on a plane, Tsai and West’s proof also
holds for Eulerian multigraphs embedded on any surface since the resplicing occurs locally at
vertices.

this initial transition system, we follow the pairings to compute an initial closed-trail
decomposition. Next, for each vertex, we again cycle through the incident edges of the
vertex and every instance where the current edge b is not in the same closed trail as the
previous edge a, we pair a with b and a’s old mate ap with b’s old mate bp.

To prove the algorithm computes a non-crossing Eulerian tour, it suffices to prove
that all edges are in the same non-crossing closed trail after all the vertices have been
processed. We prove all edge are in the same closed trail by showing that after a vertex
has been processed, we obtain a non-crossing closed-trail decomposition where all the
edges incident to that vertex are in the same closed trail. After all vertices have been
processed, this local criterion suffices to ensure distal edges are in the same closed trail
because G is connected. For an alternative proof of the sufficiency of the local criterion,
observe that since G is Eulerian, it has some Eulerian tour T ′. Now suppose an edge e is
in some closed trail T in the closed-trail decomposition. Starting from e, following the
edges in T ′, we see that all the edges in T ′ are also in T since consecutive edges in T ′

are incident to a common vertex. Since T ′ is an Eulerian tour, all the edges in G are in
T ′, and hence all edges in G are in T .

Hence, we just need to prove that after a vertex has been processed, we obtain a non-
crossing closed-trail decomposition where all the local edges are in the same closed-trail.
We prove this by induction on the incident edges of the vertex. In particular, we prove,
for a local rotation index j (which runs from one up-to the degree of the vertex), the
following two claims hold after the j-th edge has been processed: (1) The closed-trail
decomposition is non-crossing, (2) The first j edges in the cyclic-order around the vertex
are in the same closed-trail.

For the base case j = 1, (1) holds for the first processed vertex because in the
initially computed transition system (and correspondingly closed-trail decomposition),
the pairings are composed of neighboring edges and thus do not cross any other pairings.
For the remaining vertices, (1) holds by induction on vertices. Claim (2) holds vacuously
for j = 1.

Now suppose after the (j − 1)-th edge has been processed we have a non-crossing
closed-trail decomposition where all local edges are in the same closed-trail. If the
(j − 1)-th edge is in the same closed-trail as the j-th edge, nothing changes after the
j-th edge is processed and both (1) and (2) still hold. Now suppose, j is not in the same
closed-trail as j − 1. Let b be the j-th edge and let a be the (j − 1)-th edge, and let ap
and bp be the mates of a and b before the re-pairing. To show that (1) holds, we only
need to show that the new pairings {a, b} and {ap, bp} do not cross any of the unaltered
pairings or each other. Indeed, the pairing {a, b} is between neighboring edges and
cannot cross any other pairing. To see that {ap, bp} does not cross any other pairings,
first note that bp comes before ap in the cyclic order around the vertex after a; that is,
the cyclic order O is of the form (· · · , a, b, · · · , bp, · · · , ap, · · ·). This follows because
{a, ap} does not cross {b, bp} by induction hypothesis. Now assume, for the sake of
contradiction that {ap, bp} crosses some other pairing {c, d} 6= {a, b} at the vertex. Note
that exactly one of c or d must be in between bp and ap in O since otherwise {c, d}
would not cross {ap, bp}. Without loss of generality, suppose c is the edge in between bp
and ap in O. If d is between b and bp, then {c, d} crosses {b, bp} and if d is between ap
and a, then {c, d} crosses {a, ap}, in either case contradicting the induction hypothesis.

Hence, {c, d} does not cross {ap, bp} and claim (1) holds. For claim (2), since a and b
are now paired, we only need to show that the re-pairing does not leave the edges from 1
to j − 1 in different trails. This cannot be the case since breaking a closed trail at one
pairing does not disconnect its’ edges.

For the complexity, observe that, in both the computation of the initial decomposition
and main processing, every vertex is processed once and every edge is checked at most
twice. Hence, the O(|V (G)|+ |E(G)|) time-complexity follows if we can show all the
internal operations cost constant time. The initial pairing as well as re-pairing consumes
constant time if we represent a transition system by maintaining, for each edge, the two
mates of the edge at its two end-points. Checking whether two edges are in the same trail
can be done in constant time if we associate with each edge, a pointer to their trail within
the decomposition. That is, two pointers will point to the same trail if their corresponding
edges are in the same trail. The pointers can be initialized in O(|E(G)|) time during the
computation of the initial closed-trail decomposition. When re-pairing, updating the trail
of a re-paired edge through its’ pointer will simultaneously update the trails of all the
edges in the same trail. ut

A non-crossing Eulerian tour of H ′, and correspondingly a non-crossing Chinese
postman tour ofH , for our running example is shown on the right in Figure 7. Incorporat-
ing the algorithm presented in Lemma 7, cut-and-route outputs a non-crossing Chinese
postman tour T̂ on H which detaches to a simple closed curve on the polygonal schema
D. Noting that, by Lemma 4, T̂ is also a postman tour on the input mesh M , we now
have the following theorems.

Theorem 1. Cut-and-route outputs a postman tour which is detachable to the unknot
on the input mesh M .

Proof. Let C be the detached postman tour on M obtained by the cut-and-route algo-
rithm. We prove that C is unknotted. By construction, C lies on the embedding of the
polygonal schema D in R3. There is a homeomorphism h which maps the polygonal
schema D, from its embedding in R3, to the standard disk on the plane. By homeo-
morphism restriction, h maps C to a simple closed curve C ′ on the plane. By the
Jordan-Schönfflies’ theorem [26], C ′ bounds a disk D′. The inverse of D′ under h is a
disk on the embedding of D whose boundary is C. A simple closed curve that bounds
an embedded disk is an unknot. Hence, C is unknotted. ut

Theorem 2. Cut-and-route outputs an unknotted postman tour that visits any edge of the
input mesh M at most twice. Moreover, it is a 5

3−approximation algorithm for UCPT.

Proof. Let T̂ be the outputted non-crossing Chinese postman tour on H . The first claim
follows because a Chinese postman tour visits every edge at most twice [7], and by
Lemma 4, the edges of H are in one-to-one correspondence with the edges of M .

For the second claim, observe that the set of edges added to H to construct the
Eulerian multigraph H ′ form a forest on a subset of V (H). Indeed, if such a graph
has a cycle, the edges in the cycle can be removed from H ′ while keeping it Eulerian.
With the cycle removed, an Eulerian tour on H ′ yields a postman tour with less length
than T̂ , thus contradicting the minimality of T̂ . By the relationship between the number

of vertices and number of edges of a forest, there are at most |V (H)| − 1 extra edges
in H ′. By Lemmas 2 and 5, |V (H)| = |V (D)| = |F (M)| + 2. By double counting
of edges, |F (M)| = 2

3 |E(M)|. Thus, at most 2
3 |E(M)|+ 1 edges are repeated. Since

any Chinese postman tour visits every edge, |E(M)| is a lower-bound on the optimal
unknotted Chinese postman tour. The approximation factor thus follows. ut

Theorem 3. For an input mesh M , cut-and-route runs in O(|F (M)|3) time.

Proof. For the analysis, note the relations |V (H)| = |V (D)| = |F (M)|+2, |E(H)| =
|E(M)| implied by Lemmas 2, 5 and 4. Also note that |V (H ′| = |V (H)| and |E(H ′)| ≤
2 ∗ |E(H)| from Edmonds’ algorithm [7,19] and the fact that 2|E(M)| = 3|F (M)|
by double counting. Mesh2disk and Declone were shown to run in O(|F (M)|) time
in Lemmas 3 and 6. Edmonds’ algorithm to convert H to the Eulerian counterpart H ′

runs in O(|V (H)|3) = O(|F (M)|3) time [7,19]. It is easy to check (c.f. Supplementary
methods in [2]) that we can compute, in no more than cubic time, the local rotation of
edges at vertices for H (and in turn of H ′) from the polygonal schema description and
the deleted edges of H . By Lemma 7, computing a non-crossing Eulerian tour on H ′,
or equivalently finding a non-crossing Chinese postman tour on H , takes O(|V (H ′)|+
|E(H ′)|) = O(F (M)) time. Hence, all the modules of cut-and-route run in no more
than cubic-time with respect to the number of faces of the input mesh M . ut

4 Conclusions and Future Work

Eulerian tours have previously featured in experimental and theoretical considerations of
DNA [3,8,18,25,35] and protein self-assembly [14,21]. Similarly, topological constraints
have been implicitly considered in previous works [3,6]. Here, we formally investigated
an unknottedness constraint of a circular strand’s routing on triangulated higher-genus
surfaces, mostly within the design-framework of Benson et al. [3]. We presented a
cubic-time algorithm to compute unknotted approximate Chinese postman tours on such
surfaces.

There are numerous theoretical questions available within the prescribed theory of
unknotted Chinese postman tours. In the specified setting, the complexity of finding
unknotted Chinese postman tours (UCPT defined in Section 2.3) on surface meshes
remains. Simultaneously, further improvements to the approximation with respect to
the approximation factor and run-time can also be pursued. More generally, UCPT on
straight-line graph embeddings in R3 can be studied with an aim to design arbitrary
non-manifold wireframe structures.

On the experimental side, it remains to be seen whether the current approach is
viable, especially with the implied generality. First, unknottedness, while necessary, is
likely insufficient for knotted surface embeddings such as the one depicted in Figure 3.
As evident in such instances, an unknotted routing can still have a self-threading of
the strand through loops. Although it has been previously shown [22] that such self-
threadings are attainable through careful design of the folding pathway, such designs
may be unlikely to fold purely from thermodynamic optimization.

References

1. Abrham, J., Kotzig, A.: Construction of planar Eulerian multigraphs. In: Proc. Tenth South-
eastern Conf. Comb., Graph Theory, and Computing. pp. 123–130 (1979)

2. Benson, E., Mohammed, A., Bosco, A., Teixeira, A.I., Orponen, P., Högberg, B.: Computer-
aided production of scaffolded DNA nanostructures from flat sheet meshes. Angewandte
Chemie International Edition 55(31), 8869–8872 (2016)

3. Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P., Högberg, B.:
DNA rendering of polyhedral meshes at the nanoscale. Nature 523(7561), 441–444 (2015)

4. Chen, J., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube.
Nature 350(6319), 631 (1991)

5. Dey, T.K., Schipper, H.: A new technique to compute polygonal schema for 2-manifolds with
application to null-homotopy detection. Discrete & Computational Geometry 14(1), 93–110
(1995)

6. Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA
into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)

7. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Mathematical
Programming 5(1), 88–124 (1973)

8. Ellis-Monaghan, J.A., Pangborn, G., Seeman, N.C., Blakeley, S., Disher, C., Falcigno, M.,
Healy, B., Morse, A., Singh, B., Westland, M.: Design tools for reporter strands and DNA
origami scaffold strands. Theoretical Computer Science (2016)

9. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete & Computational
Geometry 31(1), 37–59 (2004)

10. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae
Scientiarum Petropolitanae 8, 128–140 (1741)

11. Fleischner, H.: Eulerian graphs and related topics, vol. 1. Elsevier (1990)
12. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer

Aided Geometric Design 14(3), 231–250 (1997)
13. Goodman, R.P., Schaap, I.A., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turber-

field, A.J.: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication.
Science 310(5754), 1661–1665 (2005)

14. Gradišar, H., Božič, S., Doles, T., Vengust, D., Hafner-Bratkovič, I., Mertelj, A., Webb, B.,
Šali, A., Klavžar, S., Jerala, R.: Design of a single-chain polypeptide tetrahedron assembled
from coiled-coil segments. Nature Chemical Biology 9(6), 362–366 (2013)

15. Gross, J., Yellen, J.: Handbook of Graph Theory. Discrete Mathematics and Its Applications,
CRC Press (2004)

16. He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.: Hierarchical self-assembly
of DNA into symmetric supramolecular polyhedra. Nature 452(7184), 198–201 (2008)

17. Hierholzer, C., Wiener, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)

18. Jonoska, N., Seeman, N.C., Wu, G.: On existence of reporter strands in DNA-based graph
structures. Theoretical Computer Science 410(15), 1448–1460 (2009)

19. Jungnickel, D., Schade, T.: Graphs, networks and algorithms. Springer (2008)
20. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from

DNA bricks. Science 338(6111), 1177–1183 (2012)
21. Klavzar, S., Rus, J.: Stable traces as a model for self-assembly of polypeptide nanoscale

polyhedrons. MATCH Commun. Math. Comput. Chem 70, 317–330 (2013)
22. Kočar, V., Schreck, J.S., Čeru, S., Gradišar, H., Bašić, N., Pisanski, T., Doye, J.P., Jerala, R.:

Design principles for rapid folding of knotted DNA nanostructures. Nature Communications
7 (2016)

23. Lee, J.: Introduction to topological manifolds, vol. 940. Springer Science & Business Media
(2010)

24. Lickorish, W.R.: An introduction to knot theory, vol. 175. Springer Science & Business Media
(2012)

25. Morse, A., Adkisson, W., Greene, J., Perry, D., Smith, B., Ellis-Monaghan, J., Pangborn, G.:
DNA origami and unknotted A-trails in torus graphs. arXiv preprint arXiv:1703.03799 (2017)

26. Rolfsen, D.: Knots and links, vol. 346. American Mathematical Soc. (1976)
27. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082),

297–302 (2006)
28. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski

triangles. PLoS Biol 2(12), e424 (2004)
29. Seeman, N.C.: Nucleic acid junctions and lattices. Journal of Theoretical Biology 99(2),

237–247 (1982)
30. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a

nanoscale octahedron. Nature 427(6975), 618–621 (2004)
31. Singmaster, D., Grossman, J.W.: E2897. The American Mathematical Monthly 90(4), 287–288

(1983)
32. Tsai, M.T., West, D.B.: A new proof of 3-colorability of Eulerian triangulations. Ars Mathe-

matica Contemporanea 4(1), 73–77 (2011)
33. Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W., Bathe, M.: Designer

nanoscale DNA assemblies programmed from the top down. Science 352(6293), 1534–1534
(2016)

34. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles.
Nature 485(7400), 623–626 (2012)

35. Wu, G., Jonoska, N., Seeman, N.C.: Construction of a DNA nano-object directly demonstrates
computation. Biosystems 98(2), 80–84 (2009)

36. Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C.,
Seeman, N.C.: From molecular to macroscopic via the rational design of a self-assembled 3D
DNA crystal. Nature 461(7260), 74–77 (2009)

	Unknotted Strand Routings of Triangulated Meshes

